首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
Ischemia is known to potently stimulate autophagy in the heart, which may contribute to cardiomyocyte survival. In vitro, transfection with small interfering RNAs targeting Atg5 or Lamp-2 (an autophagy-related gene necessary, respectively, for the initiation and digestion step of autophagy), which specifically inhibited autophagy, diminished survival among cultured cardiomyocytes subjected to anoxia and significantly reduced their ATP content, confirming an autophagy-mediated protective effect against anoxia. We next examined the dynamics of cardiomyocyte autophagy and the effects of manipulating autophagy during acute myocardial infarction in vivo. Myocardial infarction was induced by permanent ligation of the left coronary artery in green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3) transgenic mice in which GFP-LC3 aggregates to be visible in the cytoplasm when autophagy is activated. Autophagy was rapidly (within 30 min after coronary ligation) activated in cardiomyocytes, and autophagic activity was particularly strong in salvaged cardiomyocytes bordering the infarcted area. Treatment with bafilomycin A1, an autophagy inhibitor, significantly increased infarct size (31% expansion) 24 h postinfarction. Interestingly, acute infarct size was significantly reduced (23% reduction) in starved mice showing prominent autophagy before infarction. Treatment with bafilomycin A1 reduced postinfarction myocardial ATP content, whereas starvation increased myocardial levels of amino acids and ATP, and the combined effects of bafilomycin A1 and starvation on acute infarct size offset one another. The present findings suggest that autophagy is an innate and potent process that protects cardiomyocytes from ischemic death during acute myocardial infarction.  相似文献   

2.
Autophagy is a bulk degradation mechanism for cytosolic proteins and organelles. The heart undergoes hypertrophy in response to mechanical load but hypertrophy can regress upon unloading. We hypothesize that autophagy plays an important role in mediating regression of cardiac hypertrophy during unloading. Mice were subjected to transverse aortic constriction (TAC) for 1 week, after which the constriction was removed (DeTAC). Regression of cardiac hypertrophy was observed after DeTAC, as indicated by reduction of LVW/BW and cardiomyocyte cross-sectional area. Indicators of autophagy, including LC3-II expression, p62 degradation and GFP-LC3 dots/cell, were significantly increased after DeTAC, suggesting that autophagy is induced. Stimulation of autophagy during DeTAC was accompanied by upregulation of FoxO1. Upregulation of FoxO1 and autophagy was also observed in vitro when cultured cardiomyocytes were subjected to mechanical stretch followed by incubation without stretch (de-stretch). Transgenic mice with cardiac-specific overexpression of FoxO1 exhibited smaller hearts and upregulation of autophagy. Overexpression of FoxO1 in cultured cardiomyocytes significantly reduced cell size, an effect which was attenuated when autophagy was inhibited. To further examine the role of autophagy and FoxO1 in mediating the regression of cardiac hypertrophy, beclin1+/− mice and cultured cardiomyocytes transduced with adenoviruses harboring shRNA-beclin1 or shRNA-FoxO1 were subjected to TAC/stretch followed by DeTAC/de-stretch. Regression of cardiac hypertrophy achieved after DeTAC/de-stretch was significantly attenuated when autophagy was suppressed through downregulation of beclin1 or FoxO1. These results suggest that autophagy and FoxO1 play an essential role in mediating regression of cardiac hypertrophy during mechanical unloading.  相似文献   

3.
Type-2 ryanodine receptors (RyR2) – the calcium release channels of cardiac sarcoplasmic reticulum – have a central role in cardiac excitation–contraction coupling. In the heart, ischemia/reperfusion causes a rapid and significant decrease in RyR2 content but the mechanisms responsible for this effect are not fully understood. We have studied the involvement of three proteolytic systems – calpains, the proteasome and autophagy – on the degradation of RyR2 in rat neonatal cardiomyocyte cultures subjected to simulated ischemia/reperfusion (sI/R). We found that 8 h of ischemia followed by 16 h of reperfusion decreased RyR2 content by 50% without any changes in RyR2 mRNA. Specific inhibitors of calpains and the proteasome prevented the decrease of RyR2 caused by sI/R, implicating both pathways in its degradation. Proteasome inhibitors also prevented the degradation of calpastatin, the endogenous calpain inhibitor, hindering the activation of calpain induced by calpastatin degradation. Autophagy was activated during sI/R as evidenced by the increase in LC3-II and beclin-1, two proteins involved in autophagosome generation, and in the emergence of GFP-LC3 containing vacuoles in adenovirus GFP-LC3 transduced cardiomyocytes. Selective autophagy inhibition, however, induced even further RyR2 degradation, making unlikely the participation of autophagy in sI/R-induced RyR2 degradation. Our results suggest that calpain activation as a result of proteasome-induced degradation of calpastatin initiates RyR2 proteolysis, which is followed by proteasome-dependent degradation of the resulting RyR2 fragments. The decrease in RyR2 content during ischemia/reperfusion may be relevant to the decrease of heart contractility after ischemia.  相似文献   

4.

