首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Cardiac muscle hearts of Atlantic hagfish continuously function under hypoxic conditions that would lead to cardiac failure in most other vertebrates. Contractile performance of hagfish systemic hearts is resistant to anoxia and respiratory poisons but shows a significant decrement when carbohydrate catabolism is blocked by 0.5 mM iodoacetic acid. Enzyme activity profiles of hagfish ventricle reveal a robust capacity for glycolysis of carbohydrate in comparison to that for general aerobic metabolism and catabolism of alternate metabolic fuels. Isolated working hagfish ventricles preferentially oxidize radiolabeled glucose even when fatty acid fuels are present in the incubation medium. Work output of the isolated ventricular preparation is maintained only in the presence of exogenous glucose. The results indicate that energy metabolism of the hagfish myocardium is predominantly carbohydrate-based and that energy demand of the tissue can be sustained by anaerobic glycolysis during extended periods of extreme hypoxia. Cardiac metabolism of this primitive species is compared with that of hearts from higher vertebrates and an evolutionary hypothesis relating cardiac workload to preferred metabolic fuel is discussed.  相似文献   

3.
We have investigated the regulation of oxygen consumption and modulation of glutathione levels in CHO-K1 cells under oxygen-limiting conditions. We report here suppression of oxygen consumption and alteration of the supply-dependent relationship as a consequence of prolonged hypoxic or anoxic exposure. The suppression is characterized by an increase in the value of P(o(2)/50) (the oxygen tension at which oxygen consumption is half maximal). Under prolonged anoxia there is also a decrease in the cells' potential to use oxygen. Elevated glucose consumption under low oxygen conditions may contribute to the suppression in respiration. The glutathione concentration remains constant throughout hypoxic exposure but may decrease by as much as 40% under anoxia. The glutathione level in hypoxic and anoxic cells increases by two- and four-fold, respectively, over that of the control cells when exposed to a cytotoxic level of oxygen (93%). This suggests that anoxic and hypoxic exposure sensitizes CHO cells to oxidative stress. (c) 1992 John Wiley & Sons, Inc.  相似文献   

4.
5.
Seasonal changes in the activity of glycogen phosphorylase (GP), a rate-limiting enzyme of glycogen degradation, were examined in an anoxia-tolerant fish species, the crucian carp (Carassius carassius L.). In muscle and brain, the activity of GP remained constant throughout the year when tested at 25°C. In contrast, the activities of liver and heart GP displayed striking increases in summer. When seasonal temperature changes are taken into account, the activity of GP during the anoxic mid-winter is only 4–6% of its summer time activity in the muscle, heart and liver, and 13% in brain. In winter-acclimatized fish, experimental anoxia (1–6 weeks) caused sustained depression of the GP activity in heart and gills. In liver and muscle, a transient depression of GP activity occurred during the first week of anoxia but later GP activity recovered back to the normoxic level. GP of the brain was completely resistant to anoxia. In all studied tissues, the constitutive activity of GP is more than sufficient to degrade glycogen deposits during winter anoxia without anoxia-induced activation of GP. The seemingly paradoxical summer-time increase in the activity of liver and heart GP could be related to active life-style of the summer-acclimatized fish (growth, reproduction), the increased demand of energy and molecular precursors of anabolic metabolism being satisfied by preferential degradation of glycogen. The high glycogen content of winter-acclimatized crucian carp is not associated with the elevated GP activity or anoxic activation of GP.  相似文献   

6.
The epaulette shark (Hemiscyllium ocellatum) is among the few vertebrates that can tolerate extreme hypoxia for prolonged periods and, as shown here, anoxia. We examined how anoxia affected this shark's level of responsiveness, concentration of brain ATP and adenosine -- an endogenous neuronal depressant. In addition, we investigated how these variables were affected by aminophylline, an adenosine receptor antagonist. Epaulette sharks placed in an anoxic environment (<0.02 mg O2 l(-1)) lost their righting reflex after 46.3 +/- 2.8 min, but immediately regained vigilance upon return to normoxia. Then 24 h later, the same sharks were injected with either saline or aminophylline (30 mg kg(-1)) in saline and re-exposed to anoxia. In this second anoxic episode, controls sharks showed a 56% decrease in the time taken to lose their righting reflex but maintained their brain ATP levels; conversely, aminophylline-treated epaulette sharks displayed a 46% increase in the time to loss of righting reflex and had significantly lower brain ATP levels. Since anoxia also caused a 3.5-fold increase in brain adenosine levels, these results suggest that adenosine receptor activation had a pre-emptive role in maintaining brain ATP levels during anoxia. Perhaps because adenosine receptor activation initiates metabolic depression, indicated by the early loss of responsiveness (righting reflex), such a mechanism would serve to reduce ATP consumption and maintain brain ATP levels.  相似文献   

