首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of lipid research》2017,58(6):1259-1264
Phosphatidylinositol (PI) is the precursor of many important signaling molecules in eukaryotic cells and, most probably, PI also has important functions in cellular membranes. However, these functions are poorly understood, which is largely due to that i) only few PI species with specific acyl chains are available commercially and ii) there are no simple methods to synthesize such species. Here, we present a simple biochemical protocol to synthesize a variety of labeled or unlabeled PI species from corresponding commercially available phosphatidylcholines. The protocol can be carried out in a single vial in a two-step process which employs three enzymatic reactions mediated by i) commercial phospholipase D from Streptomyces chromofuscus, ii) CDP-diacylglycerol synthase overexpressed in E. coli and iii) PI synthase of Arabidopsis thaliana ectopically expressed in E. coli. The PI product is readily purified from the reaction mixture by liquid chromatography since E. coli does not contain endogenous PI or other coeluting lipids. The method allows one to synthesize and purify labeled or unlabeled PI species in 1 or 2 days.Typically, 40–60% of (unsaturated) PC was converted to PI albeit the final yield of PI was less (25–35%) due to losses upon purification.  相似文献   

2.
Non-random segregation of DNA strands in Escherichia coli B-r   总被引:11,自引:0,他引:11  
The segregation of DNA strands during growth of Escherichia coliBr has been studied under conditions in which the chromosomal configuration and the ancestry of the cells during growth and division were known. Cells containing either one or two replicating chromosomes were pulse-labeled with [3H]thymidine, and the location of the radioactivity within chains of cells formed by growth in methylcellulose was determined by autoradiography. The locations of the radioactive cells within chains obtained after the second, third and fourth divisions were consistent with the co-segregation of only one of the replicating strands of each chromosome and a fixed region of the cell into daughter cells. The attachment of this strand to the region appeared to become permanent at the time the strand was used for the first time as a template. It is concluded that the segregation of DNA molecules into daughter cells is non-random in E. coli B/r.  相似文献   

3.
CAP/ArgBP2/vinexin family proteins, adaptor proteins characterized by three SH3 domains at their C-termini and a SoHo domain towards their N-termini, are known to regulate cell adhesion, cytoskeletal organization, and growth factor signaling. Here we present the isolation and ovarian expression of the BmCAP gene which encodes CAP/ArgBP2/vinexin family proteins in the silkmoth, Bombyx mori. Screening for full-length cDNA clones identified three mRNA isoforms, BmCAP-A1, BmCAP-A2 and BmCAP-B, which show expression throughout ovarian follicular development. Using an antibody raised against a unique region between the SoHo and SH3 domains, BmCAP-A protein isoforms were identified that show specific expression in different compartments of the ovarian follicles. Immunofluorescence staining of the cells of the follicular epithelium establishes a dynamic pattern of BmCAP-A protein localization during choriogenesis. During early choriogenesis, BmCAP-A has a diffuse localization in the cytoplasm but could also be found concentrated at the apical and basal sides at the cell–cell junctions. During late choriogenesis, the diffuse cytoplasmic staining of BmCAP-A disappears while the staining pattern at the apical side resembles a blueprint for the eggshell surface structure. We suggest that BmCAP-A isoforms have important functions during ovarian development, which involve not only the traditional roles in actin organization or cell–cell adhesion but also the regulation of secretion of chorion proteins and the sculpting of the chorion surface.  相似文献   

4.
Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR–GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells.  相似文献   

