首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The establishment of the nitrogen‐fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization‐mass spectrometry (LAESI‐MS) for in situ metabolic profiling of wild‐type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl‐acyl carrier protein desaturase (sacpd‐c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+) and ineffective (nifH mutant, fix?) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd‐c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI‐MS for high‐throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.  相似文献   

2.
Bacteriocin-like substances were commonly produced by slow-growing Rhizobium japonicum and cowpea rhizobia on an L-arabinose medium. Antagonism between strains of R. japonicum was not detected in vitro; however, such strains were often sensitive to some bacteriocins produced by cowpea rhizobia. Inhibitory zones (2 to 8 mm from colony margins), produced by 58 of 66 R. japonicum test strains, were reproducibly detected with Corynebacterium nebraskense as an indicator. Quantitative production was not related to symbiotic properties of effective strains, since nine noninfective strains and one ineffective strain produced bacteriocin. Eight R. japonicum strains that did not produce bacteriocin nevertheless formed effective nodules on soybeans. R. japonicum strains that produced bacteriocin in vitro had no antagonistic effect on nonproducer strains during soybean nodulation. Under controlled conditions, a nonproducer (3I1b135) predominated over a bacteriocin producer (3I1b6) when inoculated at 1:1 and 1:9 ratios. Depending on the particular ratio, up to 38% of the total nodules formed were infected with mixed combinations. The bacteriocin(s) had a restricted host range and antibiotic-like properties which included the ability to be dialyzed and resistance to heat (75 to 80 degrees C, 30 min), Pronase, proteinase K, trypsin, ribonuclease, and deoxyribonuclease. R. japonicum strains representing genetic, serological, cultural, and geographic diversity were differentiated into three groups on the basis of bacteriocin production.  相似文献   

3.
Alfalfa plants co-inoculated with Rhizobium meliloti nodulation (Nod-) and infection mutants deficient in exopolysaccharide production (Inf-EPS-) formed mixed infected nodules that were capable of fixing atmospheric nitrogen. The formation of infected nodules was dependent on close contact between the inoculation partners. When the partners were separated by a filter, empty Fix- nodules were formed, suggesting that infection thread formation in alfalfa is dependent on signals from the nodulation and infection genes. In mixed infected nodules, both nodulation and infection mutants colonized the plant cells and differentiated into bacteroids. The formation of bacteroids was not dependent on cell-to-cell contact between the mutants. Immunogold/silver staining revealed that the ratio of the two mutants varied considerably in colonized plant cells following mixed inoculation. The introduction of an additional nif/fix mutation into one of the inoculation partners did not abolish nitrogen fixation in mixed infected nodules. The expression of nif D::lacZ fusions additionally demonstrated that mutations in the nodulation and infection genes did not prevent the nif genes from being expressed in the mutant bacteroids.  相似文献   

4.
Bacteriocin-like substances were commonly produced by slow-growing Rhizobium japonicum and cowpea rhizobia on an L-arabinose medium. Antagonism between strains of R. japonicum was not detected in vitro; however, such strains were often sensitive to some bacteriocins produced by cowpea rhizobia. Inhibitory zones (2 to 8 mm from colony margins), produced by 58 of 66 R. japonicum test strains, were reproducibly detected with Corynebacterium nebraskense as an indicator. Quantitative production was not related to symbiotic properties of effective strains, since nine noninfective strains and one ineffective strain produced bacteriocin. Eight R. japonicum strains that did not produce bacteriocin nevertheless formed effective nodules on soybeans. R. japonicum strains that produced bacteriocin in vitro had no antagonistic effect on nonproducer strains during soybean nodulation. Under controlled conditions, a nonproducer (3I1b135) predominated over a bacteriocin producer (3I1b6) when inoculated at 1:1 and 1:9 ratios. Depending on the particular ratio, up to 38% of the total nodules formed were infected with mixed combinations. The bacteriocin(s) had a restricted host range and antibiotic-like properties which included the ability to be dialyzed and resistance to heat (75 to 80°C, 30 min), Pronase, proteinase K, trypsin, ribonuclease, and deoxyribonuclease. R. japonicum strains representing genetic, serological, cultural, and geographic diversity were differentiated into three groups on the basis of bacteriocin production.  相似文献   

