首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Coordinated through a complex network of kinases and phosphatases, protein phosphorylation regulates essentially all cellular processes in eukaryotes. Recent advances in proteomics enable detection of thousands of phosphorylation sites (phosphosites) in single experiments. However, functionality of the vast majority of these sites remains unclear and we lack suitable approaches to evaluate functional relevance at a pace that matches their detection.

Results

Here, we assess functionality of 26 phosphosites by introducing phosphodeletion and phosphomimic mutations in 25 metabolic enzymes and regulators from the TOR and HOG signaling pathway in Saccharomyces cerevisiae by phenotypic analysis and untargeted metabolomics. We show that metabolomics largely outperforms growth analysis and recovers 10 out of the 13 previously characterized phosphosites and suggests functionality for several novel sites, including S79 on the TOR regulatory protein Tip41. We analyze metabolic profiles to identify consequences underlying regulatory phosphorylation events and detecting glycerol metabolism to have a so far unknown influence on arginine metabolism via phosphoregulation of the glycerol dehydrogenases. Further, we also find S508 in the MAPKK Pbs2 as a potential link for cross-talking between HOG signaling and the cell wall integrity pathway.

Conclusions

We demonstrate that metabolic profiles can be exploited for gaining insight into regulatory consequences and biological roles of phosphosites. Altogether, untargeted metabolomics is a fast, sensitive and informative approach appropriate for future large-scale functional analyses of phosphosites.
  相似文献   

2.

Background  

Phosphorylation is a ubiquitous and fundamental regulatory mechanism that controls signal transduction in living cells. The number of identified phosphoproteins and their phosphosites is rapidly increasing as a result of recent mass spectrometry-based approaches.  相似文献   

3.

Background

Complex intracellular signaling networks monitor diverse environmental inputs to evoke appropriate and coordinated effector responses. Defective signal transduction underlies many pathologies, including cancer, diabetes, autoimmunity and about 400 other human diseases. Therefore, there is high impetus to define the composition and architecture of cellular communications networks in humans. The major components of intracellular signaling networks are protein kinases and protein phosphatases, which catalyze the reversible phosphorylation of proteins. Here, we have focused on identification of kinase-substrate interactions through prediction of the phosphorylation site specificity from knowledge of the primary amino acid sequence of the catalytic domain of each kinase.

Results

The presented method predicts 488 different kinase catalytic domain substrate specificity matrices in 478 typical and 4 atypical human kinases that rely on both positive and negative determinants for scoring individual phosphosites for their suitability as kinase substrates. This represents a marked advancement over existing methods such as those used in NetPhorest (179 kinases in 76 groups) and NetworKIN (123 kinases), which consider only positive determinants for kinase substrate prediction. Comparison of our predicted matrices with experimentally-derived matrices from about 9,000 known kinase-phosphosite substrate pairs revealed a high degree of concordance with the established preferences of about 150 well studied protein kinases. Furthermore for many of the better known kinases, the predicted optimal phosphosite sequences were more accurate than the consensus phosphosite sequences inferred by simple alignment of the phosphosites of known kinase substrates.

Conclusions

Application of this improved kinase substrate prediction algorithm to the primary structures of over 23, 000 proteins encoded by the human genome has permitted the identification of about 650, 000 putative phosphosites, which are posted on the open source PhosphoNET website (http://www.phosphonet.ca).
  相似文献   

4.
Protein phosphorylation, one of the most important protein post-translational modifications, is involved in various biological processes, and the identification of phosphorylation peptides (phosphopeptides) and their corresponding phosphorylation sites (phosphosites) will facilitate the understanding of the molecular mechanism and function of phosphorylation. Mass spectrometry (MS) provides a high-throughput technology that enables the identification of large numbers of phosphosites. PhoPepMass is designed to assist human phosphopeptide identification from MS data based on a specific database of phophopeptide masses and a multivariate hypergeometric matching algorithm. It contains 244,915 phosphosites from several public sources. Moreover, the accurate masses of peptides and fragments with phosphosites were calculated. It is the first database that provides a systematic resource for the query of phosphosites on peptides and their corresponding masses. This allows researchers to search certain proteins of which phosphosites have been reported, to browse detailed phosphopeptide and fragment information, to match masses from MS analyses with defined threshold to the corresponding phosphopeptide, and to compare proprietary phosphopeptide discovery results with results from previous studies. Additionally, a database search software is created and a “two-stage search strategy” is suggested to identify phosphopeptides from tandem mass spectra of proteomics data. We expect PhoPepMass to be a useful tool and a source of reference for proteomics researchers. PhoPepMass is available at https://www.scbit.org/phopepmass/index.html.  相似文献   

