首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lectins   总被引:1,自引:0,他引:1  
Lectins - carbohydrate-binding proteins involved in a variety of recognition processes - exhibit considerable structural diversity. Three new lectin folds and further elaborations of known folds have been described recently. Large variability in quaternary association resulting from small alterations in essentially the same tertiary structure is a property exhibited specially by legume lectins. The strategies used by lectins to generate carbohydrate specificity include the extensive use of water bridges, post-translational modification and oligomerization. Recent results pertaining to influenza and foot-and-mouth viruses further elaborate the role of lectins in infection.  相似文献   

2.
Infection by pathogens is generally initiated by the specific recognition of host epithelia surfaces and subsequent adhesion is essential for invasion. In their infection strategy, microorganisms often use sugar-binding proteins, that is lectins and adhesins, to recognize and bind to host glycoconjugates where sialylated and fucosylated oligosaccharides are the major targets. The lectin/glycoconjugate interactions are characterized by their high specificity and most of the time by multivalency to generate higher affinity of binding. Recent crystal structures of viral, bacterial, and parasite receptors in complex with human histo-blood group epitopes or sialylated derivatives reveal new folds and novel sugar-binding modes. They illustrate the tight specificity between tissue glycosylation and lectins.  相似文献   

3.
The high number of quaternary structures observed for lectins highlights the important role of these oligomeric assemblies during carbohydrate recognition events. Although a large diversity in the mode of association of lectin subunits is frequently observed, the oligomeric assemblies of plant lectins display small variations within a single family. The crystal structure of the mannose-binding jacalin-related lectin from Calystegia sepium (Calsepa) has been determined at 1.37-A resolution. Calsepa exhibits the same beta-prism fold as identified previously for other members of the family, but the shape and the hydrophobic character of its carbohydrate-binding site is unlike that of other members, consistent with surface plasmon resonance analysis showing a preference for methylated sugars. Calsepa reveals a novel dimeric assembly markedly dissimilar to those described earlier for Heltuba and jacalin but mimics the canonical 12-stranded beta-sandwich dimer found in legume lectins. The present structure exemplifies the adaptability of the beta-prism building block in the evolution of plant lectins and highlights the biological role of these quaternary structures for carbohydrate recognition.  相似文献   

4.
Lectins are a structurally diverse group of carbohydrate recognizing proteins that are involved in various biological processes and exhibit substantial structural diversity. Interestingly, in spite of having varied carbohydrate-binding specificities, they show modest variation in their secondary and tertiary structure. However, very similar tertiary folds give rise to a range of quaternary structures by simply varying the mutual orientations of the subunits involved. The variety in the quaternary structure generates multivalency in sugar specificities among lectins along with the requisite surface topology to allow for unobstructed recognition events.  相似文献   

5.
During the past few years, substantial progress has been accomplished in the elucidation of the structural diversity of the lectin repertoires of invertebrates, protochordates and ectothermic vertebrates, providing particularly valuable information on those groups that constitute the invertebrate/vertebrate 'boundary'. Although representatives of lectin families typical of mammals, such as C-type lectins, galectins and pentraxins, have been described in these taxa, the detailed study of selected model species has yielded either novel variants of the structures described for the mammalian lectin representatives or novel lectin families with unique sequence motifs, multidomain arrangements and a new structural fold. Along with the high structural diversity of the lectin repertoires in these taxa, a wide spectrum of biological roles is starting to emerge, underscoring the value of invertebrate and lower vertebrate models for gaining insight into structural, functional and evolutionary aspects of lectins.  相似文献   

6.
Animal lectins: a historical introduction and overview   总被引:20,自引:0,他引:20  
Some proteins we now regard as animal lectins were discovered before plant lectins, though many were not recognised as carbohydrate-binding proteins for many years after first being reported. As recently as 1988, most animal lectins were thought to belong to one of two primary structural families, the C-type and S-type (presently known as galectins) lectins. However, it is now clear that animal lectin activity is found in association with an astonishing diversity of primary structures. At least 12 structural families are known to exist, while many other lectins have structures apparently unique amongst carbohydrate-binding proteins, although some of those "orphans" belong to recognised protein families that are otherwise not associated with sugar recognition. Furthermore, many animal lectins also bind structures other than carbohydrates via protein-protein, protein-lipid or protein-nucleic acid interactions. While animal lectins undoubtedly fulfil a variety of functions, many could be considered in general terms to be recognition molecules within the immune system. More specifically, lectins have been implicated in direct first-line defence against pathogens, cell trafficking, immune regulation and prevention of autoimmunity.  相似文献   