5.
A minimally invasive biopsy technique was evaluated for udder tissue collection in dairy cows with Escherichia coli mastitis. Meanwhile, the effect of taking repeated liver and udder biopsies on the systemic and local acute phase response (APR) of the dairy cows was investigated during the disease. The cows were divided into a biopsy group (B) (n = 16) and a no-biopsy group (NB) (n = 16) and were sampled in the acute disease stage and in the recovery stage. The cows’ pre-disease period served as a control period for establishing baseline values for the investigated parameters. A total of 32 Holstein-Friesian cows were inoculated with 20 to 40 colony-forming units (cfu) of E. coli in one front quarter at 0 hour. Liver biopsies were collected at −144, 12, 24 and 192 h, and udder biopsies were collected at 24 and 192 h post E. coli inoculation (PI) using a minimally invasive biopsy technique. Effects of combined biopsying were investigated by recording production traits, clinical response, and measuring inflammatory milk and blood parameters: E. coli, somatic cell count, milk amyloid A (MAA) levels, white blood cell count, polymorphonuclear neutrophilic leukocyte numbers and serum amyloid A levels at several time points. E. coli inoculation changed all production parameters and the clinical and inflammatory response in all cows except one that was not infected. Combined biopsying had no constant or transient effect on the daily feed intake, the clinical responsiveness or the blood parameters, but affected the daily milk yield and some milk parameters transiently, that is, the presence of blood in milk, increased E. coli counts and MAA levels during the acute disease stage. Combined biopsying had no effect on the parameters in the recovery stage apart from the presence of blood in the milk. In conclusion, although, a minimally invasive biopsy technique was used, tissue damages could not be avoided when biopsying and they transiently affected the inflammatory parameters in the mammary gland. Nevertheless, we believe combined biopsying of liver and udder is as an acceptable approach to study the systemic and local APR in dairy cows during E. coli mastitis, if the timing of biopsying and other types of sampling is planned accordingly.  相似文献   

6.
We investigated the mobility of the polar localized serine chemoreceptor, Tsr, labeled by the fluorescent protein Venus in the inner membrane of live Escherichia coli cells at observation rates up to 1000 Hz. A fraction (7%) of all Tsr molecules shows free diffusion over the entire cell surface with an average diffusion coefficient of 0.40 ± 0.01 μm2 s−1. The remaining molecules were found to be ultimately confined in compartments of size 290 ± 15 nm and showed restricted diffusion at an inner barrier found at 170 ± 10 nm. At the shortest length-scales (<170 nm), all Tsr molecules diffuse equally. Disruption of the cytoskeleton and rounding of the cells resulted in an increase in the mobile fraction of Tsr molecules and a fragmenting of the previously polar cluster of Tsr consistent with a curvature-based mechanism of Tsr cluster maintenance.  相似文献   

7.
When the lysoglycerophospholipid (GPL) acyltransferase At1g78690 from Arabidopsis thaliana is over-expressed in Escherichiacoli a headgroup acylated GPL, acyl phosphatidylglycerol (PG), accumulates despite that in vitro this enzyme catalyzes the transfer of an acyl chain from acyl-CoA to the sn-2 position of 1-acyl phosphatidylethanolamine (PE) or 1-acyl PG to form the sn-1, sn-2, di acyl PE and PG respectively; it does not acylate PG to form acyl PG. To begin to understand why the overexpression of a lyso GPL acyltransferase leads to the accumulation of a headgroup acylated GPL in E. coli we investigated the headgroup specificity of At1g78690. Using membranes prepared from E. coli overexpressing At1g78690, we assessed the ability of At1g78690 to catalyze the transfer of acyl chains from acyl-coenzyme A to a variety of lyso GPL acyl acceptors including lyso-phosphatidic acid (PA), -phosphatidylcholine (PC), -phosphatidylserine (PC), -phosphatidylinositol (PI) and three stereoisoforms of bis(monoacylglycero)phosphate (BMP). The predicted products were formed when lyso PI and lyso PC were used as the acyl acceptor but not with lyso PC or lyso PA. In addition, At1g78690 robustly acylates two BMP isoforms with sn-2 and/or sn-2′ hydroxyls in the R-stereoconfiguration, but not the BMP isoform with the sn-2 and sn-2′ hydroxyls in the S-stereoconfiguration. This strongly suggests that At1g78690 is stereoselective for hydroxyls with R-stereochemistry. In addition, this robust acylation of BMPs by At1g78690, which yields acyl PG like molecules, may explain the mechanism by which At1g78690 so strikingly alters the lipid composition of E. coli.  相似文献   