7.
A hallmark of anoxia tolerance in western painted turtles is relative constancy of tissue adenylate concentrations during periods of oxygen limitation. During anoxia heart and brain intracellular compartments become more acidic and cellular energy demands are met by anaerobic glycolysis. Because changes in adenylates and pH during anoxic stress could represent important signals triggering metabolic and ion channel down-regulation we measured PCr, ATP and intracellular pH in turtle brain sheets throughout a 3-h anoxic-re-oxygenation transition with 31P NMR. Within 30 min of anoxia, PCr levels decrease 40% and remain at this level during anoxia. A different profile is observed for ATP, with a statistically significant decrease of 23% occurring gradually during 110 min of anoxic perfusion. Intracellular pH decreases significantly with the onset of anoxia, from 7.2 to 6.6 within 50 min. Upon re-oxygenation PCr, ATP and intracellular pH recover to pre-anoxic levels within 60 min. This is the first demonstration of a sustained reversible decrease in ATP levels with anoxia in turtle brain. The observed changes in pH and adenylates, and a probable concomitant increase in adenosine, may represent important metabolic signals during anoxia.  相似文献   

8.

[Purpose]

The purpose of this study is to examine that not only the relationship of the resting metabolic rate (RMR) and cardiorespiratory fitness(VO2peak), but also the comparison between measured and predicted results of RMR in obese men.

[Methods]

60 obese men (body fat>32%) were recruited for this study. They did not participate in regular exercising programs at least 6 months. The RMR was measured with indirect calorimetry and predicted RMR using Herris-Benedicte equation. The cardiorespiratory fitness was determined by directly measuring the oxygen consumption (VO2peak) during the exercise on the treadmill.

[Results]

The significance for the difference between the measured results and predicted result of RMR were tested by paired t-test. Correlation of measured date was obtained by Pearson correlation coefficient. The value of predicted RMR and measured RMR were significantly different in these obese subjects. (p < 0.001). The difference between RMR cardiorespiratory fitness and cardiorespiratory fitness showed significant correlation (r=0.67, p < 0.05).

[Conclusion]

The current formulas of predicted RMR have limited the evaluation of measured RMR for Korean obese men. Therefore, this study suggests that new formula should be designed for Korean in order to obtain more accurate results in obese.  相似文献   

9.
10.
11.
Nitrite (NO(2)(-)) functions as an important nitric oxide (NO) donor under hypoxic conditions. Both nitrite and NO have been found to protect the mammalian heart and other tissues against ischemia (anoxia)-reoxygenation injury by interacting with mitochondrial electron transport complexes and limiting the generation of reactive oxygen species upon reoxygenation. The crucian carp naturally survives extended periods without oxygen in an active state, which has made it a model for studying how evolution has solved the problems of anoxic survival. We investigated the role of nitrite and NO in the anoxia tolerance of this fish by measuring NO metabolites in normoxic, anoxic, and reoxygenated crucian carp. We also cloned and sequenced crucian carp NO synthase variants and quantified their mRNA levels in several tissues in normoxia and anoxia. Despite falling levels of blood plasma nitrite, the crucian carp showed massive increases in nitrite, S-nitrosothiols (SNO), and iron-nitrosyl (FeNO) compounds in anoxic heart tissue. NO(2)(-) levels were maintained in anoxic brain, liver, and gill tissues, whereas SNO and FeNO increased in a tissue-specific manner. Reoxygenation reestablished normoxic values. We conclude that NO(2)(-) is shifted into the tissues where it acts as NO donor during anoxia, inducing cytoprotection under anoxia/reoxygenation. This can be especially important in the crucian carp heart, which maintains output in anoxia. NO(2)(-) is currently tested as a therapeutic drug against reperfusion damage of ischemic hearts, and the present study provides evolutionary precedent for such an approach.  相似文献   

