首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of novel Boc/acyl protected monomers for the synthesis of peptide nucleic acid (PNA) is described. The oligomerization protocol using these new monomers has been optimized with regard to coupling reagents. The use of base-labile acyl protecting groups at the exocyclic amines of the heterocyclic bases (isobutyryl for guanine and benzoyl for adenine and cytosine) and a PAM-linked solid support offers an attractive alternative to the present procedures used in PNA synthesis. This strategy has been applied for the synthesis of a test 17mer PNA on both control pore glass (CPG) and a polystyrene MBHA support and was used in the preparation of PNA-DNA chimeras.  相似文献   

2.
A major diversion of carbon from branched-chain amino acid biosynthesis/catabolism to form acyl moieties of sucrose esters (6-O-acetyl-2,3,4-tri-O-acyl-alpha-D-glucopyranosyl-beta-D- fructofuranosides) was observed to be associated with specialized trichome head cells which secrete large amounts of sucrose esters. Surface chemistry and acetyl and acyl substituent groups of tobacco (T.I. 1068) sucrose esters were identified and quantified by gas chromatography/mass spectrometry. Sucrose esters were prominent surface constituents and 3-methylvaleric acid, 2- and 3-methylbutyric acid, and methylpropionic acid accounted for 60%, 25% and 9%, respectively, of total C3--C7 acyl substituents. Radiolabeled Thr, Ile, Val, Leu, pyruvate and Asp, metabolites of branched-chain amino acid pathways, were compared with radioactively labeled acetate and sucrose as donors of carbon to sucrose, acetyl and acyl components of sucrose esters using epidermal peels with undisturbed trichomes. Preparations of biosynthetically competent trichome heads (site of sucrose ester formation) were also examined. Results indicate that 3-methylvaleryl and 2-methylbutyryl groups are derived from the Thr pathway of branched-chain amino acid metabolism, 3-methylbutyryl and methylpropionyl groups are formed via the pyruvate pathway, and that acetyl groups are principally formed directly via acetyl-CoA. Arguments are presented which rule out participation of fatty acid synthase in the formation of prominent acyl acids. Results suggest that the shunting of carbon away from the biosynthesis of Val, Leu and Ile may be due to a low level of amino acid utilization in protein synthesis in specialized glandular head cells of trichomes. This would result in the availability of corresponding oxo acids for CoA activation and esterification to form sucrose esters. Preliminary evidence was found for the involvement of cycling reactions in oxo-acid-chain lengthening and for utilization of pyruvate-derived 2-oxobutyrate to form straight-chain acyl substituents.  相似文献   

3.
Novel protein chimeras constituted of "silk" and a silica-binding peptide (KSLSRHDHIHHH) were synthesized by genetic or chemical approaches and their influence on silica-silk based chimera composite formation evaluated. Genetic chimeras were constructed from 6 or 15 repeats of the 32 amino acid consensus sequence of Nephila clavipes spider silk ([SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQG](n)) to which one silica binding peptide was fused at the N terminus. For the chemical chimera, 28 equiv of the silica binding peptide were chemically coupled to natural Bombyx mori silk after modification of tyrosine groups by diazonium coupling and EDC/NHS activation of all acid groups. After silica formation under mild, biomaterial-compatible conditions, the effect of peptide addition on the properties of the silk and chimeric silk-silica composite materials was explored. The composite biomaterial properties could be related to the extent of silica condensation and to the higher number of silica binding sites in the chemical chimera as compared with the genetically derived variants. In all cases, the structure of the protein/chimera in solution dictated the type of composite structure that formed with the silica deposition process having little effect on the secondary structural composition of the silk-based materials. Similarly to our study of genetic silk based chimeras containing the R5 peptide (SSKKSGSYSGSKGSKRRIL), the role of the chimeras (genetic and chemical) used in the present study resided more in aggregation and scaffolding than in the catalysis of condensation. The variables of peptide identity, silk construct (number of consensus repeats or silk source), and approach to synthesis (genetic or chemical) can be used to "tune" the properties of the composite materials formed and is a general approach that can be used to prepare a range of materials for biomedical and sensor-based applications.  相似文献   