7.
Raval S  Gowda SB  Singh DD  Chandra NR 《Glycobiology》2004,14(12):1247-1263
Lectins are known to be important for many biological processes, due to their ability to recognize cell surface carbohydrates with high specificity. Plant lectins have been model systems to study protein-carbohydrate recognition, because individually they exhibit high sensitivity and as a group large diversity in recognizing carbohydrate structures. Although extensive studies have been carried out for legume lectins that have led to interesting insights into the sequence determinants of sugar recognition in them, frameworks with such specific correlations are not available for other plant lectin families. This study reports a large-scale data acquisition and extensive analysis of sequences and structures of beta-prism-I or jacalin-related lectins (JRLs) and shows that hypervariability in the binding site loops generates carbohydrate recognition diversity, a strategy analogous to that in legume lectins. Analyses of the size, conformation, and sequence variability in key regions reveal the existence of a common theme, encoded as a set of structural features over a common scaffold, in defining specificity. This study also points to the remarkable range of domain architectures, often arising out of gene duplication events in lectins of this family. The data analyzed here also indicate a spectacular variety of quaternary associations possible in this family of lectins that have implications for glycan recognition. These results thus provide sequence-structure-function correlations, an understanding of the molecular basis of carbohydrate recognition by beta-prism-I lectins, and also a rationale for engineering specific recognition capabilities in relevant molecules.  相似文献   

8.
Cytosine deaminase (CD) catalyzes the deamination of cytosine and is only present in prokaryotes and fungi, where it is a member of the pyrimidine salvage pathway. The enzyme is of interest both for antimicrobial drug design and gene therapy applications against tumors. The structure of Saccharomyces cerevisiae CD has been determined in the presence and absence of a mechanism-based inhibitor, at 1.14 and 1.43 A resolution, respectively. The enzyme forms an alpha/beta fold similar to bacterial cytidine deaminase, but with no similarity to the alpha/beta barrel fold used by bacterial cytosine deaminase or mammalian adenosine deaminase. The structures observed for bacterial, fungal, and mammalian nucleic acid deaminases represent an example of the parallel evolution of two unique protein folds to carry out the same reaction on a diverse array of substrates.  相似文献   

9.
It has been known that topologically different proteins of the same class sometimes share the same spatial arrangement of secondary structure elements (SSEs). However, the frequency by which topologically different structures share the same spatial arrangement of SSEs is unclear. It is important to estimate this frequency because it provides both a deeper understanding of the geometry of protein folds and a valuable suggestion for predicting protein structures with novel folds. Here we clarified the frequency with which protein folds share the same SSE packing arrangement with other folds, the types of spatial arrangement of SSEs that are frequently observed across different folds, and the diversity of protein folds that share the same spatial arrangement of SSEs with a given fold, using a protein structure alignment program MICAN, which we have been developing. By performing comprehensive structural comparison of SCOP fold representatives, we found that approximately 80% of protein folds share the same spatial arrangement of SSEs with other folds. We also observed that many protein pairs that share the same spatial arrangement of SSEs belong to the different classes, often with an opposing N- to C-terminal direction of the polypeptide chain. The most frequently observed spatial arrangement of SSEs was the 2-layer α/β packing arrangement and it was dispersed among as many as 27% of SCOP fold representatives. These results suggest that the same spatial arrangements of SSEs are adopted by a wide variety of different folds and that the spatial arrangement of SSEs is highly robust against the N- to C-terminal direction of the polypeptide chain.  相似文献   