5.
Temperature affects almost all aspects of the fish life. To cope with low temperature, fish have evolved the ability of cold acclimation for survival. However, intracellular signaling events underlying cold acclimation in fish remain largely unknown. Here, the formation of cold acclimation in zebrafish embryonic fibroblasts (ZF4) is monitored and the phosphorylation events during the process are investigated through a large‐scale quantitative phosphoproteomic approach. In total, 11 474 phosphorylation sites are identified on 4066 proteins and quantified 5772 phosphosites on 2519 proteins. Serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation accounted for 85.5%, 13.3%, and 1.2% of total phosphosites, respectively. Among all phosphosites, 702 phosphosites on 510 proteins show differential regulation during cold acclimation of ZF4 cells. These phosphosites are divided into six clusters according to their dynamic changes during cold exposure. Kinase–substrate prediction reveals that mitogen‐activated protein kinase (MAPK) among the kinase groups is predominantly responsible for phosphorylation of these phosphosites. The differentially regulated phosphoproteins are functionally associated with various cellular processes such as regulation of actin cytoskeleton and MAPK signaling pathway. These data enrich the database of protein phosphorylation sites in zebrafish and provide key clues for the elucidation of intracellular signaling networks during cold acclimation of fish.  相似文献   

6.

Aims

ApoB-100 is the major protein component of cholesterol- and triglyceride-rich LDL and VLDL lipoproteins in the serum. Previously, we generated and partially described transgenic mice overexpressing the human ApoB-100 protein. Here, we further characterize this transgenic strain in order to reveal a possible link between hypeprlipidemia and neurodegeneration.

Methods and Results

We analyzed the serum and cerebral lipid profiles, tau phosphorylation patterns, amyloid plaque-formation, neuronal apoptosis and synaptic plasticity of young (3 month old), adult (6 month old) and aging (10–11 month old) transgenic mice. We show that ApoB-100 transgenic animals present i) elevated serum and cerebral levels of triglycerides and ApoB-100, ii) increased cerebral tau phosphorylation at phosphosites Ser199, Ser199/202, Ser396 and Ser404. Furthermore, we demonstrate, that tau hyperphosphorylation is accompanied by impaired presynaptic function, long-term potentiation and widespread hippocampal neuronal apoptosis.

Conclusions

The results presented here indicate that elevated ApoB-100 level and the consequent chronic hypertriglyceridemia may lead to impaired neuronal function and neurodegeneration, possibly via hyperphosphorylation of tau protein. On account of their specific phenotype, ApoB-100 transgenic mice may be considered a versatile model of hyperlipidemia-induced age-related neurodegeneration.  相似文献   

7.
8.
9.
10.
Cav3.1 T-type Ca2+ channels play pivotal roles in neuronal low-threshold spikes, visceral pain, and pacemaker activity. Phosphorylation has been reported to potently regulate the activity and gating properties of Cav3.1 channels. However, systematic identification of phosphorylation sites (phosphosites) in Cav3.1 channel has been poorly investigated. In this work, we analyzed rat Cav3.1 protein expressed in HEK-293 cells by mass spectrometry, identified 30 phosphosites located at the cytoplasmic regions, and illustrated them as a Cav3.1 phosphorylation map which includes the reported mouse Cav3.1 phosphosites. Site-directed mutagenesis of the phosphosites to Ala residues and functional analysis of the phospho-silent Cav3.1 mutants expressed in Xenopus oocytes showed that the phospho-silent mutation of the N-terminal Ser18 reduced its current amplitude with accelerated current kinetics and negatively shifted channel availability. Remarkably, the phospho-silent mutations of the C-terminal Ser residues (Ser1924, Ser2001, Ser2163, Ser2166, or Ser2189) greatly reduced their current amplitude without altering the voltage-dependent gating properties. In contrast, the phosphomimetic Asp mutations of Cav3.1 on the N- and C-terminal Ser residues reversed the effects of the phospho-silent mutations. Collectively, these findings demonstrate that the multiple phosphosites of Cav3.1 at the N- and C-terminal regions play crucial roles in the regulation of the channel activity and voltage-dependent gating properties.  相似文献   