4.
Three DNA fragments of 7919 base pairs containing genes for beta-cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19), an iron III dicitrate transport protein-like protein and a partial coding sequence for putative ferrichrome ABC transporter from Bacillus circulans A11 were cloned and sequenced (GenBank Accession AF302787). The DNA sequence contained a CGTase open reading frame of 2139 base pairs, which encoded a polypeptide of 713 amino acid residues. The signal peptide constituted the N-terminal 27 amino acid residues. The amino acid sequence was highly homologous to that of Bacillus sp. 1011 with 98.7% identity. The cloned CGTase gene contained its own promoter that directed the expression of the gene in Escherichia coli host cells. Chimeric construction against the alpha-CGTase from B. macerans IAM1243 was carried out by means of three created restriction sites, XhoI, SpeI, and MfeI, introduced by mutagenesis in between domains A/B and C, C and D, and D and E, respectively, and the NdeI site within the domains A/B. The various chimeras with different combinations of domains and part of domains A/B were analyzed for their dextrinizing and CD-forming activities. Their activities were of three groups: chimeras with no dextrinizing and cyclization activities, chimeras with only dextrinizing activity, and chimeras with both dextrinizing and cyclization activities. Two chimeras in the latter group showed altered product specificity. The results located the amino acid segment essential for the product specificity at the C-terminal half of domains A/B. Further, the function of domains C and D in positioning domain E in the correct orientation and proximity to domains A/B is implicated.  相似文献   

5.
Pepper (Capsicum annuum) serotonin N-hydroxycinnamoyltransferase (SHT) catalyzes the synthesis of N-hydroxycinnamic acid amides of serotonin, including feruloylserotonin and p-coumaroylserotonin. To elucidate the domain or the key amino acid that determines the amine substrate specificity, we isolated a tyramine N-hydroxycinnamoyltransferase (THT) gene from pepper. Purified recombinant THT protein catalyzed the synthesis of N-hydroxycinnamic acid amides of tyramine, including feruloyltyramine and p-coumaroyltyramine, but did not accept serotonin as a substrate. Both the SHT and THT mRNAs were found to be expressed constitutively in all pepper organs. Pepper SHT and THT, which have primary sequences that are 78% identical, were used as models to investigate the structural determinants responsible for their distinct substrate specificities and other enzymatic properties. A series of chimeric genes was constructed by reciprocal exchange of DNA segments between the SHT and THT cDNAs. Functional characterization of the recombinant chimeric proteins revealed that the amino acid residues 129 to 165 of SHT and the corresponding residues 125 to 160 in THT are critical structural determinants for amine substrate specificity. Several amino acids are strongly implicated in the determination of amine substrate specificity, in which glycine-158 is involved in catalysis and amine substrate binding and tyrosine-149 plays a pivotal role in controlling amine substrate specificity between serotonin and tyramine in SHT. Furthermore, the indisputable role of tyrosine is corroborated by the THT-F145Y mutant that uses serotonin as the acyl acceptor. The results from the chimeras and the kinetic measurements will direct the creation of additional novel N-hydroxycinnamoyltransferases from the various N-hydroxycinnamoyltransferases found in nature.  相似文献   

6.
The 2‐(o‐nitrophenyl)‐propyl (NPP) group is used as caging group to mask the nucleobases adenine and cytosine in N‐(2‐aminoethyl)glycine peptide nucleic acids (aeg‐PNA). The adeninyl and cytosinyl nucleo amino acid building blocks Fmoc‐aNPP‐aeg‐OH and Fmoc‐cNPP‐aeg‐OH were synthesized and incorporated into PNA sequences by Fmoc solid phase synthesis relying on high stability of the NPP nucleobase protecting group toward Fmoc‐cleavage, coupling, capping, and resin cleavage conditions. Removal of the nucleobase caging group was achieved by UV‐LED irradiation at 365 nm. The nucleobase caging groups provided sterical crowding effecting the Watson–Crick base pairing, and thereby, the PNA double strand stabilities. Duplex formation can completely be suppressed for complementary PNA containing caging groups in both strands. PNA/PNA recognition can be completely restored by UV light‐triggered release of the photolabile protecting group. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Triacylglycerols (TAGs) and wax esters (WEs) are beside polyhydroxyalkanoates (PHAs) important storage lipids in some groups of prokaryotes. Accumulation of these lipids occurs in cells when they are cultivated under conditions of unbalanced growth in the presence of high concentrations of a suitable carbon source, which can be used for fatty acid and storage lipid biosyntheses. The key enzymes, which mediate both WE and TAG formations from long-chain acyl-coenzyme A (CoA) as acyl donor and long-chain fatty alcohols or diacylglycerols as respective acyl acceptors in bacteria, are WE synthases/acyl-CoA:diacylglycerol acyltransferases (WS/DGATs). The WS/DGATs identified so far represent rather unspecific enzymes with broad spectra of possible substrates; this makes them interesting for many biotechnological applications. This review traces the molecular structure and biochemical properties including the probable regions responsible for acyltransferase properties, enzymatic activity and substrate specifities. The phylogenetic relationships based on amino acid sequence similarities of this unique class of enzymes were revealed. Furthermore, recent advances in understanding the physiological functions of WS/DGATs in their natural hosts including pathogenic Mycobacterium tuberculosis were discussed.  相似文献   

