首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dimeric IgA Abs contribute significantly to the humoral part of the mucosal immune system. However, their potential as immunotherapeutic agent has hardly been explored. In this article, we describe the production, purification, and functional evaluation of recombinant dimeric IgA against the epidermal growth factor receptor. Human joining chain-containing IgA was produced by nonadherent Chinese hamster ovarian (CHO)-K1 cells under serum-free conditions. Purification by anti-human κ and anti-His-tag affinity, as well as size exclusion chromatography, resulted in a homogenous preparation of highly pure IgA dimers. Functional studies demonstrated dimeric IgA to be at least as effective as monomeric IgA in triggering Ab-dependent cellular cytotoxicity by isolated monocytes or polymorphonuclear cell and in human whole-blood assays. Importantly, dimeric IgA was more effective in F(ab)-mediated killing mechanisms, such as inhibition of ligand binding, receptor downmodulation, and growth inhibition. Furthermore, only dimeric but not monomeric IgA or IgG was directionally transported by the polymeric Ig receptor through an epithelial cell monolayer. Together, these studies demonstrate that recombinant dimeric IgA Abs recruit a distinct repertoire of effector functions compared with monomeric IgA or IgG1 Abs.  相似文献   

2.
Depositions of IgA in the renal glomerular mesangial area are a hallmark of IgA nephropathy, and are thought to be crucial for the onset of inflammation processes in IgA nephropathy. In this report we show that human mesangial cells (MC) in vitro bind IgA and that binding of IgA enhances the production of IL-6 by MC. Furthermore we show that the size of IgA is crucial in its capability to enhance IL-6 production. Monomeric IgA does not affect basic IL-6 production, whereas dimeric and polymeric IgA enhance IL-6 production up to 3- to 9-fold respectively. Additional studies demonstrate that enhanced IL-6 production by MC is not accompanied by increased proliferation of human mesangial cells, a finding which is distinct from that found with rat mesangial cells. Taken together, these fmdings suggest that deposition of dimeric and polymeric IgA in the mesangial area of human kidneys in IgA nephropathy may amplify local inflammation.  相似文献   

3.
Recombinant interferon-gamma (IFN-gamma) increased in a dose-dependent manner the intracellular pool, the membrane expression, and the shedding of secretory component (SC) in human colonic adenocarcinoma cell line (HT-29). A similar dose-response relationship was observed when we examined the binding of polymeric IgA to HT-29 cells treated with IFN-gamma, thus reflecting expression of functional SC. Because IFN-gamma is produced by T cells during immune responses, activated T cells may be able to promote the external transport of dimeric IgA and pentameric IgM and thereby enhance the efferent limb of the secretory immune system. This is, therefore, the first observation indicating how the secretory transport capacity may be adjusted to increased local immunoglobulin production.  相似文献   

4.
《MABS-AUSTIN》2013,5(6):1122-1138
ABSTRACT

IgA antibodies have broad potential as a novel therapeutic platform based on their superior receptor-mediated cytotoxic activity, potent neutralization of pathogens, and ability to transcytose across mucosal barriers via polymeric immunoglobulin receptor (pIgR)-mediated transport, compared to traditional IgG-based drugs. However, the transition of IgA into clinical development has been challenged by complex expression and characterization, as well as rapid serum clearance that is thought to be mediated by glycan receptor scavenging of recombinantly produced IgA monomer bearing incompletely sialylated N-linked glycans. Here, we present a comprehensive biochemical, biophysical, and structural characterization of recombinantly produced monomeric, dimeric and polymeric human IgA. We further explore two strategies to overcome the rapid serum clearance of polymeric IgA: removal of all N-linked glycosylation sites creating an aglycosylated polymeric IgA and engineering in FcRn binding with the generation of a polymeric IgG-IgA Fc fusion. While previous reports and the results presented in this study indicate that glycan-mediated clearance plays a major role for monomeric IgA, systemic clearance of polymeric IgA in mice is predominantly controlled by mechanisms other than glycan receptor clearance, such as pIgR-mediated transcytosis. The developed IgA platform now provides the potential to specifically target pIgR expressing tissues, while maintaining low systemic exposure.  相似文献   

5.
Both IgG and IgA Abs have been implicated in host defense against bacterial infections, although their relative contributions remain unclear. We generated a unique panel of human chimeric Abs of all human IgG and IgA subclasses with identical V genes against porin A, a major subcapsular protein Ag of Neisseria meningitidis and a vaccine candidate. Chimeric Abs were produced in baby hamster kidney cells, and IgA-producing clones were cotransfected with human J chain and/or human secretory component. Although IgG (isotypes IgG1-3) mediated efficient complement-dependent lysis, IgA was unable to. However, IgA proved equally active to IgG in stimulating polymorphonuclear leukocyte respiratory burst. Remarkably, although porin-specific monomeric, dimeric, and polymeric IgA triggered efficient phagocytosis, secretory IgA did not. These studies reveal unique and nonoverlapping roles for IgG and IgA Abs in defense against meningococcal infections.  相似文献   