10.
Lectins are a heterogeneous group of proteins found in plants, animals and microorganisms, which possess at least one non-catalytic domain that binds reversibly to specific mono- or oligosaccharides. The range of lectins and respective biological activities is unsurprising given the immense diversity and complexity of glycan structures and the multiple modes of interaction with proteins. Recombinant DNA technology has been traditionally used for cloning and characterizing newly discovered lectins. It has also been employed as a means of producing pure and sequence-defined lectins for different biotechnological applications. This review focuses on the production of recombinant lectins in heterologous organisms, and highlighting the Escherichia coli and Pichia pastoris expression systems, which are the most employed. The choice of expression host depends on the lectin. Non-glycosylated recombinant lectins are produced in E. coli and post-translational modified recombinant lectins are produced in eukaryotic organisms, namely P. pastoris and non-microbial hosts such as mammalian cells. Emphasis is given to the applications of the recombinant lectins especially (a) in cancer diagnosis and/or therapeutics, (b) as anti-microbial, anti-viral, and anti-insect molecules or (c) in microarrays for glycome profiling. Most reported applications are from recombinant plant lectins. These applications benefit from the tailor-made design associated with recombinant production and will aid in unraveling the complex biological mechanisms of glycan-interactions, bringing recombinant lectins to the forefront of glycobiology. In conclusion, recombinant lectins are developing into valuable biosynthetic tools for biomedical research.  相似文献   

11.
A number of dietary lectins have been shown to resist proteolytic digestion. These lectins interact with the small intestinal mucosa causing structural and functional changes. Concomitant to these changes, bacterial overgrowth was reported and a possible interaction between lectins and bacteria in the small intestine was postulated. The aim of this study was to investigate the effect of various lectins on adherence of Salmonella typhimurium to both isolated small intestinal enterocytes and ligated intestinal loops. Isolated intestinal cells or ligated intestinal loops were incubated with [3H] adenine-S. typhimurium in the presence or absence of concanavalin A, phytohemagglutinin, peanut agglutinin, and wheat germ agglutinin. Only concanavalin A promoted the adherence of various strains of nonfimbriated S. typhimurium to isolated viable intestinal cells. Other lectins showed no effect on the adherence. In situ studies showed that bacterial binding was increased in concanavalin A-treated intestinal loops, supporting the significance of the experiments in vitro. These data suggest that lectins may act by promoting bacterial adherence to the small intestine, thereby facilitating colonization and infection, and leading to bacterial overgrowth.  相似文献   

12.
Arodź T  Płonka PM 《Proteins》2012,80(7):1780-1790
Inspection of structure changes in proteins borne by altering their sequences brings understanding of physics, functioning and evolution of existing proteins, and helps engineer modified ones. On single amino acid substitutions, the most frequent mutation type, shifts in backbone conformation are typically small, raising doubts if and how such minor modifications could drive evolutionary divergence. Here, we report that the distribution of magnitudes of structure change on such substitutions is heavy-tailed--whereas protein structures are robust to most substitutions, changes much larger than average occur with raised odds compared to what would be expected for exponential distribution with the same mean. This nonexponential behavior allows for reconciling the apparent contradiction between the observed conservation of protein structures and the substantial evolutionary plasticity implied in their diversity. The presence of the heavy tail in the distribution promotes structure divergence, facilitating exploration of new functionality, and conformations within folds, as well as exploration of structure space for new folds.  相似文献   

13.
14.
Lectins: production and practical applications   总被引:3,自引:0,他引:3  
  相似文献   

15.
Kumar D  Mittal Y 《Bioinformation》2012,8(6):281-283
Studies of various diversified bacterial lectins/ lectin data may serve as a tool with enormous promise to help biotechnologists/ geneticists in their innovative technology to explore a deeper understanding in proteomics/ genomics research for finding the molecular basis of infectious diseases and also to new approaches for their prevention and in development of new bacterial vaccines. Hence we developed a bacterial lectin database named 'BacterialLectinDb'. An organized database schema for BacterialLectinDb was designed to collate all the available information about all bacterial lectins as a central repository. The database was designed using HTML, XML. AVAILABILITY: The database is available for free at http://www.research-bioinformatics.in.  相似文献   