11.
Protein phosphorylation plays a critical role in the regulation and progression of mitosis. >40,000 phosphorylated residues and the associated kinases have been identified to date via proteomic analyses. Although some of these phosphosites are associated with regulation of either protein-protein interactions or the catalytic activity of the substrate protein, the roles of most mitotic phosphosites remain unclear. In this study, we examined structural properties of mitotic phosphosites and neighboring residues to understand the role of heavy phosphorylation in non-structured domains. Quantitative mass spectrometry analysis of mitosis-arrested and non-arrested HeLa cells revealed >4100 and > 2200 residues either significantly phosphorylated or dephosphorylated, respectively, at mitotic entry. The calculated disorder scores of amino acid sequences of neighboring individual phosphosites revealed that >70% of dephosphorylated phosphosites exist in disordered regions, whereas 50% of phosphorylated sites exist in non-structured domains. A clear inverse correlation was observed between probability of phosphorylation in non-structured domain and increment of phosphorylation in mitosis. These results indicate that at entry to mitosis, a significant number of phosphate groups are removed from non-structured domains and transferred to more-structured domains. Gene ontology term analysis revealed that mitosis-related proteins are heavily phosphorylated, whereas RNA-related proteins are both dephosphorylated and phosphorylated, suggesting that heavy phosphorylation/dephosphorylation in non-structured domains of RNA-binding proteins plays a role in dynamic rearrangement of RNA-containing organelles, as well as other intracellular environments.  相似文献   

12.

Background  

A stochastic simulator was implemented to study EGFR signal initiation in 3D with single molecule detail. The model considers previously unexplored contributions to receptor-adaptor coupling, such as receptor clustering and diffusive properties of both receptors and binding partners. The agent-based and rule-based approach permits consideration of combinatorial complexity, a problem associated with multiple phosphorylation sites and the potential for simultaneous binding of adaptors.  相似文献   

13.

Background  

As a reversible and dynamic post-translational modification (PTM) of proteins, phosphorylation plays essential regulatory roles in a broad spectrum of the biological processes. Although many studies have been contributed on the molecular mechanism of phosphorylation dynamics, the intrinsic feature of substrates specificity is still elusive and remains to be delineated.  相似文献   

14.

Background  

Protein phosphorylation is an extremely important mechanism of cellular regulation. A large-scale study of phosphoproteins in a whole-cell lysate of Saccharomyces cerevisiae has previously identified 383 phosphorylation sites in 216 peptide sequences. However, the protein kinases responsible for the phosphorylation of the identified proteins have not previously been assigned.  相似文献   

15.
Mass spectrometry-based phosphoproteomics has identified >150,000 post-translational phosphorylation sites in the human proteome. To disentangle their functional relevance, complex experimental designs that require increased throughput are now coming into focus. Here, we apply dia-PASEF on a trapped ion mobility (TIMS) mass spectrometer to analyze the phosphoproteome of a human cancer cell line in short liquid chromatography gradients. At low sample amounts equivalent to ∼20 ug protein digest per analysis, we quantified over 13,000 phosphopeptides including ∼8700 class I phosphosites in 1 h without a spectral library. Decreasing the gradient time to 15 min yielded virtually identical coverage of the phosphoproteome, and with 7 min gradients we still quantified about 80% of the class I sites with a median coefficient of variation <10% in quadruplicates. We attribute this in part to the increased peak capacity, which effectively compensates for the higher peptide density per time unit in shorter gradients. Our data show a five-fold reduction in the number of co-isolated peptides with TIMS. In the most extreme case, these were positional isomers of nearby phosphosites that remained unresolved with fast liquid chromatography. In summary, our study demonstrates how key features of dia-PASEF translate to phosphoproteomics.  相似文献   

16.

Background  

Most cancer cells, in contrast to normal differentiated cells, rely on aerobic glycolysis instead of oxidative phosphorylation to generate metabolic energy, a phenomenon called the Warburg effect.  相似文献   

17.

Background  

Reversible phosphorylation of proteins is involved in a wide range of processes, ranging from signaling cascades to regulation of protein complex assembly. Little is known about the structure and evolution of phosphorylation networks. Recent high-throughput phosphoproteomics studies have resulted in the rapid accumulation of phosphopeptide datasets for many model organisms. Here, we exploit these novel data for the comparative analysis of phosphorylation events between different species of eukaryotes.  相似文献   

18.

Background  

Post-translational modifications have a substantial influence on the structure and functions of protein. Post-translational phosphorylation is one of the most common modification that occur in intracellular proteins. Accurate prediction of protein phosphorylation sites is of great importance for the understanding of diverse cellular signalling processes in both the human body and in animals. In this study, we propose a new machine learning based protein phosphorylation site predictor, SiteSeek. SiteSeek is trained using a novel compact evolutionary and hydrophobicity profile to detect possible protein phosphorylation sites for a target sequence. The newly proposed method proves to be more accurate and exhibits a much stable predictive performance than currently existing phosphorylation site predictors.  相似文献   