5.
Host specificity between local Frankia strains and native alders [Alnus incana (L.) Moench and A. glutinosa (L.) Gaertn.] was evaluated in inoculation experiments. Pure cultures of Frankia , whether originating from A. incana or A. glutinosa , were infective and effective on both host species. These pure cultures were isolated from spore-negative (Sp) nodules. From spore-positive (Sp+) nodules no Frankia isolates were obtained. This strain type resisted all our isolation attempts and therefore crushed nodules had to be used for Sp+ type inoculations.
The Sp+ type Frankia populations differed in their host specificity. Sp+ nodules from A. glutinosa were effective on both alder species, but Sp+ nodules from A. incana induced effective nodules only on the original host; on A. glutinosa only small (1-3mm) prenodule-like structures were found. Such A. glutinosa plants died on N-free medium, thus showing that these nodules were ineffective. In the effective nodules the middle cortex was dominated by infected cells filled with vesicle clusters. In the ineffective nodules only a few cortical cells were infected and sporangia predominated in these cells. Surprisingly enough they also contained vesicle-like structures as demonstrated in electron micrographs.  相似文献   

6.
Trehalose and trehalase in root nodules from various legumes   总被引:4,自引:1,他引:3  
Nitrogen-fixing (effective) nodules from various legume- Rhizobium combinations were analyzed for trehalose and other soluble carbohydrates using gas chromatography and for trehalase activity using biochemical assays. Whereas the bacterial disaccharide trehalose was present only in the minority of the nodules, trehalase activity was found in all of them. Extracts from determinate nodules had a higher trehalase activity than extracts from indeterminate nodules. More detailed studies were done on soybean nodules formed in interactions with two effective and 5 ineffective Bradyrhizobium japonicum strains. Only in effective soybean nodules colonized by the strain 61-A-101 was trehalose a major soluble carbohydrate. Irrespective of the wildtype strains used. effective soybean nodules contained about 10 nkat trehalase g−1 fresh weight, whereas the ineffective nodules colonized by mutant strains derived from these wildtype strains contained 2 to 30 times less trehalase. However, a clear correlation between trehalose content and trehalase activity could not be established.  相似文献   

7.
A mutagenesis program using ethylmethane sulfonate on Medicago truncatula Gaertn cv Jemalong, an annual, autogamous and diploid lucerne, permitted the isolation of a mutant (TE7) unable to establish an effective nitrogen-fixing symbiosis, [Nod+Fix-], with Rhizobium meliloti wild-type strains. The mutant phenotype is characterized by an altered infection process that leads to the formation of two kinds of inefficient nodules on the same root system. A certain proportion of the nodules are small, round, and uninfected, with infection threads limited to the outer root cortical cells. Others develop to a normal elongated shape and are infected; bacterial release occurs but the bacteria do not differentiate into bacteroids. The ratio of invaded to uninvaded nodules depends on the bacterial strain used. Throughout the infection process, certain events correlated with the plant defense response against pathogens can be observed: (a) the presence of polyphenolic compounds associated with the walls of infected cells and also with some parts of infection threads in the root cortex; (b) appositions on infection thread walls during the early stage of infection and also within the central tissue of infected nodules; and (c) autophagy of the plant cells that contain released bacteria. Genetic data suggest that the phenotype of TE7 is under monogenic and recessive control; this gene has been designated Mtsym1.  相似文献   

8.
Bradyrhizobium japonicum WM1, an ethylmethane-sulfonate-induced derivative of B. japonicum 110spc4 with reduced phosphatase activity but normal symbiotic properties, was randomly mutagenized using TnphoA. From about 1000 purified single colonies, approximately 300, preferentially those with enhanced phosphatase activity, were inoculated onto soybean seedlings to test their symbiotic traits. Sixteen strains were either completely Fix? or possessed markedly reduced acetylene reduction activity (Fixred). Contrary to expectations, hybridization of total DNA of these strains to a transposonspecific DNA probe showed that many contained no transposon. Apparently these strains had gained resistance towards kanamycin spontaneously rather than through the introduction of TnphoA. However, in five mutant strains, two hybridizing BamHI fragments of different sizes were detected, as expected. All strains performed acetylene reduction under ex planta conditions, indicating that mutations had not occurred in nif or fix genes. A more than 50-fold increased specific activity of alkaline phosphatase was observed in strain 132, indicating the synthesis and secretion of a polypeptide fused to 'PhoA. Light and electron-microscopic analyses showed that in nodules induced by strain 132 (Fixred) the infected cells of the central tissue were vacuolated. In some of these cells callose deposition was observed, indicating plant defense reactions. Nodules induced by mutant 184 were infected by bacteroids only in a few cells of the central tissue as isolated clusters, whereas the majority of cells remained uninfected. The concentration of phosphoenolpyruvatecarboxylase protein within the infected tissue was significantly reduced and starch granules accumulated. In both strains TnphoA insertions were identified to be the reasons for the observed phenotypes. These mutant strains should be helpful for studying the influence of the microsymbiont on the differentiation and colonization of infected cells in soybean nodules.  相似文献   