8.
We have shown that urea-extracted cell wall of entomopathogenic Bacillus sphaericus 2297 and some other strains is a potent larvicide against Culex pipiens mosquitoes, with 50% lethal concentrations comparable to that of the well-known B. sphaericus binary toxin, with which it acts synergistically. The wall toxicity develops in B. sphaericus 2297 cultures during the late logarithmic stage, earlier than the appearance of the binary toxin crystal. It disappears with sporulation when the binary toxin activity reaches its peak. Disruption of the gene for the 42-kDa protein (P42) of the binary toxin abolishes both cell wall toxicity and crystal formation. However, the cell wall of B. sphaericus 2297, lacking P42, kills C. pipiens larvae when mixed with Escherichia coli cells expressing P42. Thus, the cell wall toxicity in strongly toxic B. sphaericus strains must be attributed to the presence in the cell wall of tightly bound 51-kDa (P51) and P42 binary toxin proteins. The synergism between binary toxin crystals and urea-treated cell wall preparations reflects suboptimal distribution of binary toxin subunits in both compartments. Binary toxin crystal is slightly deficient in P51, while cell wall is lacking in P42.  相似文献   

9.
We investigated the mobility of the polar localized serine chemoreceptor, Tsr, labeled by the fluorescent protein Venus in the inner membrane of live Escherichia coli cells at observation rates up to 1000 Hz. A fraction (7%) of all Tsr molecules shows free diffusion over the entire cell surface with an average diffusion coefficient of 0.40 ± 0.01 μm2 s−1. The remaining molecules were found to be ultimately confined in compartments of size 290 ± 15 nm and showed restricted diffusion at an inner barrier found at 170 ± 10 nm. At the shortest length-scales (<170 nm), all Tsr molecules diffuse equally. Disruption of the cytoskeleton and rounding of the cells resulted in an increase in the mobile fraction of Tsr molecules and a fragmenting of the previously polar cluster of Tsr consistent with a curvature-based mechanism of Tsr cluster maintenance.  相似文献   

10.
2′,3′-Dideoxyadenosine was previously shown to be lethal to Escherichia coli and to inhibit deoxyribonucleic acid (DNA) synthesis irreversibly in this organism. It was also shown that triphosphate of this analogue terminates DNA chains in an in vitro system. Data presented here show that the nucleoside is relatively insensitive to E. coli adenosine deaminase and is converted intracellularly into the dideoxynucleotide, including the triphosphate. Thymine nucleotide pools were not reduced in inhibited bacteria, nor did preformed DNA break down. Some adenine was liberated from the dideoxyadenosine on incubation, and the latter was incorporated into ribonucleic acid. Nevertheless, about 4,000 molecules of the dideoxynucleoside were incorporated into DNA per cell. The dideoxynucleotide occurred in DNA chains in a terminal position, liberated selectively by venom phosphodiesterase. The possible nature of the lethal event is discussed.  相似文献   

11.
3-Hydroxy-3-methylglutaryl-CoA lyase-like protein (HMGCLL1) has been annotated in the Mammalian Genome Collection as a previously unidentified human HMG-CoA lyase (HMGCL). To test the validity of this annotation and evaluate the physiological role of the protein, plasmids were constructed for protein expression in Escherichia coli and Pichia pastoris. Protein expression in E. coli produced insoluble material. In contrast, active HMGCLL1 could be recovered upon expression in P. pastoris. Antibodies were prepared against a unique peptide sequence found in the N terminus of the protein. In immunodetection experiments, the antibodies discriminated between HMGCLL1 and mitochondrial HMGCL. Purified enzyme was characterized and demonstrated to cleave HMG-CoA to acetoacetate and acetyl-CoA with catalytic and affinity properties comparable with human mitochondrial HMGCL. The deduced HMGCLL1 sequence contains an N-terminal myristoylation motif; the putative modification site was eliminated by construction of a G2A HMGCLL1. Modification of both proteins was attempted using human N-myristoyltransferase and [3H]myristoyl-CoA. Wild-type protein was clearly modified, whereas G2A protein was not labeled. Myristoylation of HMGCLL1 affects its cellular localization. Upon transfection of appropriate expression plasmids into COS1 cells, immunofluorescence detection indicates that G2A HMGCLL1 exhibits a diffuse pattern, suggesting a cytosolic location. In contrast, wild-type HMGCLL1 exhibits a punctate as well as a perinuclear immunostaining pattern, indicating myristoylation dependent association with nonmitochondrial membrane compartments. In control experiments with the HMGCL expression plasmid, protein is localized in the mitochondria, as anticipated. The available results for COS1 cell expression, as well as endogenous expression in U87 cells, indicate that HMGCLL1 is an extramitochondrial hydroxymethylglutaryl-CoA lyase.  相似文献   