16.
Lectins from two varieties (PG-3 and LFP-48) of pea have been purified by affinity chromatography on Sephadex G-50. The specific activity increased by 23 and 25 folds, respectively. These lectins from both the varieties were found to be specific for mannose. The purified fluorescein isothiocyanate (FITC)-labelled lectins showed binding reaction with homologous as well as heterologous strains of Rhizobium spp. The results revealed that pea lectins are not highly specific to their respective rhizobia. Moreover, these lectins showed a greater stimulatory effect on homologous Rhizobium leguminosarum strains.  相似文献   

17.
The structures of MornigaM and the MornigaM-mannose complex have been determined at 1.8 A and 2.0 A resolution, respectively. Both structures adopt the typical beta-prism motif found in other jacalin-related lectins and their tetrameric assembly closely resembles that of jacalin. The carbohydrate-binding cavity of MornigaM readily binds mannose. No major structural rearrangements can be observed in MornigaM upon binding of mannose. These results allow corroboration of the structure-function relationships within the small group of Moraceae lectins.  相似文献   

18.

Introduction

Glycoproteomics is undergoing rapid development, largely as a result of advances in technologies for isolating glycoproteins and analyzing glycan structures. However, given the number and diversity of glycans, there is need for new technologies that can more rapidly provide differential carbohydrate–protein structural information on a large scale. We describe a new microarray platform based on a label-free imaging ellipsometry technique, which permits simultaneous detection of multiple glycoprotein–lectin interactions without the need for reporter labels, while still providing high throughput kinetic information at much lower cost. Our results demonstrate the utility of LFIRE? (Label-Free Internal Reflection Ellipsometry) for the rapid kinetic screening of carbohydrate–lectin recognition. The technology was also used to evaluate the benefits of the lectin immobilization format using multi-lectin affinity chromatography (M-LAC) to capture glycoproteins (with enhanced binding strength or avidity) from biological samples. Using a printed panel of lectins, singly or in combination, we examined the binding characteristics of standard glycoproteins.

Results and Discussion

Using kinetic measurements, it was observed that the binding strength of lectins to carbohydrates is enhanced using a multi-lectin strategy, suggesting that improved selectivity and specificity can lead to increased functional avidity. The data presented confirm that this label-free technology can be used to effectively screen single or combinations of lectins. Furthermore, the combination of LFIRE? and M-LAC may permit more rapid and sensitive identification of novel biomarkers based on carbohydrate changes in glycoproteins, and lead to a better understanding of the connections of glycan function in cellular mechanisms of health and disease.  相似文献   

19.
Comparative analysis of numerous protein structures that have become available in the past few years, combined with genome comparison, has yielded new insights into the evolution of enzymes and their functions. In addition to the well-known diversification of substrate specificities, enzymes with several widespread catalytic folds, particularly the TIM barrel, the RRM-like domain and the double-stranded beta-helix (cupin) domain, have been extensively explored in 'reaction space', resulting in the evolution of numerous, diverse catalytic activities supported by the same structural scaffold. Common protein folds differ widely in the diversity of catalyzed reactions. The biochemical plasticity of a fold seems to hinge on the presence of a generic, symmetrical substrate-binding pocket as opposed to highly specialized binding sites.  相似文献   

20.
A number of structural genomics/proteomics initiatives are focused on bacterial or viral pathogens. In this article, we will review the progress of structural proteomics initiatives targeting the SARS coronavirus (SARS-CoV), the etiological agent of the 2003 worldwide epidemic that culminated in approximately 8,000 cases and 800 deaths. The SARS-CoV genome encodes 28 proteins in three distinct classes, many of them with unknown function and sharing low similarity to other proteins. The structures of 16 SARS-CoV proteins or functional domains have been determined to date. Remarkably, eight of these 16 proteins or functional domains have novel folds, indicating the uniqueness of the coronavirus proteins. The results of SARS-CoV structural proteomics initiatives will have several profound biological impacts, including elucidation of the structure-function relationships of coronavirus proteins; identification of targets for the design of anti-viral compounds against SARS-CoV and other coronaviruses; and addition of new protein folds to the fold space, with further understanding of the structure-function relationships for several new protein families. We discuss the use of structural proteomics in response to emerging infectious diseases such as SARS-CoV and to increase preparedness against future emerging coronaviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号