9.
10.
Five strains of Rhizobium trifolii were evaluated in competition with indigenous populations in nodulating red clover (Trifolium pratense L.) cv. Kenland in two different soils in Mississippi. Double antibiotic resistance acquisition was used to measure the proportion of nodules occupied by the introduced mutant strains. In vertisol soil, strains RP113-7, 162BB1, LM1, and 162P17 were recovered in at least 94% of the assayed nodules, whereas TA1 was found in 83.8% of the nodules. At an ultisol location, significant differences were detected within the introduced rhizobia. Strain RP113-7 was recovered at very high rates (99.2% of the assayed nodules), whereas strains 162BB1, LM1, 162P17, and TA1 were all found in 84.9 to 96.0% of the nodules sampled. Forage yield and percent crude protein levels were lower with the less effective but competitive strain (TA1) at both locations. Results indicated that more effective strains of R. trifolii can increase red clover production and symbiotic nitrogen fixation under different environmental conditions in Mississippi.  相似文献   

11.
Fifteen nodulins and several nodule-stimulated gene productswere expressed in effective, nitrogen-fixing root nodules ofwhite sweetclover (Melilotus alba Desr. cv. U389), as determinedby two-dimensional gel electrophoresis of in vitro translationproducts. The number and gel position of eight leghaemoglobin(Lb) products, as well as a product tentatively identified asnodule-stimulated glutamine synthetase (GS), was similar toprevious reports of alfalfa (Medicago sativa L. cv. Iroquois)nodulins. Three mutants of Rhizobium meliloti, including anexoH mutant, a lipopolysaccharide mutant, and a nifH mutant,elicited ineffective sweetclover nodules blocked at empty (bacteria-free),partially infected, or fully infected stages of nodule development,respectively. In these ineffective nodules, the nodulin Nma30and nodule-stimulated NSTma42 were expressed early in development,while a group of four nodulins and two nodule-stimulated productswere intermediate in order of expression. Lb, GS and the latenodulin Nmal2a were expressed later, following infection. TheexoH mutant, Rm7154, appeared to be a leaky mutant, as a smallpercentage of the plants developed nitrogen-fixing nodules about4 weeks after inoculation. The sequential expression of a largenumber of nodulins and nodule-stimulated products, as well asthe availability of sweetclover nodulation mutants indicatesthat sweetclover is a useful diploid system for analysis ofhost genes essential to the Rhizobium/legume symbiosis. Key words: Nitrogen fixation, nodulation mutants, nodulins  相似文献   

12.
An immunological assay of root nodule polypeptides was used to analyze the nodules induced by 25 symbiotically defective Rhizobium meliloti mutants. Differences in polypeptide accumulation in these nodules were used to divide the mutants into three subsets. One subset, containing two mutant strains, was further analyzed. Nodules induced by these mutant strains lack both infection threads and bacteria. The kinetics of nodule formation by these mutant strains, by an exoB mutant, and by mixed mutant inocula suggest that the gene products required for nodule invasion may also influence nodule meristem induction. One of the two mutants characterized in this study contains a transposon Tn5 insertion in the ndvB locus, which probably results in the loss of beta-glucan synthesis. The second mutant contains a transposon in a previously uncharacterized locus. RNA analysis suggests that the newly identified locus is transcribed in free-living cultures of ndvB and exoB strains, as well as in the parental R. meliloti strain. Southern blot analysis suggests that at least a portion of this locus is duplicated. This duplication may explain the apparently leaky phenotype of the mutant strain.  相似文献   

13.
Nodulation tests onin-vitro propagated clones ofAlnus glutinosa ecotypes (forest ecotype, pioneer ecotype) withFrankia strains originating from both ecotypes indicated differences in host-plant compatibility. Inoculated plants of the pioneer ecotype clone were not infected by strains, that were unable to fix nitrogen in pure culture. Nodulation could only be induced on the clone of the forest ecotype, but no nitrogen-fixing activity could be detected. Ultra-structural observations of the nodules by SEM and TEM indicated that ineffectivity of these strains was correlated with the lack of vesicles in the infected cells. Cells were only filled with hyphae: neither sporangia nor vesicles could be detected. In contrast, effective nodules could be obtained on both alder clones after inoculation with an effective strain, showing normal development of vesicle clusters in infected cells. In pure culture the ineffective strains produced no vesicles; sporangia were found only during early stage of growth. The results demonstrate the existence ofFrankia strains which were either non-infective or ineffective on different clones ofAlnus glutinosa.  相似文献   