12.
Escherichia coli-based whole-cell biocatalysts are widely used for the sustainable production of value-added chemicals. However, weak acids present as substrates and/or products obstruct the growth and fermentation capability of E. coli. Here, we show that a viroporin consisting of the influenza A matrix-2 (M2) protein, is activated by low pH and has proton channel activity in E. coli. The heterologous expression of the M2 protein in E. coli resulted in a significant increase in the intracellular pH and cell viability in the presence of various weak acids with different lengths of carbon chains. In addition, the feasibility of developing a robust and efficient E. coli-based whole-cell biocatalyst via introduction of the proton-selective viroporin was explored by employing (Z)-11-(heptanolyoxy)undec-9-enoic acid (ester) and 2-fucosyllactose (2′-FL) as model products, whose production is hampered by cytosolic acidification. The engineered E. coli strains containing the proton-selective viroporin exhibited approximately 80% and 230% higher concentrations of the ester and 2′-FL, respectively, than the control strains without the M2 protein. The simple and powerful strategy developed in this study can be applied to produce other valuable chemicals whose production involves substrates and/or products that cause cytosolic acidification.  相似文献   

13.
Synthesis and hydrolysis of septal peptidoglycan (PG) are critical processes at the conclusion of cell division that enable separation of daughter cells. Cleavage of septal PG is mediated by PG amidases, hydrolytic enzymes that release peptide side chains from the glycan strand. Most gammaproteobacteria, including Escherichia coli, encode several functionally redundant periplasmic amidases. However, members of the Vibrio genus, including the enteric pathogen Vibrio cholerae, encode only a single PG amidase, AmiB. Here, we show that V. cholerae AmiB is crucial for cell division and growth. Genetic and biochemical analyses indicated that AmiB is regulated by two activators, EnvC and NlpD, at least one of which is required for AmiB''s localization to the cell division site. Localization of the activators (and thus of AmiB) is dependent upon the cell division protein FtsN. These factors mediate septal PG cleavage in E. coli as well; however, their precise roles vary between the two organisms in a number of ways. Notably, even though V. cholerae EnvC and NlpD appear to be functionally redundant under most growth conditions tested, NlpD is specifically required for intestinal colonization in the infant mouse model of cholera and for V. cholerae resistance against bile salts, perhaps due to environmental regulation of AmiB or its activators. Collectively, our findings reveal that although the cellular components that enable cleavage of septal PG appear to be generally conserved between E. coli and V. cholerae, they can be combined into diverse functional regulatory networks.  相似文献   