12.
In many vertebrates, a short episode of oxygen lack protects against myocardial necrosis during a subsequent, longer period of oxygen deprivation. This protective effect, termed preconditioning, also improves the functional recovery. Improved functional recovery has been reported for hypoxia-sensitive, in situ perfused rainbow trout hearts, but appears absent in another strain of rainbow trout that has a more hypoxia-tolerant heart. The results for the hypoxia-tolerant rainbow trout heart, however, might have occurred because the preconditioning stimuli were insufficient in either intensity or type to elicit cardioprotective effects. In the present study, we attempted to induce preconditioning in in situ perfused hearts from hypoxia-tolerant rainbow trout (Oncorhynchus mykiss), acclimated and tested at 10 °C, by either doubling the anoxic preconditioning stimulus (PO2 of the perfusate <0.5 kPa) relative to earlier studies or by using short exposures to high concentrations of adrenaline. In addition, anoxic-preconditioning experiments were conducted at an acutely elevated temperature (15 °C) to increase myocardial sensitivity to oxygen lack. The effect of preconditioning stimuli was assessed by measuring cardiac performance before and after exposure to a 20-min anoxic challenge. In addition, myocardial condition was evaluated at the termination of the experiment by measuring myocardial concentrations of glycogen, high energy phosphates and lactate, as well as activities of pyruvate kinase and lactate dehydrogenase. Maximal cardiac performance in oxygenated control hearts was unchanged by the 2-h experimental protocol, whereas inclusion of a 20-min period of anoxia led to 25 and 35% reductions in maximal cardiac performance at 10 and 15 °C, respectively. Reduced contractility, however, could not be ascribed to myocardial necrosis, as the biochemical and energy state of the hearts was unaffected. Hence, anoxic exposure merely stunned the myocardium. At 10 °C, neither the anoxic nor adrenergic preconditioning protocols improved post-anoxic cardiac performance. Further, the preconditioning protocols did not reduce post-anoxic myocardial dysfunction at 15 °C, despite the increased cardiac sensitivity to anoxia at this temperature. Thus, despite using strong and different preconditioning stimuli compared with earlier studies, the cardio-protective effect of preconditioning seems to be absent in rainbow trout hearts that are inherently more hypoxia-tolerant.  相似文献   

13.
Many animals rely on stored energy through periods of high energy demand or low energy availability or both. A variety of mechanisms may be employed to attain and conserve energy for such periods. Wild grey seals demonstrate seasonal patterns of energy storage and foraging behaviour that appear to maximize the allocation of energy to reproduction—a period characterized by both high energy demand and low food availability. We examined seasonal patterns in resting rates of oxygen consumption as a proxy for metabolic rate (RMR) and body composition in female grey seals (four adults and six juveniles), testing the hypothesis that adults would show seasonal changes in RMR related to the reproductive cycle but that juveniles would not. There was significant seasonal variation in rates of resting oxygen consumption of adult females, with rates being highest in the spring and declining through the summer months into autumn. This variation was not related to changes in water temperature. Adults increased in total body mass and in fat content during the same spring to autumn period that RMR declined. RMR of juveniles showed no clear seasonal patterns, but did increase with increasing mass. These data support the hypothesis that seasonal variation in RMR in female grey seals is related to the high costs of breeding.  相似文献   

14.
The effect of oxygen deprivation (anoxia) on the antioxidant system in suspension culture of anoxia-intolerant Malaysian rice mutants cells was examined. Abiotic stresses have been reported to adversely affect cell division, damage cellular and organelle membranes. The signaling defense mechanisms, such as molecular and biochemical aspects responding to stress have been proven to be very complex, and still largely untapped. The objective of this study was to determine the potential involvement of activated oxygen species, such as superoxide dismutase, catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase which occur in cells of rice plants exposed to anoxia stress in two Malaysian rice mutants, MR219-4 and MR219-9, and rice cultivar FR13A which is known to be tolerant to anoxia stress during 5–30 days of exposure. The antioxidative enzymes were decreased for MR219-4 and MR219-9 mutants for CAT and APX activities, and increased in FR13A cultivar starting at 20 days in suspension culture compared to that of control. CAT and APX activities were maintained higher in anoxia condition for all mutants and cultivar. These findings suggested that anoxia stress in suspension cultures induced the level of H2O2 to toxic levels.  相似文献   