14.
The nitrogen phosphotransferase system (PTSNtr) consists of EINtr, NPr, and EIIANtr. The active phosphate moiety derived from phosphoenolpyruvate is transferred through EINtr and NPr to EIIANtr. Sinorhizobium fredii can establish a nitrogen-fixing symbiosis with the legume crops soybean (as determinate nodules) and pigeonpea (as indeterminate nodules). In this study, S. fredii strains with mutations in ptsP and ptsO (encoding EINtr and NPr, respectively) formed ineffective nodules on soybeans, while a strain with a ptsN mutation (encoding EIIANtr) was not defective in symbiosis with soybeans. Notable reductions in the numbers of bacteroids within each symbiosome and of poly-β-hydroxybutyrate granules in bacteroids were observed in nodules infected by the ptsP or ptsO mutant strains but not in those infected with the ptsN mutant strain. However, these defects of the ptsP and ptsO mutant strains were recovered in ptsP ptsN and ptsO ptsN double-mutant strains, implying a negative role of unphosphorylated EIIANtr in symbiosis. Moreover, the symbiotic defect of the ptsP mutant was also recovered by expressing EINtr with or without the GAF domain, indicating that the putative glutamine-sensing domain GAF is dispensable in symbiotic interactions. The critical role of PTSNtr in symbiosis was also observed when related PTSNtr mutant strains of S. fredii were inoculated on pigeonpea plants. Furthermore, nodule occupancy and carbon utilization tests suggested that multiple outputs could be derived from components of PTSNtr in addition to the negative role of unphosphorylated EIIANtr.  相似文献   

15.
The presence of derivatives of the broad host range plasmid RP4 in strains of Rhizobium leguminosarum biovar viciae severely inhibited nitrogen fixation by these strains in nodules on cultivars of pea (Pisum sativum). The strains formed small white nodules. Yield and total nitrogen values were comparable with those obtained for plants inoculated with a non-nodulating mutant. Strains carrying the same derivatives gave rise to nitrogen fixing nodules when inoculated on cultivars of lentils (Lens culinaris). Similar results were observed with plasmid R702 but not with R751, suggesting that the effect is limited to plasmids of the IncPα classification. Histological examination of nodules induced by strains carrying RP4 indicated that there are fewer infected cells and starch granules are organised unusually in the infected cells. Tn5 mutagenesis of plasmid RP4-4 was undertaken and Tn5 inserts were screened for abolition of the effect on nitrogen fixation. Eight mutants, having no effect on nitrogen fixation, were isolated. Seven of these had lost the ability to transfer by conjugation and the eighth was greatly reduced in conjugation frequency. Physical analysis of the transposon inserts revealed that they were located in the Tra regions of RP4.  相似文献   

16.
We isolated and characterized CE3003, a Tn5-induced mutant with altered colony morphology derived from Rhizobium etli CE3. CE3003 produced domed colonies and was highly hydrophobic as indicated by its ability to partition into hexadecane, whereas its parent produced flat colonies and was hydrophilic. On bean plants, CE3003 induced nodules and reduced acetylene. CE3003 and CE3 grew at similar rates when they were grown separately or together in culture medium or inoculated singly onto bean seeds. However, when they were mixed at a 1:1 ratio and applied to seeds, CE3003 achieved significantly lower populations than CE3 in the rhizosphere. Five days after coinoculation of CE3 and CE3003, the population of the mutant was less than 10% of the population of CE3 in the bean rhizosphere. To determine the nodulation competitiveness of the mutant, it was coinoculated with CE3 at various ratios at planting, and the ratio of the nodules occupied by each strain was determined 21 days later. A 17,000-fold excess of CE3003 in mixed inocula was required to obtain equal nodule occupancy by the two strains. A genomic library of strain CE3 was mobilized into CE3003, and we identified a cosmid, pRA3003, that restored the parental colony morphology and hydrophilicity to the mutant. Restoration of the parental colony morphology was accompanied by recovery of the ability to grow competitively in the rhizosphere and to compete for nodulation of beans. The data show an association between cell surface hydrophobicity, nodulation competitiveness, and competitive growth in the rhizosphere in mutant CE3003.  相似文献   