14.
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] are phosphoinositides (PIs) present in small amounts in the inner leaflet of the plasma membrane (PM) lipid bilayer of host target cells. They are thought to modulate the activity of proteins involved in enteropathogenic Escherichia coli (EPEC) infection. However, the role of PI(4,5)P2 and PI(3,4,5)P3 in EPEC pathogenesis remains obscure. Here we show that EPEC induces a transient PI(4,5)P2 accumulation at bacterial infection sites. Simultaneous actin accumulation, likely involved in the construction of the actin-rich pedestal, is also observed at these sites. Acute PI(4,5)P2 depletion partially diminishes EPEC adherence to the cell surface and actin pedestal formation. These findings are consistent with a bimodal role, whereby PI(4,5)P2 contributes to EPEC association with the cell surface and to the maximal induction of actin pedestals. Finally, we show that EPEC induces PI(3,4,5)P3 clustering at bacterial infection sites, in a translocated intimin receptor (Tir)-dependent manner. Tir phosphorylated on tyrosine 454, but not on tyrosine 474, forms complexes with an active phosphatidylinositol 3-kinase (PI3K), suggesting that PI3K recruited by Tir prompts the production of PI(3,4,5)P3 beneath EPEC attachment sites. The functional significance of this event may be related to the ability of EPEC to modulate cell death and innate immunity.  相似文献   

15.
Septins were identified for their role in septation in Saccharomyces cerevisiae and were subsequently implicated in other morphogenic processes. To study septins in Candida albicans hyphal morphogenesis, a temperature-sensitive mutation was created that altered the C terminus of the essential Cdc12 septin. The cdc12-6 cells grew well at room temperature, but at 37°C they displayed expected defects in septation, nuclear localization, and bud morphogenesis. Although serum stimulated the cdc12-6 cells at 37°C to form germ tube outgrowths, the mutant could not maintain polarized hyphal growth and instead formed chains of elongated cell compartments. Serum also stimulated the cdc12-6 mutant to induce a hyphal reporter gene (HWP1-GFP) and a characteristic zone of filipin staining at the leading edge of growth. Interestingly, cdc12-6 cells shifted to 37°C in the absence of serum gradually displayed enriched filipin staining at the tip, which may be due to the altered cell cycle regulation. A striking difference from the wild type was that the cdc12-6 cells frequently formed a second germ tube in close proximity to the first. The mutant cells also failed to form the diffuse band of septins at the base of germ tubes and hyphae, indicating that this septin band plays a role in preventing proximal formation of germ tubes in a manner analogous to bud site selection. These studies demonstrate that not only are septins important for cytokinesis, but they also promote polarized morphogenesis and selection of germ tube sites that may help disseminate an infection in host tissues.  相似文献   

16.
Cell signalling governs cellular behaviour and is therefore subject to tight spatiotemporal regulation. Signalling output is modulated by specialized cell membranes and vesicles which contain unique combinations of lipids and proteins. The phosphatidylinositol 4,5‐bisphosphate (PI(4,5)P2), an important component of the plasma membrane as well as other subcellular membranes, is involved in multiple processes, including signalling. However, which enzymes control the turnover of non‐plasma membrane PI(4,5)P2, and their impact on cell signalling and function at the organismal level are unknown. Here, we identify Paladin as a vascular PI(4,5)P2 phosphatase regulating VEGFR2 endosomal signalling and angiogenesis. Paladin is localized to endosomal and Golgi compartments and interacts with vascular endothelial growth factor receptor 2 (VEGFR2) in vitro and in vivo. Loss of Paladin results in increased internalization of VEGFR2, over‐activation of extracellular regulated kinase 1/2, and hypersprouting of endothelial cells in the developing retina of mice. These findings suggest that inhibition of Paladin, or other endosomal PI(4,5)P2 phosphatases, could be exploited to modulate VEGFR2 signalling and angiogenesis, when direct and full inhibition of the receptor is undesirable.  相似文献   