15.
Microcalorimetry is the only direct method for measuring moment-to-moment changes in whole-cell metabolism (as heat output) during anoxia. We have adapted this methodology, in conjunction with standard muscle isolation techniques, to monitor metabolic transitions in isolated frog (Rana temporaria) sartorius muscle during anoxia and recovery (reoxygenation). Anoxia (sustained 1 h, following 2 h progressive hypoxia) suppressed muscle heat output to 20% of the stable normoxic level. This effect was fully reversible upon reoxygenation. Metabolite profiles were consistent with other anoxia-tolerant vertebrates – most notably, adenosine triphosphate (ATP) content during anoxia and reoxygenation remained unchanged from normoxia (pre-anoxic control). In addition, the concentration of K+ ions ([K+]) in interstitial dialysates remained stable (2–3 mM) throughout anoxia and recovery. Interstitial [lactate] increased slightly, in accord with anaerobiosis supporting suppressed metabolic rates during anoxia. The degree of anoxic suppression of metabolism observed is similar to other vertebrate models of anoxia tolerance. Furthermore, stable ATP concentrations and interstitial [K+] in the isolated tissue suggests that intrinsic mechanisms suppress metabolism in a manner that coordinates ATP supply and demand and avoids the severe ion imbalances that are characteristic of hypoxia-sensitive systems. Accepted: 15 January 1998  相似文献   

16.
17.
18.
The Western painted turtle survives months without oxygen. A key adaptation is a coordinated reduction of cellular ATP production and utilization that may be signaled by changes in the concentrations of reactive oxygen species (ROS) and cyclic nucleotides (cAMP and cGMP). Little is known about the involvement of cyclic nucleotides in the turtle’s metabolic arrest and ROS have not been previously measured in any facultative anaerobes. The present study was designed to measure changes in these second messengers in the anoxic turtle. ROS were measured in isolated turtle brain sheets during a 40-min normoxic to anoxic transition. Changes in cAMP and cGMP were determined in turtle brain, pectoralis muscle, heart and liver throughout 4 h of forced submergence at 20–22°C. Turtle brain ROS production decreased 25% within 10 min of cyanide or N2-induced anoxia and returned to control levels upon reoxygenation. Inhibition of electron transfer from ubiquinol to complex III caused a smaller decrease in [ROS]. Conversely, inhibition of complex I increased [ROS] 15% above controls. In brain [cAMP] decreased 63%. In liver [cAMP] doubled after 2 h of anoxia before returning to control levels with prolonged anoxia. Conversely, skeletal muscle and heart [cAMP] remained unchanged; however, skeletal muscle [cGMP] became elevated sixfold after 4 h of submergence. In liver and heart [cGMP] rose 41 and 127%, respectively, after 2 h of anoxia. Brain [cGMP] did not change significantly during 4 h of submergence. We conclude that turtle brain ROS production occurs primarily between mitochondrial complexes I and III and decreases during anoxia. Also, cyclic nucleotide concentrations change in a manner suggestive of a role in metabolic suppression in the brain and a role in increasing liver glycogenolysis.  相似文献   

19.
In order to investigate the influence of anoxic stress on haemocyte immune response, specimens of Chamelea gallina were exposed to 24 and 48 h anoxia. To evaluate recovery capacity, clams were maintained, at the end of the anoxic phase, for 24 h in reoxygenated seawater. In this paper, activity and expression of the antioxidant enzyme superoxide dismutase (SOD) were studied on haemocyte lysate and haemolymph. Reported results have shown that the anoxic stress changed strongly the response of C. gallina blood cells. Indeed, at the end of the anoxic phase in both experiments (24 and 48 h of anoxia exposure), SOD activity in haemocyte lysate decreased significantly with respect to the control, likely because of a decreasing superoxide anion generation in anoxia. Expression analyses were coherent with activity values.In the first experiment (24 h anoxia), reoxygenation determined an increase in activity of both Cu/Zn-SOD and Mn-SOD, but with values that remained significantly lower than those of the controls. It seems that after the applied anoxic stress, 24 h of recovery is not sufficient to restore pre-anoxic conditions. In the second experiment (48 h anoxia), SOD isoforms showed a different response during the recovery of animals. Cu/Zn-SOD activity dropped below the values showed by haemocytes of anoxic bivalves, while Mn-SOD activity values exceeded significantly those of controls. The different haemocyte response could be probably due to a further stress suffered by the clams because of a massive spawning during the reoxygenation phase. Therefore, the high values of activity shown by Mn-SOD during the recovery are likely to be due to the high inducibility of this isoform.In Cu/Zn-SOD expression analyses, two immunoreactive bands were highlighted in both experiments. The former (apparent molecular weight of 16 kDa) corresponds to the expression of SOD1 and the latter (apparent molecular weight of 28-30 kDa) could be attributed to EC-SOD (SOD3), a Cu/Zn-SOD isoform located in extracellular ambient and identified both in vertebrates and invertebrates. The strong SOD3 expression during anoxia exposure and the further spawning stress (second experiment) testified its inducibility in C. gallina haemocytes and haemolymph in response to stressful conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号