17.
Summary Eight ineffective mutant strains were isolated from N-methyl-N'-nitro-N-nitrosoguanidine mutagenized cultures of cowpea Rhizobium strain 32H1. Strains CR1, CR2, CR3, CR4, CR5 and CR6 induced more, but smaller, nodules than the wild type. With the exception of strain CR2, these mutant strains reduced less than 1% of the amount of acetylene reduced by the wild type, in both the free-living and symbiotic assays. Strain CR2 reduced acetylene in the free-living assay but not in the symbiotic assay. Strains CR7 and CR8 responded variably (5–20% of the wild type) in free-living and symbiotic acetylene reduction assays. Nodules also varied from small white to normal-sized pink nodules. The phenotypic characteristics of the mutant strains were consistant with all leguminous plants tested and were stable upon reisolation from nodules. Fully effective revertants were selected from 4 of the ineffective mutant strains by the use of the leguminous plant,Macroptilium lathyroides. Serology, patterns of resistance to anti-bacterial agents, phage-typing, and antibiotic resistance markers were used to confirm strain identification.Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service and the North Carolina Agricultural Research Service, Raleigh, North Carolina. Paper no. 8834 of the Journal Series of the North Carolina Agricultural Research Service at Raleigh.  相似文献   

18.
Host plant specificity was examined in symbiosis between Rhizobium strains isolated from legume-tree root nodules and herbaceous or woody legumes from which they were isolated. Strain GRH2 isolated from Acacia cyanophylla formed effective nodules on Acacia, Prosopis and Medicago sativa as well. Nitrogenase activity, measured as acetylene reduction, of strain GRH2 in symbiosis with Prosopis chilensis was the highest (P 0.05) among the tropical legumes studied and was similar to those found for other associations involving herbaceous legumes. Relative efficiency of nitrogenase varied from 0.3 to near 1 during the light time of the photoperiod. However no hydrogen uptake activity was detected by the amperometric method used. Rhizobium strains GRH3, GRH5 and GRH9 isolated from A. melanoxylon, P. chilensis and Sophora microphylla, respectively, also showed a very low host-range specificity. All isolates were infective and effective on at least one of the herbaceous legumes tested. These data demonstrate the lack of specificity of Rhizobium strains isolated from nitrogen-fixing tree root nodules and that these strains can form effective nodules on herbaceous legumes.  相似文献   

19.
Dicarboxylic acid transport mutants of Rhizobium species are usually deficient in their ability to fix atmospheric dinitrogen. We report here a study comparing the physiology of root nodules on Phaseolus vulgaris L. cv. Goldie induced by an effective strain of Rhizobium leguminosarum biovar phaseoli and a C4-dicarboxylic acid utilization mutant. The mutant, while able to form nodules, was ineffective in N2 fixation. Carbohydrates and organic acids of roots and nodules formed by the 2 strains were monitored at 3-day intervals from 13 to 34 days after inoculation. Both carbohydrates and organic acids accumulated in ineffective nodules in comparison with the effective nodules. The concentration of malic acid was tenfold higher in ineffective nodules than in effective nodules. Other organic acids, i.e., lactate, malonate, ascorbate and gluconate, were also detected. Lactate and ascorbate were the only other organic acids accumulating in ineffective nodules. The most prevalent carbohydrates found in both types of nodules were sucrose, glucose and fructose. Myo-inositol was the only cyclitol detected in both types of nodules. Carbohydrates and organic acids were present in lower concentration in roots than in nodules, except for lactate. These compounds were not consistently detected in higher concentration in roots from plants inoculated with the mutant strain, as was the case in nodules.  相似文献   

20.
Competition from native soil rhizobia is likely to be an important factor limiting Phaseolus vulgaris L. inoculant response in Latin America. We used UMR 1116, a nod + fix natural mutant of Rhizobium leguminosarum bv phaseoli strain CC511, as a reference strain to study competition for nodulation sites in this species. When P. vulgaris cv Carioca was planted in soils containing different proportions of UMR 1116 and the effective and competitive strain UMR 1899, UMR 1116 occupied more than 50% of the nodules at all inoculant ratios tested, though increasing the proportion of UMR 1899 in the inoculant did enhance the number and percentage of effective nodules and plant dry weight. Sixty two strains of bean rhizobia were tested in competition with UMR 1116. An inoculant ratio of 1:1 was used, with all strains applied to the soil rather than to seeds. Strains varied in the number and percentage of effective nodules produced in competition with UMR 1116, and in plant dry weight, and there was a strong correlation between variation in each of these traits and plant N accumulation. Seven of the strains (UMR 1073, 1084, 1102, 1125, 1165, 1378 and 1384) were identified as both superior in competitive ability and active in N2 fixation. Site of placement of the inoculant and ambient temperature influenced strain response.Journal paper 16736, Agricultural Experiment Station, University of Minnesota, St. Paul, MN 55108, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号