共查询到19条相似文献,搜索用时 62 毫秒
1.
20世纪 8 0年代后 ,人们开始探求昆虫对气味物质的感受机制。随着昆虫行为学、生物化学、分子生物学以及昆虫电生理技术的飞速发展 ,自 90年代开始 ,深入研究昆虫的嗅觉反应机理已有可能。研究表明 ,昆虫触角中的气味结合蛋白 (odorant-binding protein简称 ,OBP)在昆虫嗅觉反应过程中起重要作用[1] 。本文试从气味分子的化学结构及特征、OBP的化学特性、生理功能及研究展望等方面作一综述 ,以期推动该领域的研究与发展。1 气味分子的化学结构及特征明确气味分子的化学结构及特征 ,有助于确定气味结合蛋白的结构。目前研究以鳞翅目昆虫… 相似文献
2.
3.
一、什么是昆虫性信息素性信息素(sexpheromone)是由一种昆虫产生和释放出来,引诱或激起同种异性昆虫交配的化学物质。昆虫性信息素按其作用方式可分为两种:一种是挥发性性信息素,有远距离的引诱效果,它广泛存在于鳞翅目昆虫及其它种类的昆虫中;另一种是非挥发性性信息素,须由接受的一性与释放的一性接触才能起作用,称之为性识 相似文献
4.
蛾类昆虫性信息素受体首先从烟芽夜蛾Heliothis virescens和家蚕Bombyx mori中鉴定出来, 到目前为止已经克隆得到了19种蛾类昆虫的几十种性信息素受体基因, 并且这些基因在系统发育树中聚成一个亚群。性信息素受体从蛾类蛹期开始表达, 主要表达在雄性触角的毛形感器中, 少部分受体在雌性触角、 雄性触角其他感器以及身体其他部位中也有表达。大部分蛾类性信息素受体的配体并不是单一的, 而是能够对多种性信息素组分有反应, 部分性信息素受体还能够识别性信息素以外的其他物质, 还有一部分性信息素受体的识别配体目前尚不清楚。另外发现在雌性蛾类触角中也存在一些嗅觉受体能够识别雄性分泌的性信息素。在蛾类性信息素受体与性信息素识别的过程中, 性信息素结合蛋白不仅能够特异性地运送配体到嗅觉神经元树状突上, 还能够提高性信息素与性信息素受体之间的结合效率。另外, OrCo类受体与性信息素受体共表达在嗅觉神经元中, 在蛾类性信息素受体与配体的识别过程中扮演了重要角色。但是蛾类信息素对神经元刺激的终止并非由性信息素受体控制, 而是由细胞中的气味降解酶等其他因子调控。蛾类性信息素受体研究中还有很多疑问需要解答, 其过程可能比我们想象的更为复杂。 相似文献
5.
金龟甲类昆虫性信息素研究进展 总被引:5,自引:0,他引:5
金龟甲类是重要农林害虫,在地下害虫中居首位,在全国各地普遍发生。为开拓金龟甲类地下害虫防治的新途径,金龟甲类性信息素的研究近年来受到重视。国内外关于金龟甲类害虫性信息素的研究,从70年代初开始有些报道。但从数量上来说,比鳞翅目的数目少得多,说明有一定的难度。70年代初首先报道的是新西兰肋翅鳃金龟[1]的雌成虫分泌的性信息素,其次为70年代后期的日本金龟[2]和80年代中期的红铜丽金龟[3]。近年来在金龟甲类性信息素的研究方面进展较快,主要是日本蚕业及昆虫研究所的W.S.Leal等[4]的工作。先后鉴定10种金龟甲类性信息… 相似文献
6.
7.
8.
GP37蛋白结构分析与昆虫病毒分子进化的关系 总被引:5,自引:0,他引:5
The gp37 gene from LsMNPV has been sequenced and the deduced amino acid sequence was compared with other GP37 amino acid sequences from 8 insect viruses. The maximum homology of amino acid sequences and the conserved structural regions were analyzed with PROSIS software. The relationship of evolution of 9 insect viruses was discussed and the evolutionary tree was drawned. 相似文献
9.
微生物在昆虫合成信息素与感知信息素的过程中起着关键作用,广泛地影响昆虫的行为、生理及种群动态。微生物通过包括代谢调节、基因表达调控以及信号传递途径的干预等多种机制来精细地调节宿主昆虫信息素的合成与感知,这种调节不仅促进了昆虫的适应性,还可能引发种群内部的竞争与资源分配的矛盾。本文综述了近年来关于微生物影响昆虫信息素的合成与感知领域最新的研究进展,深入剖析了微生物影响昆虫信息素的生成与感知能力的作用机制。同时,也探讨了这些调控机制在昆虫与微生物共生体系进化历程中的意义,旨在揭示两者间相互作用的复杂机理,并为该领域未来的探索提供新的见解与研究导向。 相似文献
10.