8.
Novel peptidomimetic backbone designs with stability towards proteases are of interest for several pharmaceutical applications including intracellular delivery. The present study concerns the cellular uptake and membrane-destabilising effects of various cationic chimeras comprised of alternating N-alkylated beta-alanine and alpha-amino acid residues. For comparison, homomeric peptides displaying octacationic functionalities as well as the Tat(47-57) sequence were included as reference compounds. Cellular uptake studies with fluorescently labelled compounds showed that guanidinylated chimeras were taken up four times more efficiently than Tat(47-57). After internalisation, the chimeras were localised primarily in vesicular compartments and diffusively in the cytoplasm. In murine NIH3T3 fibroblasts, the chimeras showed immediate plasma membrane permeabilising properties, which proved highly dependent on the chimera chain length, and were remarkably different from the effects induced by Tat(47-57). Finally, biophysical studies on model membranes showed that the chimeras in general increase the permeability of fluid phase and gel phase phosphatidylcholine (PC) vesicles without affecting membrane acyl chain packing, which suggests that they restrict lateral diffusion of the membrane lipids by interaction with phospholipid head groups. The alpha-peptide/beta-peptoid chimeras described herein exhibit promising cellular uptake properties, and thus represent proteolytically stable alternatives to currently known cell-penetrating peptides.  相似文献   

9.
The product ratio was analyzed for the papain-catalyzed acyl transfer from the specific acyl donor Mal-Phe-Ala-OEtCl to various nucleophilic amino components, ranging from amino acid amides to tripeptide amides. The data obtained are discussed in terms of binding specificity. From the structure-activity relationships for the S'1-P'1 interaction it follows that only three methyl(ene) groups can be accommodated in the S'1 subsite. Hydrophilic side chains are bound better to S'1 than indicated by their hydrophobicities. Negatively charged amino components are inefficient deacylating agents. However, there was no evidence for electrostatic contributions to the nucleophile binding. Amino components with bulky hydrophobic amino acid residues in the P'2 and in the P'3 position, respectively, are preferentially bound to Mal-Phe-Ala-papain. The results of this study can be applied to the planning of papain-catalyzed peptide synthesis reactions.  相似文献   

10.
A facile two steps extrusion processing conditions are used to prepare thermoplastic starch (TPS)/glycerol modified-montmorillonite (GMMT) nanocomposites. X-ray diffraction (XRD) and transmission electron microscopy (TEM) demonstrate glycerol can enlarge the d-spacing and destruct the multilayer structure of montmorillonite (MMT) effectively using high speed emulsifying machine (HSEM) in the first modification step. So the enlarged d-spacing and destructed platelets of MMT are favorable to form intercalated or exfoliated TPS/GMMT nanocomposites in the second melt extrusion processing. However, scanning electron microscopy (SEM) and XRD show the possible competition between TPS matrix and plasticizer for the intercalation between MMT layers can deteriorate the plasticization of TPS. In addition, citric acid (CA) can increase the plasticization of TPS and dispersion of MMT in nanocomposites effectively detected by fourier transform infrared (FT-IR) spectroscopy and SEM. At the same time, this facile processing conditions and CA can improve the mechanical properties and water vapor permeability (WVP) of TPS/GMMT nanocomposites obviously.  相似文献   

11.
Summary A general strategy for the synthesis of Fmoc protected nucleobase modifed amino acids is presented. Fmoc protected nucleo amino acids bearing a natural purine (guanine) as well as an artificial purine (isoadenine) in the side chain have been synthesized and incorporated into cyclic pentapeptides. The structure of the cyclic peptides is based on the well known RGD peptides, which act as selective integrin antagonists. The nucleo amino acids serve as conformationally constrained arginine mimetics with a reduced basicity of the guanidino moiety.  相似文献   

12.
Possible mechanisms by which auxin and gibberellic acid stimulateRNA synthesis were examined, using slices excised from cold-storedtubers of Jerusalem artichoke. The ratio of DNA in nucleo non-histone to the total DNA in chromatinincreased during the aging process. On the other hand, cellexpansion did not involve this kind of change in chromosomalcomponents. Gibberellic acid and 2,4-D showed no significanteffects on the ratio of DNA in nucleo non-histone to the totalDNA in chromatin. Melting points of DNA and nucleohistone did not differ significantlyaccording to their sources, i.e. unaged, aged and growing tissues. (Received November 13, 1970; )  相似文献   

