首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal variation in cell volume of epilimnetic bacteria   总被引:2,自引:0,他引:2  
The relationship between bacterial cell volume and temperature was examined for field data collected over a 4-year period and through controlled chemostat incubations of aPseudomonas sp. Volumes of planktonic bacteria were found to decrease as water temperature increased. Changes in temperature accounted for 38% of the variation in average cell volume (P<0.001). Average planktobacterial cell volume fell 42% from 0.217m3 in mid-winter to 0.127m3 in mid-summer. Similar results were found for the size distribution of epibacterial cells. Controlled chemostat incubations of aPseudomonas sp. indicated that cell volume was significantly affected by temperature, growth rate, and the interaction of temperature and growth rate. The data suggest that a change in cell volume as a result of a change in temperature is an intrinsic property of planktonic bacteria.  相似文献   

2.
Growth rates and cell volumes of Ceratium furca Ehrenberg and Gonyaulax polyedra Stein were determined during the log phase of growth in cultures which had been extensively adapted to one of three temperatures and five irradiances. At each temperature, curves for the growth rate vs. irradiance for both species had light-limited and light-saturated regions. Three properties of these curves characterized the response of each species to temperature: the light-saturated growth rate, the irradiance at which growth became light-saturated and the compensation irradiance for growth. For both species, the first two properties generally decreased with declining growth temperature, while the compensation irradiance declined for Ceratium but had a V-shaped response pattern for Gonyaulax. The light-saturated growth rates were generally higher for Ceratium than for Gonyaulax, while the irradiance at which growth became saturated and the compensation irradiance were lower for Ceratium. The changes in cell volume associated with the irradiance and temperature of growth were very different for Ceratium and Gonyaulax. The cell size of Gonyaulax increased as irradiance and temperature decreased, while cell volumes of Ceratium did not change with temperature but were smallest at the highest and lowest growth irradiances. In general, the growth rate patterns were similar for Ceratium and Gonyaulax, while those for cell size were different. The maximum growth rate, the irradiance at which growth became saturated, the compensation irradiance, and the cell volume all showed that Ceratium grew at the same rate or faster than Gonyaulax over the entire range of irradiances and temperatures examined.  相似文献   

3.
Three bacterial (Pedobacter heparinus, Pedobacter piscium, Pedobacter cryoconitis) and three yeast strains (Saccharomyces cerevisiae, Leucosporidiella creatinivora, Rhodotorula glacialis) of different thermal classes (mesophiles and psychrophiles) were tested for the effect of temperature on a range of growth parameters, including optical density, viable cell numbers, and cell dry mass, in order to determine the temperature conditions under which maximum biomass formation is obtained. Maximum values of growth parameters obtained at the stationary growth phase of the strains were used for statistical calculation. Temperature had a significant (≤ 0.05) effect on all growth parameters for each strain; correlations between the growth parameters were significant (≤ 0.05–0.01). The maximum growth temperature or the temperature at which microbial growth was fastest was in no case the temperature at which the investigated strains produced the highest amount of biomass. All tested psychrophilic bacteria and yeast strains produced highest amounts of cells (as calculated per mg cell dry mass or per OD600 unit) at 1°C, while cell numbers of mesophiles were highest at 20°C. Thus, cultivation temperatures close to the maximum growth temperature are not appropriate for studying psychrophiles.  相似文献   

4.
Summary The dnaA167 mutant of Escherichia coli, N167, maintains, on the average, two replicating chromosomes per cell at the perimissive growth temperature of 30°C and only one per cell at the higher permissive growth temperature of 38°C. When the growth temperature of this mutant is changed from 30° to 38°C the cells rapidly readjust their chromosome copy number from two to one. I have examined the kinetics of this transition with reference to DNA replication and cell division. My results indicate that this mutant uncouples cell division from chromosome duplication to achieve the appropriate copy number, suggesting that the dnaA gene product may be involved in the coordination between these two cellular events.  相似文献   

5.
Cell death and its effect on wing size have been described in some wing mutants of Drosophila hydei. Dead cells in the imaginal discs were localized by Nile-bule and acridine-orange staining. Various Notch (N) alleles, the mutation Costal-nick (Cnk) and the compound N/Cnk show characteristic patterns of cell death in the imaginal wing disc. Some but not all of the structural features of the adult wing can be related to the site of cell death during larval stages. In NAx types, extensive cell death is followed by regenerative growth, invalidating a simple relation between size of the disk and size of the wing. In Nts/Cnk cell death and wing morphology depend on the breeding temperature. From temperature experiments we conclude that cell death starts between day 4 and 5 after egg laying and can be induced by a shift to the restrictive temperature during the critical phase. Patterns of wing incisions and cell death in Nts/Cnk genotypes seem not to be delimited by any of the known compartment boundaries.  相似文献   