17.
Extensive research has provided ample evidences suggesting that protein folding in the cell is a co-translational process1-5. However, the exact pathway that polypeptide chain follows during co-translational folding to achieve its functional form is still an enigma. In order to understand this process and to determine the exact conformation of the co-translational folding intermediates, it is essential to develop techniques that allow the isolation of RNCs carrying nascent chains of predetermined sizes to allow their further structural analysis.SecM (secretion monitor) is a 170 amino acid E. coli protein that regulates expression of the downstream SecA (secretion driving) ATPase in the secM-secA operon6. Nakatogawa and Ito originally found that a 17 amino acid long sequence (150-FSTPVWISQAQGIRAGP-166) in the C-terminal region of the SecM protein is sufficient and necessary to cause stalling of SecM elongation at Gly165, thereby producing peptidyl-glycyl-tRNA stably bound to the ribosomal P-site7-9. More importantly, it was found that this 17 amino acid long sequence can be fused to the C-terminus of virtually any full-length and/or truncated protein thus allowing the production of RNCs carrying nascent chains of predetermined sizes7. Thus, when fused or inserted into the target protein, SecM stalling sequence produces arrest of the polypeptide chain elongation and generates stable RNCs both in vivo in E. coli cells and in vitro in a cell-free system. Sucrose gradient centrifugation is further utilized to isolate RNCs.The isolated RNCs can be used to analyze structural and functional features of the co-translational folding intermediates. Recently, this technique has been successfully used to gain insights into the structure of several ribosome bound nascent chains10,11. Here we describe the isolation of bovine Gamma-B Crystallin RNCs fused to SecM and generated in an in vitro translation system.  相似文献   

18.
The current study deals with the molecular mechanism of radiation-induced cell death (RICD) in Escherichia coli. Irradiated E. coli cells displayed markers similar to those found in eukaryotic programmed cell death (PCD) such as caspase-3 activation and phosphatidylserine externalization. RICD was found to be suppressed upon pretreatment with sublethal concentrations of rifampicin or chloramphenicol, indicating the requirement of de novo gene expression. RICD was also found to be inhibited by cell permeable inhibitors of caspase-3 or poly (ADP-ribose) polymerase, indicating the involvement of PCD during RICD in E. coli. Radiation-induced SOS response was alleviated as observed with decrease in LexA level and also reduced cell filamentation frequency in the presence of caspase inhibitor. Further, the inhibitor-mediated rescue was not observed in single-gene knockouts of umuC, umuD, recB and ruvA, the genes which are associated with SOS response. This implies a linkage between SOS response and PCD in radiation-exposed E. coli cells.  相似文献   

19.
Full length adiponectin is a potent immune modulatory adipokine, impacting upon the actions of several immune cells. Neutrophil oxidative burst has been shown to decrease in response to adiponectin, and we speculated that it could have other effects on neutrophil function. Here we report that adiponectin reduces the phagocytic ability of human neutrophils, decreasing significantly the ingestion of opsonised E. coli by these cells in whole blood (p<0.05) and as isolated neutrophils (p<0.05). We then determined the mechanisms involved. We observed that the activation of Mac-1, the receptor engaged in complement-mediated phagocytosis, was decreased by adiponectin in response to E. coli stimulation. Moreover, treatment of neutrophils with adiponectin prior to incubation with E. coli significantly inhibited signalling through the PI3K/PKB and ERK 1/2 pathways, with a parallel reduction of F-actin content. Studies with pharmacological inhibitors showed that inhibition of PI3K/PKB, but not ERK 1/2 signalling was able to prevent the activation of Mac-1. In conclusion, we propose that adiponectin negatively affects neutrophil phagocytosis, reducing the uptake of E. coli and inhibiting Mac-1 activation, the latter by blockade of the PI3K/PKB signal pathway.  相似文献   

20.
Potentially pathogenic bacteria, such as Escherichia coli and Vibrio cholerae, become non-culturable during stasis. The analysis of such cells has been hampered by difficulties in studying bacterial population heterogeneity. Using in situ detection of protein oxidation in single E. coli cells, and using a density-gradient centrifugation technique to separate culturable and non-culturable cells, we show that the proteins in non-culturable cells show increased and irreversible oxidative damage, which affects various bacterial compartments and proteins. The levels of expression of specific stress regulons are higher in non-culturable cells, confirming increased defects relating to oxidative damage and the occurrence of aberrant, such as by amino-acid misincorporation, proteins. Our data suggest that non-culturable cells are produced due to stochastic deterioration, rather than an adaptive programme, and pinpoint oxidation management as the 'Achilles heel' of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号