13.
A series of N-protected peptide alcohols were synthesized using amino alcohols with unprotected hydroxy groups as amino components by the catalysis of subtilisin or alpha-chymotrypsin in organic solvents. N-protected aromatic amino acid esters were more suitable as acyl donors for subtilisin. The influences of different N-protecting groups, organic solvents, and content of water on synthesis of N-protected peptide alcohols were systematically studied.  相似文献   

14.
A proteinase isolated from Thermus RT41a was immobilized to controlled pore glass beads and was used in the free and immobilized forms for peptide synthesis. The observed maximum yield was the same in both cases. a number of dipeptides were produced from amino acid esters and amides. The best acyl components, from those tested, were found to be Ac-Phe-OEt and Bz-Ala-OMe. Tur-NH(2), Trp-NH(2), Leu-pNA, and Val-pNA were all reactive nucleophiles.The kinetically controlled synthesis of Bz-ala-Tyr-NH(2) was optimized by studying the effect of pH, temperature, solvent concentration, ionic strength, and nucleophile and acyl donor concentration, ionic strength, and nucleophile and acyl donor concentration on the maximum yield. The initial conditions used were 25 mM Bz-ala-OMe, 25 mM Tyr-NH(2), 70 degrees C, pH 8.0, and 10% v/v dimethylformamide (DMF). The optimum conditions were 90% v/v DMF using 80 mM bz-Ala-OMe and 615 mM Tyr-NH(2) at 40 degrees C and pH 10. These conditions increased the maximum conversion from 0.75% to 26% (of the original ester concentration). In a number of other cosolvents, the best peptide yields were observed with acetonitrile and ethyl acetate. In 90% acetonitrile similar yields were observed to those in 90% DMF under optimized conditions except that the acyl donor and nucleophile concentrations could be reduced to 25 mM and 100mM, respectively. The effect of the blocking group on the nucleophile was also investigated; -betaNA and -pNA as blocking groups improved the yields markedly. The blocking and leaving groups of the acyldonor had no effect on the dipeptide yield. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
Fatty acid transport proteins (FATP) function in fatty acid trafficking pathways, several of which have been shown to participate in the transport of exogenous fatty acids into the cell. Members of this protein family also function as acyl CoA synthetases with specificity towards very long chain fatty acids or bile acids. These proteins have two identifying sequence motifs: The ATP/AMP motif, an approximately 100 amino acid segment required for ATP binding and common to members of the adenylate-forming super family of proteins, and the FATP/VLACS motif that consists of approximately 50 amino acid residues and is restricted to members of the FATP family. This latter motif has been implicated in fatty acid transport in the yeast FATP orthologue Fat1p. In the present studies using a yeast strain containing deletions in FAT1 (encoding Fat1p) and FAA1 (encoding the major acyl CoA synthetase (Acsl) Faa1p) as an experimental platform, the phenotypic and functional properties of specific murine FATP1-FATP4 and FATP6-FATP4 protein chimeras were evaluated in order to define elements within these proteins that further distinguish the fatty acid transport and activation functions. As expected from previous work FATP1 and FATP4 were functional in the fatty acid transport pathway, while and FATP6 was not. All three isoforms were able to activate the very long chain fatty acids arachidonate (C(20:4)) and lignocerate (C(24:0)), but with distinguishing activities between saturated and highly unsaturated ligands. A 73 amino acid segment common to FATP1 and FATP4 and between the ATP/AMP and FATP/VLACS motifs was identified by studying the chimeras, which is hypothesized to contribute to the transport function.  相似文献   

16.
Alcoholics usually suffer from malnutrition and are especially deficient in micronutrients like vitamin C, selenium and Zn. In the present study, combined effects of selenium and ascorbic acid on alcohol-induced hyperlipidemia were studied in guinea pigs. Four groups of male guinea pigs were maintained for 45 days as follows: control (1 mg ascorbate (AA)/100 g body mass/day), ethanol (900 mg ethanol/100 g body mass + 1 mg AA/100 g body mass/day), selenium+ascorbic acid [(25 mg AA + 0.05 mg Se)/100 g body mass/day], ethanol+selenium+ascorbic acid [(25 mg AA + 0.05 mg Se + 900 mg ethanol)/100 g body mass/day]. Co-administration of selenium and ascorbic acid along with alcohol reduced the concentration of all lipids, as also evidenced from the decreased activities of hydroxymethylglutaryl-CoA reductase and enhanced activities of plasma lecithin cholesterol acyl transferase and lipoprotein lipase. Concentrations of bile acids were increased. We conclude that the supplementation of Se and ascorbic acid reduced alcohol induced hyperlipidemia, by decreased synthesis and increased catabolism.  相似文献   