多基因家族在进化过程中曾经历了不同程度的基因复制和缺失,并由此导致一些基因在漫长的进化年代中得以存在和表达,而另一些只是在特定时期内短暂出现,之后或者逐渐消失或者沉默进而失去其生物学功能,同时新的基因在复制过程中不断产生。这一现象被称作“产生与死亡演化”(birth-and-death evolution),对于产生新的遗传系统和复杂表型特征具有重要作用。昆虫性信息素生物合成系统脱饱和酶多基因家族的进化过程就是这方面一个典型的例证。 相似文献
11.
A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus 总被引:1,自引:0,他引:1
下载免费PDF全文

Maike Forstner Heinz Breer Jürgen Krieger 《International journal of biological sciences》2009,5(7):745-757
Male moths respond to conspecific female-released pheromones with remarkable sensitivity and specificity, due to highly specialized chemosensory neurons in their antennae. In Antheraea silkmoths, three types of sensory neurons have been described, each responsive to one of three pheromone components. Since also three different pheromone binding proteins (PBPs) have been identified, the antenna of Antheraea seems to provide a unique model system for detailed analyzes of the interplay between the various elements underlying pheromone reception. Efforts to identify pheromone receptors of Antheraea polyphemus have led to the identification of a candidate pheromone receptor (ApolOR1). This receptor was found predominantly expressed in male antennae, specifically in neurons located beneath pheromone-sensitive sensilla trichodea. The ApolOR1-expressing cells were found to be surrounded by supporting cells co-expressing all three ApolPBPs. The response spectrum of ApolOR1 was assessed by means of calcium imaging using HEK293-cells stably expressing the receptor. It was found that at nanomolar concentrations ApolOR1-cells responded to all three pheromones when the compounds were solubilized by DMSO and also when DMSO was substituted by one of the three PBPs. However, at picomolar concentrations, cells responded only in the presence of the subtype ApolPBP2 and the pheromone (E,Z)-6,11-hexadecadienal. These results are indicative of a specific interplay of a distinct pheromone component with an appropriate binding protein and its related receptor subtype, which may be considered as basis for the remarkable sensitivity and specificity of the pheromone detection system. 相似文献
12.
Pine caterpillar moths, Dendrolimus spp. (Lepidoptera: Lasiocampidae), are serious economic pest of pines. Previously, phylogenetic analyses of Dendrolimus using different methods yielded inconsistent results. The chemosensory systems of insects may play fundamental roles in promoting speciation. Odorant‐binding proteins (OBPs) participate in the first step of odor detection. Studying the evolution of OBPs in closely related species may help us to identify their role in speciation. We identified three OBPs – one pheromone‐binding protein and two general odorant‐binding proteins – from male antennae of four Dendrolimus species, D. superans (Butler), D. punctatus (Walker), D. kikuchii Matsumura, and D. houi Lajonquiere, the olfactory recognition systems of which had not been previously investigated. We analyzed their molecular characteristics and compared their sequences to those of OBPs in D. tabulaeformis Tsai et Liu. Ka/Ks ratio analyses among the five Dendrolimus species indicate that PBP1 genes experienced more evolutionary pressure than the GOBPs. Phylogenetic relationships of PBP1 and GOBP1 both indicated that D. houi was the basal species, then branched D. kikuchii, while D. tabulaeformis, D. punctatus, and D. superans evolved more recently. These relationships are consistent with the changes in sex pheromone components of these five species. Dendrolimus tabulaeformis and D. punctatus are closely related sister species. However, the distances among GOBP2 sequences in the five Dendrolimus were very short, and the relationships of D. houi and D. kikuchii could not be resolved. Integrating our results with those of previous studies, we hypothesized that D. kikuchii, D. punctatus and D. superans evolved from the basal ancestor because of sex pheromone mutations and environmental pressure. 相似文献
13.
14.
Xiao-Tong Dong Hui Liao Guan-Heng Zhu Sajjad Ali Khuhro Zhan-Feng Ye Qi Yan Shuang-Lin Dong 《Insect Science》2019,26(3):388-399
Pheromone-binding proteins (PBPs) are thought to bind and transport sex pheromones onto the olfactory receptors on the dendrite membrane of olfactory neurons, and thus play a vital role in sex pheromone perception. However, the function of PBPs has rarely been demonstrated in vivo.In this study, two PBPs (PBP1 and PBP3) of Chilo suppressalis, one of the most notorious pyralid pests, were in vivo functionally characterized using insects with the PBP gene knocked out by the CRISPR/Cas9 system. First, through direct injection of PBP-single guide RNA (sgRNA)/Cas9 messenger RNA into newly laid eggs, a high rate of target-gene editing (checked with polled eggs) was induced at 24 h after injection, 21.3% for PBPl-sgRNA injected eggs and 19.5% for PBP3-sgRNA injected eggs. Second, by an in-crossing strategy, insects with mutant PBP1 or PBP3 (both with a premature stop codon) were screened and homozygous mutants were obtained in the G3 generation. Third, the mutant insects were measured for electroantennogram (EAG) response to female sex pheromones. As a result, both PBP mutant males displayed significant reduction in EAG response, and this reduction in PBP1 mutants was higher than that in PBP3 mutants, indicating a more important role of PBP1. Finally, the relative importance of two PBPs and the possible off target effect induced by sgRNA-injection are discussed. Taken together, our study provides a deeper insight into the function of and interaction between different PBP genes in sex pheromone perception of C. suppressalis, as well as a valuable reference in methodology for gene functional study in other genes and other moth species. 相似文献
15.