Aims

Myocardial CCN2/CTGF is induced in heart failure of various etiologies. However, its role in the pathophysiology of left ventricular (LV) remodeling after myocardial infarction (MI) remains unresolved. The current study explores the role of CTGF in infarct healing and LV remodeling in an animal model and in patients admitted for acute ST-elevation MI.

Methods and Results

Transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) and non-transgenic littermate controls (NLC) were subjected to permanent ligation of the left anterior descending coronary artery. Despite similar infarct size (area of infarction relative to area at risk) 24 hours after ligation of the coronary artery in Tg-CTGF and NLC mice, Tg-CTGF mice disclosed smaller area of scar tissue, smaller increase of cardiac hypertrophy, and less LV dilatation and deterioration of LV function 4 weeks after MI. Tg-CTGF mice also revealed substantially reduced mortality after MI. Remote/peri-infarct tissue of Tg-CTGF mice contained reduced numbers of leucocytes, macrophages, and cells undergoing apoptosis as compared with NLC mice. In a cohort of patients with acute ST-elevation MI (n = 42) admitted to hospital for percutaneous coronary intervention (PCI) serum-CTGF levels (s-CTGF) were monitored and related to infarct size and LV function assessed by cardiac MRI. Increase in s-CTGF levels after MI was associated with reduced infarct size and improved LV ejection fraction one year after MI, as well as attenuated levels of CRP and GDF-15.

Conclusion

Increased myocardial CTGF activities after MI are associated with attenuation of LV remodeling and improved LV function mediated by attenuation of inflammatory responses and inhibition of apoptosis.  相似文献   

5.
Galanin (Gal) is a neuropeptide with supposed neurotrophic-like action. In the present study, expression of Gal has been investigated in the core and peri-infarct zone at 1, 4, 24 and 72 h after middle cerebral artery occlusion (MCAo) in the rat. Three days after MCAo a small but consistent number of morphological intact Gal-positive neuronal cells were observed in the peri-infarct zone. Gal-positive cells were barely detectable in the infarct and peri-infarct zone at 24 h. No Gal immunopositive cells were detected in brain subjected to 1 and 4 h of ischemia. Gal immunoreactivity was also detected in myelinated fibers 4 and 24 h after focal ischemia. Gal may be a peptide with neurotrophic and plasticity functions under stress conditions.  相似文献   

6.
Insulin has been shown to possess significant anti-apoptotic effect in myocardial ischemia/reperfusion (MI/R). However, the contribution by this protection of insulin to the prolonged cardiac function in rats subjected to ischemia remains unclear. The present study attempted to test whether early insulin treatment influences adverse prolonged post-ischemic cardiac structural and functional changes. Adult male rats were subjected to left anterior descending coronary artery occlusion and were randomized to receive one of the following treatments: saline (4 ml/kg/h i.v. injection beginning 10 min before the ischemia and continuing for 2 h), insulin (60 U/l, i.v. injection following the same routine, and hypodermic injection of insulin (0.5 U/ml, 1 ml/kg/d) for 3 days after the ischemia surgery) or insulin plus wortmannin (15 μg/kg i.v. injection 15 min before each insulin administration). Treatment with insulin significantly reduced infarct size, decreased plasma creatine kinase and lactate dehydrogenase activities, decreased apoptosis index and caspase-3 activity (all P < 0.01 vs. saline), and improved cardiac function 24 h after ischemia. Importantly, at the end of 4 weeks after the ischemia surgery, MI rats receiving insulin treatment showed smaller left ventricle (LV) cavity and thicker systolic interventricular septum, and increased cardiac ejection fraction and LV fractional shortening (all P < 0.05 vs. saline). Inhibition of insulin signaling with wortmannin not only blocked insulin’s anti-apoptotic effect, but also almost completely abolished effects of insulin on cardiac structure and function. These data indicate that inhibition of apoptosis by early insulin treatment alleviates chronic adverse changes in post-ischemic cardiac structure and function. Wenjuan Xing and Wenjun Yan contributed equally to this study.  相似文献   