17.
The synthesis of multilayered magnetic nanoparticles (MNPs) for use as a support in solid-phase peptide synthesis (SPPS) is described. Silanization of magnetite (Fe3O4) nanoparticles with 3-(trimethoxysilyl)propyl methacrylate introduced polymerizable groups on the surface. Polymerization with allylamine, trimethylolpropane trimethacrylate, and trimethylolpropane ethoxylate (14/3 EO/OH) triacrylate provided a polymeric coating and amino groups to serve as starting points for the synthesis. After coupling of an internal reference amino acid and a cleavable linker, the coated MNPs were applied as the solid phase during synthesis of Leu-enkephalinamide and acyl carrier protein (65-74) by Fmoc chemistry. A “high-load” version of the MNP support (0.32 mmol/g) was prepared by four consecutive cycles of Fmoc-Lys(Fmoc)-OH coupling and Fmoc deprotection. Successful synthesis of Leu-enkephalin was demonstrated on the “high-load” MNPs. Chemical stability studies proved the particles to be stable under SPPS conditions and magnetization measurements showed that the magnetic properties of the particles were maintained throughout derivatizations and SPPS. The MNPs were further characterized by high-resolution transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, elemental analysis, and nitrogen gas adsorption measurements.  相似文献   

18.
In the analysis of protein-coding nucleotide sequences, the ratio of the number of nonsynonymous substitutions to that of synonymous substitutions (d(N)/d(S)) is used as an indicator for the direction and magnitude of natural selection operating at the amino acid sequence level. The d(S) and d(N) values are estimated based on the comparison of homologous codons, which are often identified by converting (reverse-translating) aligned amino acid sequences into codon sequences. In this method, however, homologous codons may be mis-identified when frame-shifts occurred or amino acid sequences were mis-aligned, which may lead to overestimation of the d(N)/d(S) ratio. Here the effect of reverse-translating aligned amino acid sequences on the estimation of d(N)/d(S) ratio was examined through a large-scale analysis of protein-coding nucleotide sequences from vertebrate species. Apparently, 1-9% of codon sites that were identified as homologous with reverse-translation contained non-homologous codons, where the d(N)/d(S) ratio was unduly high. By correcting the d(N)/d(S) ratio for these codon sites, it was inferred that the ratio was 5-43% overestimated with reverse-translation. These results suggest that caution should be exerted in the study of natural selection using the d(N)/d(S) ratio by reverse-translating aligned amino acid sequences.  相似文献   

19.
N Usman  M Egli    A Rich 《Nucleic acids research》1992,20(24):6695-6699
RNA-DNA chimeras, in which both DNA and RNA monomers are site-specifically substituted in the same strand, may be prepared only by chemical synthesis. Biochemical studies have revealed a number of surprising and subtle effects resulting from the insertion of either a ribonucleotide into a DNA strand or a deoxyribonucleotide into an RNA strand. The availability of large quantities of these chimeras allows for their crystallization and subsequent x-ray structure determination. We describe a flexible and efficient method for the large-scale preparation of these compounds, their purification, and their crystallization. The methodology is based on a combination of existing DNA phosphoramidite synthons and those recently introduced for the preparation of biochemically active RNA1. We demonstrate that these two different synthons are compatible, produce large quantities of nucleic acid needed for physical studies, and that high resolution diffraction quality crystals may be grown from these chimeras. Of the duplex chimeras synthesized and crystallized, [r(G)d(CGTATACGC)]2, [d(GCGT)r(A)d(TACGC)]2 and [r(GCG)d(TATACCC) + d(GGGTATACGC)] form A-helices and d(CG)r(CG)d(CG)]2 forms a left-handed Z-helix.  相似文献   

20.
The specific 1,3 dipolar Hüisgen cycloaddition reaction known as ‘click-reaction’ between azide and alkyne groups is employed for the synthesis of peptide–oligonucleotide conjugates. The peptide nucleic acids (PNA)/DNA and peptides may be appended either by azide or alkyne groups. The cycloaddition reaction between the azide and alkyne appended substrates allows the synthesis of the desired conjugates in high purity and yields irrespective of the sequence and functional groups on either of the two substrates. The versatile approach could also be employed to generate the conjugates of peptides with thioacetamido nucleic acid (TANA) analog. The click reaction is catalyzed by Cu (I) in either water or in organic medium. In water, ~3-fold excess of the peptide-alkyne/azide drives the reaction to completion in 2 h with no side products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号