6.
A temperature sensitive lethal allele of thewingless locus ofDrosophila melanogaster together with previously studied lethal and viable alleles in this locus, has been used to study some properties of this locus. These studies show the existence of two lethal phases for thewingless lesion; one during embryogenesis and another during pupation. By growing embryos with temperature sensitivewingless lesion at the permissive temperature and letting the larvae develop at non-permissive temperature, a large-scale cell death and subsequent regeneration were seen to occur in the mutant wing discs. This cell death followed by regeneration alters the normal developmental potential of the wing disc. Disc transplantation experiments show that these discs are incapable of differentiating into wing blade structures.  相似文献   

7.
Aims: When subjected to dynamic temperatures surpassing the expected maximum growth temperature, Escherichia coli K12 MG1655 shows disturbed growth curves. These irregular population dynamics were explained by considering two subpopulations, i.e. a thermoresistant and a thermosensitive one ( Van Derlinden et al. 2010a ). In this paper, the influence of the initial cell concentration on the subpopulations’ dynamics is evaluated. Methods and Results: Experiments were performed in a bioreactor with the temperature increasing from 42 to 65·2°C (1 and 4°C h?1) with varying initial cell concentrations [6, 12 and 18 ln(CFU ml?1)]. When started from the highest cell concentration, the population was characterized by a higher overall maximum growth temperature and a higher inactivation temperature. For all experimental set‐ups, resistant cells were still growing at the final temperature of 65·2°C. Conclusions: The initial cell concentration had no effect on temperature resistance. The increase in temperature resistance of the sensitive subpopulation was because of the change of the physiological state to the stationary phase. Significance and Impact of the Study: A higher initial cell concentration leads to higher heat stress adaptation when cultures reach a maximum cell concentration. The observed growth at a temperature of 65·2°C is very important for food safety and the temperature treatment of micro‐organisms.  相似文献   

8.
The balance between cell proliferation and cell differentiation is essential for leaf patterning. However, identification of the factors coordinating leaf patterning and cell growth behavior is challenging. Here, we characterized a temperature‐sensitive Arabidopsis mutant with leaf blade and venation defects. We mapped the mutation to the sub‐2 allele of the SCRAMBLED/STRUBBELIG (SCM/SUB) receptor‐like kinase gene whose functions in leaf development have not been demonstrated. The sub‐2 mutant displayed impaired blade development, asymmetric leaf shape and altered venation patterning under high ambient temperature (30°C), but these defects were less pronounced at normal growth temperature (22°C). Loss of SCM/SUB function results in reduced cell proliferation and abnormal cell expansion, as well as altered auxin patterning. SCM/SUB is initially expressed throughout leaf primordia and becomes restricted to the vascular cells, coinciding with its roles in early leaf patterning and venation formation. Furthermore, constitutive expression of the SCM/SUB gene also restricts organ growth by inhibiting the transition from cell proliferation to expansion. We propose the existence of a SCM/SUB‐mediated developmental stage‐specific signal for leaf patterning, and highlight the importance of the balance between cell proliferation and differentiation for leaf morphogenesis.  相似文献   

9.
The effect of pressure and temperature on the growth of the mesophilic lactic acid bacteria Lactococcus lactis and Lactobacillus sanfranciscensis was studied. Both strains were piezosensitive. Lb. sanfranciscensis failed to grow at 50 MPa and the growth rate of Lc. lactis at 50 MPa was less than 30% of that at atmospheric pressure. An increase of growth temperature did not improve the piezotolerance of either organism. During growth under high-pressure conditions, the cell morphology was changed, and the cells were elongated as cell division was inhibited. At atmospheric pressure, temperatures above the optimal temperature for growth caused a similar effect on cell morphology and cell division in both bacteria as that observed under high-pressure conditions. The segregation and condensation of chromosomal DNA were observed by DAPI staining and occurred normally at high-pressure conditions independent of changes in cell morphology. Immunofluorescence microscopy of Lc. lactis cells demonstrated an inhibitory effect of high pressure on the formation of the FtsZ ring and this inhibition of the FtsZ ring formation is suggested to contribute to the altered cell morphology and growth inhibition induced by high pressure.Communicated by K. Horikoshi  相似文献   

10.
Defective cell division in thermosensitive mutants of Salmonella typhimurium   总被引:10,自引:0,他引:10  
Summary Two temperature-sensitive mutants ofSalmonella typhimurium defective in cell division (divA anddivC) have been isolated. Cell division in these mutants is arrested at elevated temperature while DNA and protein synthesis are unaffected. This results in formation of long filaments. Filaments returned to permissive temperature divide after a short lag. Inhibition of DNA synthesis by nalidixic acid does not block these divisions. This suggests that the thermosensitive step is required late in the division cycle. Chloramphenicol prevents the division of filaments shifted back to permissive temperature in one of these mutants (divA) and allows limited division to take place in the other mutant (divC). The arrest of cell division at elevated temperature may be phenotypically cured by high osmolarity of the medium. The mutationdivA has been mapped betweenrha andmetB and the mutationdivC betweenleu andaziA.If the filaments ofdivA are starved for thymine and then returned to permissive temperature with the simultaneous restoration of thymine the start of their division is delayed in comparison with the division of the control (unstarved) filaments. The argument is raised that a proper ratio of terminated chromosomes to cell mass must be attained to allow division.  相似文献   