Clare A. Rebbeck Rachael Thomas Matthew Breen Armand M. Leroi Austin Burt 《Evolution; international journal of organic evolution》2009,63(9):2340-2349
Canine transmissible venereal tumor (CTVT) is an infectious disease of dogs. Remarkably, the infectious agent is the cancerous cell itself. To investigate its origin and spread, we collected 37 tumor samples from four continents and determined their evolutionary relationships using microsatellite length differences and microarray-based comparative genomic hybridization (aCGH). The different tumors show very little microsatellite variation, and the pattern of variation that does exist is consistent with a purely asexual mode of transmission. Approximately one quarter of the loci scored by aCGH show copy number variation relative to normal dogs, again with little variation among different tumor samples. Sequence analysis of the RPPH1 gene indicates an origin from either dogs or wolves, and microsatellite analysis indicates that the tumor is more than 6000 years old, and perhaps originated when dogs were first domesticated. By contrast, the common ancestor of extant tumors lived within the last few hundred years, long after the first tumor. The genetic and genomic patterns we observe are typical of those expected of asexual pathogens, and the extended time since first origin may explain the many remarkable adaptations that have enabled this mammalian cell lineage to live as a unicellular pathogen. 相似文献
16.
17.
18.
Maida R Ziegelberger G Kaissling KE 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2003,173(7):565-573
Binding properties of six heterologously expressed pheromone-binding proteins (PBPs) identified in the silkmoths Antheraea polyphemus and Antheraea pernyi were studied using tritium-labelled pheromone components, (E,Z)-6,11-hexadecadienyl acetate (3H-Ac1) and (E,Z)-6,11-hexadecadienal (3H-Ald), common to both species. In addition, a known ligand of PBP and inhibitor of pheromone receptor cells, the tritium-labelled esterase inhibitor decyl-thio-1,1,1-trifluoropropanone (3H-DTFP), was tested. The binding of ligands was measured after native gel electrophoresis and cutting gel slices. In both species, PBP1 and PBP3 showed binding of 3H-Ac1. In competition experiments with 3H-Ac1 and the third unlabelled pheromone component, (E,Z)-4,9-tetradecadienyl acetate (Ac2), the PBP1 showed preferential binding of Ac1, whereas PBP3 preferentially bound Ac2. The PBP2 of both species bound 3H-Ald only. All of the six PBPs strongly bound 3H-DTFP. Among unlabelled pheromone derivatives, alcohols were revealed to be the best competitors for 3H-Ac1 and 3H-Ald bound to PBPs. No pH influence was found for 3H-Ac1 binding to, or its release from, the PBP3 of A. polyphemus and A. pernyi between pH 4.0 and pH 7.5. The data indicate binding preference of each of the three PBP-subtypes (1–3) for a specific pheromone component and support the idea that PBPs contribute to odour discrimination, although to a smaller extent than receptor activation.Abbreviations Ac1 (E,Z)-6,11-hexadecadienyl acetate - Ac2 (E,Z)-4,9-tetradecadienyl acetate - Ald (E,Z)-6,11-hexadecadienal - AMA 1-amino-anthracene - cpm counts per min - DTFP decyl-thio-1,1,1-trifluoropropanone - ES-MS electrospray mass spectrometry - OH (E,Z)-6,11-hexadecadienol - PAGE polyacrylamide gel electrophoresis - PCR polymerase chain reaction - PBP pheromone-binding protein - SDS sodium dodecyl sulphate - Z-11 OH Z-11 hexadecenolCommunicated by G. Heldmaier 相似文献
19.
核桃举肢蛾性信息素结合蛋白2的分子克隆和免疫荧光定位 总被引:2,自引:0,他引:2
【目的】明确核桃举肢蛾 Atrijuglans hetaohei Yang性信息素结合蛋白2(AhetPBP2)在核桃举肢蛾触角中的分布。【方法】本研究提取羽化后3-4 d的核桃举肢蛾成虫触角总RNA并反转录合成cDNA,设计简并引物进行RT-PCR获得cDNA片段,然后利用RACE技术获得 AhetPBP2全长cDNA序列。将去除信号肽序列的AhetPBP2进行原核表达,重组蛋白经镍柱纯化并免疫新西兰大白兔制备多克隆抗体。制备的多克隆抗体作为一抗对核桃举肢蛾触角进行免疫组化分析。【结果】AhetPBP2基因cDNA序列全长923 bp,开放阅读框504 bp,共编码167个氨基酸,分子量为19.26 kD,等电点为5.47。1 mmol/L IPTG诱导10 h获得可溶性重组蛋白,Western blot结果表明重组蛋白诱导表达成功,ELISA检测显示抗体效价为1:1 024 000。免疫荧光定位结果显示核桃举肢蛾成虫触角部分感器被AhetPBP2抗体标记。【结论】核桃举肢蛾成虫触角的部分感器中可能存在AhetPBP2,推测该部分感器具有感受性信息素的功能。 相似文献