7.
《Autophagy》2013,9(11):1621-1627
Autophagy is an important cellular recycling mechanism through self-digestion in responses to cellular stress such as starvation. Studies have shown that autophagy is involved in maintaining the homeostasis of the neural system during stroke. However, molecular mechanisms underlying neuronal autophagy in ischemic stroke remain poorly understood. Previously, we and others have shown that immune-related GTPase M (IRGM; termed IRGM1 in the mouse nomenclature) can regulate the survival of immune cells through autophagy in response to infections and autoimmune conditions. Here, using a permanent middle cerebral artery occlusion (pMCAO) mouse model, we found that IRGM1 was upregulated in the ischemic side of the brain, which was accompanied by a significant autophagic response. In contrast, neuronal autophagy was almost complete lost in Irgm1 knockout (KO) mice after pMCAO induction. In addition, the infarct volume in the Irgm1-KO pMCAO mice was significantly increased as compared to wild-type mice. Histological studies suggested that, at the early stage (within 24 h) of ischemia, the IRGM1-dependent autophagic response is associated with a protection of neurons from necrosis in the ischemic core but a promotion of neuronal apoptosis in the penumbra area. These data demonstrate a novel role of IRGM1 in regulating neuronal autophagy and survival during ischemic stroke.  相似文献   

8.
The underlying mechanisms of cardiotoxicity of 3,4-methylenedioxymethylamphetamine (MDMA, “ecstasy”) abuse are unclear. Autophagy exerts either adaptive or maladaptive effects on cardiac function in various pathological settings, but nothing is known on the role of autophagy in the MDMA cardiotoxicity. Here, we investigated the mechanism through which autophagy may be involved in MDMA-induced cardiac contractile dysfunction. Rats were injected intraperitoneally with MDMA (20 mg/kg) or saline. Left ventricular (LV) echocardiography and LV pressure measurement demonstrated reduction of LV systolic contractility 24 h after MDMA administration. Western blot analysis showed a time-dependent increase in the levels of microtubule-associated protein light chain 3-II (LC3-II) and cathepsin-D after MDMA administration. Electron microscopy showed the presence of autophagic vacuoles in cardiomyocytes. MDMA upregulated phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) at Thr172, mammalian target of rapamycin (mTOR) at Thr2446, Raptor at Ser792, and Unc51-like kinase (ULK1) at Ser555, suggesting activation of autophagy through the AMPK-mTOR pathway. The effects of autophagic inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) on LC3-II levels indicated that MDMA enhanced autophagosome formation, but attenuated autophagosome clearance. MDMA also induced release of cathepsins into cytosol, and western blotting and electron microscopy showed cardiac troponin I (cTnI) degradation and myofibril damage, respectively. 3-MA, CQ, and a lysosomal inhibitor, E64c, inhibited cTnI proteolysis and improved contractile dysfunction after MDMA administration. In conclusion, MDMA causes lysosome destabilization following activation of the autophagy-lysosomal pathway, through which released lysosomal proteases damage myofibrils and induce LV systolic dysfunction in rat heart.  相似文献   

9.
The roles of reactive oxygen species (ROS), extracellular signal-regulated kinase 1/2 (ERK 1/2) and mitochondrial permeability transition pore (mPTP) in sevoflurane postconditioning induced cardioprotection against ischemia-reperfusion injury in Langendorff rat hearts were investigated. When compared with the unprotected hearts subjected to 30 min of ischemia followed by 1 h of reperfusion, exposure of 3% sevoflurane during the first 15 min of reperfusion significantly improved functional recovery, decreased infarct size, reduced lactate dehydrogenase and creatine kinase-MB release, and reduced myocardial malondialdehyde production. However, these protective effects were abolished in the presence of either ROS scavenger N-acetylcysteine or ERK 1/2 inhibitor PD98059, and accompanied by prevention of ERK 1/2 phosphorylation and elimination of inhibitory effect on mPTP opening. These findings suggested that sevoflurane postconditioning protected isolated rat hearts against ischemia-reperfusion injury via the recruitment of the ROS-ERK 1/2-mPTP signaling cascade.  相似文献   