19.
Phosphorylation is a widespread post-translational modification that modulates the function of a large number of proteins. Here we show that a significant proportion of all the domains in the human proteome is significantly enriched or depleted in phosphorylation events. A substantial improvement in phosphosites prediction is achieved by leveraging this observation, which has not been tapped by existing methods. Phosphorylation sites are often not shared between multiple occurrences of the same domain in the proteome, even when the phosphoacceptor residue is conserved. This is partly because of different functional constraints acting on the same domain in different protein contexts. Moreover, by augmenting domain alignments with structural information, we were able to provide direct evidence that phosphosites in protein-protein interfaces need not be positionally conserved, likely because they can modulate interactions simply by sitting in the same general surface area.Phosphorylation, the most widespread protein post-translational modification, is an important regulator of protein function. The addition of phosphate groups on serine, threonine, and tyrosine residues can modulate the activity of the target protein by inducing complex conformational changes, by modifying protein electrostatics, and by regulating domain-peptide interactions, as in 14-3-3 or SH2 domains, that specifically recognize phosphorylated residues. The standard experimental technique for the high-throughput identification of phosphorylation sites is mass spectrometry (1).Phosphorylation is catalyzed by protein kinases, a family that in humans comprises ∼540 members (2, 3). It is well understood that these enzymes recognize specific sequence motifs in their substrates (4, 5). Accordingly the sequence around the phosphorylation site is undisputedly the most important feature for phosphosite prediction (6, 7). However the “context,” in a broad sense, where these motifs occur is also important as sequence alone is not enough to achieve the observed specificity of phosphorylation. Therefore, several studies have characterized multiple aspects of phosphosites such as their preference for loops and disordered regions (reviewed in (8)), or the tendency of phosphoserines and phosphothreonines to occur in clusters (9), and these features have been used to improve the performance of phosphosite predictors (6, 7, 1012). Moreover placing kinases and substrates in the context of protein interaction networks has been shown to improve the prediction of phosphorylation by specific kinases (13).Perhaps one of the most puzzling observations when looking at the phosphoproteome as a whole, is the fact that a large proportion of phosphorylation sites is poorly conserved. This has led to various hypotheses. First some sites may represent nonfunctional, possibly low-stoichiometry, phosphorylation events that are picked up because of the sensitivity of mass-spectrometry (14, 15). Indeed functionally characterized sites and those matching known kinase motifs are more conserved on average (1517). However, although in biology function often equates with conservation, there could be genuinely functional fast-evolving phosphosites, that are responsible for species-specific differences in signaling and regulation. Moreover in some cases, especially in the regulation of protein-protein interactions, the exact position of the phosphosites may be unimportant (18, 19).Here we explore the issues of “context” and “conservation” of phosphorylation sites from the perspective of protein domains. To this end, we assembled a comprehensive database of phosphosites from publicly available sources and studied their proteome distribution with respect to the location and identity of protein domains. We focus on the human phosphoproteome because it has been very well characterized in a multitude of low- and high-throughput experiments, thus providing the opportunity for a comprehensive, proteome-wide, study. In particular, the issues we want to address are the following:
  1. Are specific domain types preferentially phosphorylated? Or conversely are some domains specifically depleted of phosphorylation sites?
  2. Can the domain context be used to improve the prediction of phosphorylation sites?
  3. What is the conservation pattern of phosphosites when looking at multiple instances of the same domain in the proteome?
  相似文献   

20.
Recent publications have revealed that the evolution of phosphosites is influenced by the local protein structures and whether the phosphosites have characterized functions or not. With knowledge of the wide functional range of phosphorylation, we attempted to clarify whether the evolutionary conservation of phosphosites is different among distinct functional modules. We grouped the phosphosites in the human genome into the modules according to the functional categories of KEGG (Kyoto Encyclopedia of Genes and Genomes) and investigated their evolutionary conservation in vertebrate genomes from mouse to zebrafish. We have found that the phosphosites in the vertebrate-specific functional modules (VFMs), such as cellular signaling processes and responses to stimuli, are evolutionarily more conserved than those in the basic functional modules (BFMs), such as metabolic and genetic processes. The phosphosites in the VFMs are also significantly more conserved than their flanking regions, whereas those in the BFMs are not. These results hold for both serine/threonine and tyrosine residues, although the fraction of phosphorylated tyrosine residues is increased in the VFMs. Moreover, the difference in the evolutionary conservation of the phosphosites between the VFMs and BFMs could not be explained by the difference in the local protein structures. There is also a higher fraction of phosphosites with known functions in the VFMs than BFMs. Based on these findings, we have concluded that protein phosphorylation may play more dominant roles for the VFMs than BFMs during the vertebrate evolution. As phosphorylation is a quite rapid biological reaction, the VFMs that quickly respond to outer stimuli and inner signals might heavily depend on this regulatory mechanism. Our results imply that phosphorylation may have an essential role in the evolution of vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号