11.
Studies on primary cell cultures have contributed significantly to our understanding of neural cell function. Nevertheless, for many studies the value of these primary cell cultures has been limited by the time the cultures survivein vitro,the quantity of cellular material available for analysis, and the need to prepare the cells on a regular basis from fresh tissue. Techniques for immortalizing cells have existed for some time, but the repertoire of immortalizing genes has grown significantly. This has expanded our ability to generate useful cell lines of specific neural types that are better models of thein vivophenotype than previously. The constitutive expression of oncogenes keeps cells in a proliferative state that could lead to the loss of differentiated gene expression and function. An appealing improvement of immortalization methodology is the use of temperature-sensitive oncogenes that generate cell lines that can proliferate at a permissive temperature and “differentiate” at a nonpermissive temperature. The proliferation of such conditionally immortalized cell lines can be suppressed simply by increasing the temperature. Cell lines maintained at the nonpermissive temperature can enter into a stage in which they express differentiated properties of the cell. The potential ability of conditionally immortalized neural cell lines to accurately reflect theirin vivofunction has now been demonstrated on several occasions through transplantation experiments. In this report, the generation of these cell lines is described along with a discussion of their potential applications in neurobiology.  相似文献   

12.
13.
The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2–3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.  相似文献   

14.
Although investigators have been studying the cold-shock response in a variety of organisms for the last two decades or more, comparatively little is known about the difference between antioxidant cell response to cold stress in Antarctic and temperate microorganisms. The change of environmental temperature, which is one of the most common stresses, could be crucial for their use in the biotechnological industry and in ecological research. We compared the effect of short-term temperature downshift on antioxidant cell response in Antarctic and temperate fungi belonging to the genus Penicillium. Our study showed that downshift from an optimal temperature to 15° or 6°C led to a cell response typical of oxidative stress: significant reduction of biomass production; increase in the levels of oxidative damaged proteins and accumulation of storage carbohydrates (glycogen and trehalose) in comparison to growth at optimal temperature. Cell response against cold stress includes also increase in the activities of SOD and CAT, which are key enzymes for directly scavenging reactive oxygen species. This response is more species-dependent than dependent on the degree of cold-shock. Antarctic psychrotolerant strain Penicillium olsonii p14 that is adapted to life in extremely cold conditions demonstrated enhanced tolerance to temperature downshift in comparison with both mesophilic strains (Antarctic Penicillium waksmanii m12 and temperate Penicillium sp. t35).  相似文献   

15.
Summary Carrot cell lines multiply indefinitely in the presence of the auxin 2,4-D. If auxin is removed, the cells regenerate plantlets in a process that closely resembles embryogenesis in vivo. We isolated a temperature-sensitive variant, ts 2, which is unable to regenerate at 31 °C (non-permissive temperature), but does form embryos and plants at 24 °C (permissive temperature). The temperature treatment had no effect on fully differentiated ts 2 plantlets. In other variants (ts 5 and ts 11) cell proliferation was inhibited at the restrictive temperature. These lines were leaky with respect to the inhibition of embryogenesis at 31 °C.Abbreviations EMS ethylmethanesulfonate - EU embryogenic unit (see Materials and methods) - ts temperature-sensitive - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

16.
The effect of cell size on growth rates and some cellular contents of Thalassiosira nordenskioeldii Cleve has been measured at 0 and 10 C. At 0 C the growth rate did not vary with cell size. The 2 smallest clones at this temperature had reduced growth rates because of the induction of sexuality in that size range. The clones grown at 10 C showed a significant negative relationship between growth rate and valve diameter with the cell surface area/volume ratio positively related to growth rate. At both temperatures the smaller cells had proportionately more carbon and nitrogen/unit cell volume. The amount of chlorophyll a and silica/unit cell surface area increased with increasing cell surface area at both 0 and 10 C. Both the C/N and C/chl a ratios showed no significant change with cell size at either temperature but there was a significant increase in the C/chl a ratio at 0 C. The C/Si ratio decreased with increasing cell size at both 0 and 10 C.  相似文献   