10.
Connexin 43 (Cx43) is localized at left ventricular (LV) gap junctions and in cardiomyocyte mitochondria. A genetically induced reduction of Cx43 as well as blockade of mitochondrial Cx43 import abolishes the infarct size (IS) reduction by ischemic preconditioning (IP). With progressing age, Cx43 content in ventricular and atrial tissue homogenates is reduced. We now investigated whether or not 1) the mitochondrial Cx43 content is reduced in aged mice hearts and 2) IS reduction by IP is lost in aged mice hearts in vivo. Confirming previous results, sarcolemmal Cx43 content was reduced in aged (>13 mo) compared with young (<3 mo) C57Bl/6 mice hearts, whereas the expression levels of protein kinase C epsilon and endothelial nitric oxide synthase remained unchanged. Also in mitochondria isolated from aged mice LV myocardium, Western blot analysis indicated a 40% decrease in Cx43 content compared with mitochondria isolated from young mice hearts. In young mice hearts, IP by one cycle of 10 min ischemia and 10 min reperfusion reduced IS (% of area at risk) following 30 min regional ischemia and 120 min reperfusion from 67.7 +/- 3.3 (n = 17) to 34.2 +/- 6.6 (n = 5, P < 0.05). In contrast, IP's cardioprotection was lost in aged mice hearts, since IS in nonpreconditioned (57.5 +/- 4.0, n = 10) and preconditioned hearts (65.4 +/- 6.3, n = 8, P = not significant) was not different. In conclusion, mitochondrial Cx43 content is decreased in aged mouse hearts. The reduced levels of Cx43 may contribute to the age-related loss of cardioprotection by IP.  相似文献   

11.
《Autophagy》2013,9(4):449-454
Autophagy is a cellular stress response that results in the activation of a lysosomal degradation pathway. In this report, we showed that cationic lipids, a common-used class of transfection reagents, induced genuine autophagy in mammalian cells. Extensive LC3 dot formation was observed by treatment with cationic lipids (with or without DNA), but not neutral lipids, in a HeLa cell line stably expressing GFP-LC3 (HeLa-LC3). Further proofs for autophagy were obtained by the co-localization of the LC3 dots with lysosome-specific staining patterns, observation of LC3-I to LC3-II form conversion and appearance of autophagic vacuoles under TEM. The autophagic flux assay with bafilomycin A1 and degradation of p62/SQSTM1 suggested that the autophagy induced by cationic lipids was primarily due to increased formation of autophagosomes and not decreased turnover. Moreover, cationic lipids induced autophagy in an mTOR-independent manner.  相似文献   

12.
《Autophagy》2013,9(6):586-590
Expression of GFP-LC3 is now in widespread use to visualize autophagy in cultured cells. Recently, Kuma et al. (Autophagy 2007; 3:323-8) highlighted some complications using GFP-LC3, demonstrating that punctate dots containing GFP-LC3 do not always represent autophagic structures. We report here that GFP-LC3 can also rapidly aggregate into autophagosome look-alike structures when cells are permeabilized with saponin before cell fixation. Treatment with saponin reduced diffuse cytosolic and nuclear GFP-LC3 but caused an increase in the number and intensity of fluorescent puncta per cell regardless of whether the cells were induced to undergo autophagy. Saponin also induced GFP-LC3 puncta in Atg5-/- MEF transfected with GFP-LC3, where no LC3-II is produced, demonstrating that the puncta are autophagosome-independent. The increase in GFP-LC3 puncta was not matched by an increase in endogenous LC3-II or GFP-LC3-II detected by immunoblotting when protein samples were normalized to cell number. A qualitatively similar effect was observed when cells were treated with other detergents commonly used for membrane permeabilization, such as CHAPS, Triton X-100 or digitonin. We also noted that tubulin could not be used to normalize for protein loading on blots after applying saponin as it was selectively extracted from untreated cells but not from cells treated with vinblastine. When using mild detergents to remove background fluorescence, we recommend using a membrane-associated protein such as ATP synthase β for normalization. Thus, detergents used prior to fixation may precipitate GFP-LC3 aggregation into structures that appear autophagosomal and so should be used with caution.  相似文献   

13.
Cardiac autophagy is inhibited in type 1 diabetes. However, it remains unknown if the reduced autophagy contributes to the pathogenesis of diabetic cardiomyopathy. We addressed this question using mouse models with gain- and loss-of-autophagy. Autophagic flux was inhibited in diabetic hearts when measured at multiple time points after diabetes induction by streptozotocin as assessed by protein levels of microtubule-associated protein light chain 3 form 2 (LC3-II) or GFP-LC3 puncta in the absence and presence of the lysosome inhibitor bafilomycin A1. Autophagy in diabetic hearts was further reduced in beclin 1- or Atg16-deficient mice but was restored partially or completely by overexpression of beclin 1 to different levels. Surprisingly, diabetes-induced cardiac damage was substantially attenuated in beclin 1- and Atg16-deficient mice as shown by improved cardiac function as well as reduced levels of oxidative stress, interstitial fibrosis, and myocyte apoptosis. In contrast, diabetic cardiac damage was dose-dependently exacerbated by beclin 1 overexpression. The cardioprotective effects of autophagy deficiency were reproduced in OVE26 diabetic mice. These effects were associated with partially restored mitophagy and increased expression and mitochondrial localization of Rab9, an essential regulator of a non-canonical alternative autophagic pathway. Together, these findings demonstrate that the diminished autophagy is an adaptive response that limits cardiac dysfunction in type 1 diabetes, presumably through up-regulation of alternative autophagy and mitophagy.  相似文献   

14.
15.
The effect of endurance training on the resistance of the heart to left ventricular (LV) functional deficit and infarction after a transient regional ischemia and subsequent reperfusion was examined. Female Sprague-Dawley rats were randomly assigned to an endurance exercise training (Tr) group or a sedentary (Sed) control group. After 20 wk of training, hearts were excised, perfused, and instrumented for assessment of LV mechanical function, and the left anterior descending coronary artery was occluded to induce a transient regional ischemia (1 h) that was followed by 2 h of reperfusion. Throughout much of the regional ischemia-reperfusion protocol, coronary flow rates, diastolic function, and LV developed pressure were better preserved in hearts from Tr animals. During the regional ischemia, coronary flow to myocardium outside the ischemic zone at risk (ZAR) was maintained in Tr hearts, whereas it progressively fell in Sed hearts. On release of the coronary artery ligature, flow to the ZAR was greater in Tr than in Sed hearts. Infarct size, expressed as a percentage of the ischemic ZAR, was significantly smaller in hearts from Tr rats (24 +/- 3 vs. 32 +/- 2% of ZAR, P < 0.05). Mn- and CuZn-SOD protein expression were higher in the LV myocardium of Tr animals (P < 0.05 for both isoforms). Our data indicate that long-term exercise training leads to infarct sparing and better maintenance of coronary flow and mechanical function after ischemia-reperfusion.  相似文献   

16.
Expression of GFP-LC3 is now in widespread use to visualize autophagy in cultured cells. Recently, Kuma et al. (Autophagy 2007; 3:323-8) highlighted some complications using GFP-LC3, demonstrating that punctate dots containing GFP-LC3 do not always represent autophagic structures. We report here that GFP-LC3 can also rapidly aggregate into autophagosome look-alike structures when cells are permeabilized with saponin before cell fixation. Treatment with saponin reduced diffuse cytosolic and nuclear GFP-LC3 but caused an increase in the number and intensity of fluorescent puncta per cell regardless of whether the cells were induced to undergo autophagy. Saponin also induced GFP-LC3 puncta in Atg5(-/-) MEF transfected with GFP-LC3, where no LC3-II is produced, demonstrating that the puncta are autophagosome-independent. The increase in GFP-LC3 puncta was not matched by an increase in endogenous LC3-II or GFP-LC3-II detected by immunoblotting when protein samples were normalized to cell number. A qualitatively similar effect was observed when cells were treated with other detergents commonly used for membrane permeabilization, such as CHAPS, Triton X-100 or digitonin. We also noted that tubulin could not be used to normalize for protein loading on blots after applying saponin as it was selectively extracted from untreated cells but not from cells treated with vinblastine. When using mild detergents to remove background fluorescence, we recommend using a membrane-associated protein such as ATP synthase beta for normalization. Thus, detergents used prior to fixation may precipitate GFP-LC3 aggregation into structures that appear autophagosomal and so should be used with caution.  相似文献   