17.
The influence of growth temperature, media composition and cell age on the chemical composition of Bacillus stearothermophilus strain AN 002 has been determined. The total cellular protein decreased and the free amino acid content increased with growth temperature, in both exponential and stationary growth phase. The protein and free amino acid contents of cells were higher in the stationary phase than in the exponential phase, irrespective of growth temperature and media composition. The RNA content was only reduced in cells grown at 55° C. No significant variations were observed in the DNA and carbohydrate contents with respect to growth temperature and cell age. The total lipid and fatty acid compositions on the other hand varied as a function of growth temperature, cell age and media composition. Differences in the relative concentrations of even, odd and branched chain fatty acids were noticed. Novariation was observed in the antiiso and unsaturated fatty acids with respect to growth temperature. The unique variations in the fatty acid composition and total lipids at the growth temperature of 50° C and their variations in the stationary growth phase seem to be characteristic for B. stearothermophilus AN 002.  相似文献   

18.
Medaka Oryzias latipes has several geographically and genetically distinct populations. We examined temperature acclimation response in various medaka cell lines derived from different populations. Measurement of cell growth at various temperatures suggested that 15°C was the permissive growth temperature in all cell lines from the Northern Japanese and East Korean populations, but not in those from the Southern Japanese population and medaka-related species Oryzias celebensis, which inhabits a tropical zone. RT-PCR for 102 temperature-responsive genes, previously reported in other species, revealed that the accumulated mRNA level of a gene encoding HSP47 was lower at 25°C than at 33°C, and vice versa for 12 genes including IκBα and Rab-1c, in OLHNI-1 cell line from the Northern Japanese population. Further analysis by real-time PCR demonstrated that the accumulated mRNA levels of IκBα and Rab-1c in OLHNI-1 and OLSOK-e7 cell lines from the East Korean population were increased when the culture temperature was shifted from 33 to 15°C, but not in OLHdrR-e3 cell line from the Southern Japanese population. Since IκBα and Rab-1c are related to the NFκB cascade and endoplasmic reticulum-to-Golgi transport, respectively, it is inferred that immune responses and intracellular transport are possibly critical to temperature adaptation for medaka. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

19.
Fruit phenotype is a resultant of inherent genetic potential in interaction with impact of environment experienced during crop and fruit growth. The aim of this study was to analyze the genetic and physiological basis for the difference in fruit size between a small (‘Brioso’) and intermediate (‘Cappricia’) sized tomato cultivar exposed to different fruit temperatures. It was hypothesized that fruit heating enhances expression of cell cycle and expansion genes, rates of carbon import, cell division and expansion, and shortens growth duration, whereas increase in cell number intensifies competition for assimilates among cells. Unlike previous studies in which whole‐plant and fruit responses cannot be separated, we investigated the temperature response by varying fruit temperature using climate‐controlled cuvettes, while keeping plant temperature the same. Fruit phenotype was assessed at different levels of aggregation (whole fruit, cell and gene) between anthesis and breaker stage. We showed that: (1) final fruit fresh weight was larger in ‘Cappricia’ owing to more and larger pericarp cells, (2) heated fruits were smaller because their mesocarp cells were smaller than those of control fruits and (3) no significant differences in pericarp carbohydrate concentration were detected between heated and control fruits nor between cultivars at breaker stage. At the gene level, expression of cell division promoters (CDKB2, CycA1 and E2Fe‐like) was higher while that of the inhibitory fw2.2 was lower in ‘Cappricia’. Fruit heating increased expression of fw2.2 and three cell division promoters (CDKB1, CDKB2 and CycA1). Expression of cell expansion genes did not corroborate cell size observations.  相似文献   

20.

A change in ambient temperature is predicted to disrupt cellular homeostasis by affecting all cellular processes in an albeit non-uniform manner. Diffusion is generally less temperature-sensitive than enzymes, for example, and each enzyme has a characteristic individual temperature profile. The actual effects of temperature variation on cells are still poorly understood at the molecular level. Towards an improved understanding, we have performed a genome-wide RNA interference screen with S2R?+?cells. This Drosophila cell line proliferates over a temperature range comparable to that tolerated by the parental ectothermic organism. Based on effects on cell counts and cell cycle profile after knockdown at 27 and 17 °C, respectively, genes were identified with an apparent greater physiological significance at one or the other temperature. While 27 °C is close to the temperature optimum, the substantially lower 17 °C was chosen to identify genes important at low temperatures, which have received less attention compared to the heat shock response. Among a substantial number of screen hits, we validated a set successfully in cell culture and selected ballchen for further evaluation in the organism. This gene encodes the conserved metazoan VRK protein kinase that is crucial for the release of chromosomes from the nuclear envelope during mitosis. Our analyses in early embryos and larval wing imaginal discs confirmed a higher requirement for ballchen function at temperatures below the optimum. Overall, our experiments validate the genome-wide screen as a basis for future characterizations of genes with increased physiological significance at the lower end of the readily tolerated temperature range.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号