17.
This study was conducted to examine the influence of acute streptozotocin‐induced diabetes on cardiac remodelling and function in mice subjected to myocardial infarction (MI) by coronary artery ligation. Echocardiography analysis indicated that diabetes induced deleterious cardiac functional changes as demonstrated by the negative differences of ejection fraction, fractional shortening, stroke volume, cardiac output and left ventricular volume 24 hrs after MI. Temporal analysis for up to 2 weeks after MI showed higher mortality in diabetic animals because of cardiac wall rupture. To examine extracellular matrix remodelling, we used fluorescent molecular tomography to conduct temporal studies and observed that total matrix metalloproteinase (MMP) activity in hearts was higher in diabetic animals at 7 and 14 days after MI, which correlated well with the degree of collagen deposition in the infarct area visualized by scanning electron microscopy. Gene arrays indicated temporal changes in expression of distinct MMP isoforms after 1 or 2 weeks after MI, particularly in diabetic mice. Temporal changes in cardiac performance were observed, with a trend of exaggerated dysfunction in diabetic mice up to 14 days after MI. Decreased radial and longitudinal systolic and diastolic strain rates were observed over 14 days after MI, and there was a trend towards altered strain rates in diabetic mouse hearts with dyssynchronous wall motion clearly evident. This correlated with increased collagen deposition in remote areas of these infarcted hearts indicated by Masson's trichrome staining. In summary, temporal changes in extracellular matrix remodelling correlated with exaggerated cardiac dysfunction in diabetic mice after MI.  相似文献   

18.
19.
Thioredoxin-1 maintains the cellular redox status and decreases the infarct size in ischemia/reperfusion injury. However, whether the increase of thioredoxin-1 expression or its lack of activity modifies the protection conferred by ischemic postconditioning has not been yet elucidated. The aim was to evaluate if the thioredoxin-1 overexpression enhances the posctconditioning protective effect, and whether the lack of the activity abolishes the reduction of the infarct size. Wild type mice hearts, transgenic mice hearts overexpressing thioredoxin-1, and a dominant negative mutant (C32S/C35S) of thioredoxin-1 were used. The hearts were subjected to 30 min of ischemia and 120 min of reperfusion (Langendorff) (I/R group) or to postconditioning protocol (PostC group). The infarct size in the Wt-PostC group decreased in comparison to the Wt-I/R group (54.6 ± 2.4 vs. 39.2 ± 2.1%, p < 0.05), but this protection was abolished in DN-Trx1-PostC group (49.7 ± 1.1%). The ischemia/reperfusion and postconditioning in mice overexpressing thioredoxin-1 reduced infarct size at the same magnitude (35.9 ± 2.1 and 38.4 ± 1.3%, p < 0.05 vs. Wt-I/R). In Wt-PostC, Trx1-I/R and Trx1- PostC, Akt and GSK3β phosphorylation increased compared to Wt-I/R, without changes in DN-Trx1 groups. In conclusion, given that the cardioprotection conferred by thioredoxin-1 overexpression and postconditioning, is accomplished through the activation of the Akt/GSK3β survival pathway, no synergic effect was evidenced. Thioredoxin-1 plays a key role in the postconditioning, given that when this protein is inactive the cardioprotective mechanism was abolished. Thus, diverse comorbidities or situations modifying the thioredoxin activity, could explain the absence of this strong mechanism of protection in different clinical situations.  相似文献   

20.
We hypothesized that intraperitoneal injections of anaesthetics or fluid per se might evoke a delayed preconditioning-like response in mice hearts isolated and Langendorff perfused 24 h later. To test this, mice were given opioid anaesthesia by intraperitoneal injections or sham treated and the hearts were harvested and subjected to global ischaemia and reperfusion 24 h later in series 1. In series 2, mice were subjected to intraperitoneal injection of Ringer, sham needle prick procedure, or no intervention 24 h before heart isolation. In series 3, intraperitoneal Ringer injection 24 h earlier was compared with the effects of classic preconditioning or no pretreatment of the isolated heart or no treatment. Heart function was measured in all series. At the end of reperfusion, hearts in series 1 and 2 were frozen and infarct size was estimated by triphenyltetrazolium chloride solution. In series 3, separate hearts were frozen for immunoblotting to detect phosphorylation of mitogen-activated protein (MAP) kinases. Cardiac activation of nuclear factor kappa B (NFkappaB) was measured using a NFkappaB luciferase firefly reporter mouse. The ischaemia-induced impairment of left ventricular function was attenuated by opioid anaesthesia injected 24 h earlier, which also reduced infarct size. Injection of fluid, but not the sham needle prick procedure, reduced infarct size. The functional protection afforded by classic preconditioning and Ringer pretreatment was comparable. Neither cardiac MAP kinases nor NFkappaB were influenced by the interventions. In conclusion, this study demonstrates a delayed preconditioning-like effect of the heart caused by intraperitoneal administration of opioid anaesthetics and of fluid only in the mouse. The mechanism of protection remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号