6.
A murine hybridoma line (Zac3), secreting an IgA monoclonal antibody, was cultivated in different systems: a BALB/c mouse, a T-flask, a stirred-tank bioreactor and a hollow fiber reactor. These systems were characterized in terms of cell metabolism and performances for IgA production. Cultures in T-flask and batch bioreactor were found to be glutamine-limited. Ammonia and lactate were produced in significant amounts. IgA productivity was found to be constant and growth associated. Final IgA concentration was similar in both systems. In fed-batch cultures, supplemented with glutamine and glucose, maximum viable cell concentration was increased by 60% and final IgA concentration by 155%. The hollow fiber reactor was able to produce very large amounts of IgA at very high concentrations, similar to the value found in ascites fluid. The productivity ofZac3 is similar to the values reported for IgG-producing cell lines.  相似文献   

7.
Polymeric immunoglobulin receptor expressed in MDCK cells transcytoses IgA   总被引:48,自引:0,他引:48  
K E Mostov  D L Deitcher 《Cell》1986,46(4):613-621
We expressed cDNA for the rabbit polymeric immunoglobulin receptor in polarized Madin-Darby Canine Kidney epithelial cells, which normally do not produce this receptor. The receptor appeared to function as in vivo; dimeric IgA was transported from the basolateral to the apical surface and released into the apical medium, together with the cleaved fragment of the receptor, known as secretory component. This system enabled us, for the first time, to study quantitatively IgA transcytosis in vitro and thus make the following observations. First, greater than 90% of the newly made receptor that is ultimately cleaved to secretory component and released into the apical medium goes first to the basolateral surface. Second, transport of the receptor does not depend on ligand binding. Third, transcytosis of bound ligand has a t 1/2 of 30 min.  相似文献   

8.
The present studies were undertaken to determine whether glucocorticoids influence the levels of Ig in serum, saliva, and vaginal secretions. When measured by RIA, IgA levels in serum were elevated when increasing doses of dexamethasone, a potent synthetic glucocorticoid, were administered to intact- and adrenalectomized-ovariectomized rats. In contrast, IgA levels decreased in saliva and vaginal secretions over the same dose range. Time course studies indicated that the decline in salivary IgA, observed at 24 h after a single injection of dexamethasone, preceded a rise in serum IgA detected at 24 h after the second hormone treatment. Both responses were maximal at day 2 and did not change with further hormone exposure. After immunization and boosting with SRBC at two mucosal sites (intestinal Peyer's patch and uterine lumen), dexamethasone increased anti-SRBC IgA antibody levels in serum and reduced their presence in vaginal secretions. In contrast, anti-SRBC IgG-antibody levels in serum and vaginal secretions were reduced with hormone treatment. In the absence of hormone treatment, pooled sera from nonimmunized animals, when analyzed by HPLC, contained polymeric and dimeric IgA that was present in roughly equal proportion. In response to dexamethasone, polymeric IgA increased to a greater extent than did monomeric IgA. In summary, these studies demonstrate that dexamethasone alters the levels of IgA as well as specifically directed IgA and IgG antibodies in secretions and serum. Further, it suggests that glucocorticoid controlled IgA increases in serum and decreases in vaginal and salivary secretions may be due, in part, to a redistribution of polymeric IgA from mucosal surfaces to serum.  相似文献   

9.
Allergen immunotherapy (IT) has long-term efficacy in IgE-mediated allergic rhinitis and asthma. IT has been shown to modify lymphocyte responses to allergen, inducing IL-10 production and IgG Abs. In contrast, a putative role for IgA and local TGF-beta-producing cells remains to be determined. In 44 patients with seasonal rhinitis/asthma, serum IgA1, IgA2, and polymeric (J chain-containing) Abs to the major allergen Phl p 5 were determined by ELISA before and after a 2-year double-blind trial of grass pollen (Phleum pratense) injection IT. Nasal TGF-beta expression was assessed by in situ hybridization. Sera from five IT patients were fractionated for functional analysis of the effects of IgA and IgG Abs on IL-10 production by blood monocytes and allergen-IgE binding to B cells. Serum Phl p 5-specific IgA2 Abs increased after a 2-year treatment (approximately 8-fold increase, p = 0.002) in contrast to IgA1. Increases in polymeric Abs to Phl p 5 (approximately 2-fold increase, p = 0.02) and in nasal TGF-beta mRNA (p = 0.05) were also observed, and TGF-beta mRNA correlated with serum Phl p 5 IgA2 (r = 0.61, p = 0.009). Post-IT IgA fractions triggered IL-10 secretion by monocytes while not inhibiting allergen-IgE binding to B cells as observed with IgG fractions. This study shows for the first time that the IgA response to IT is selective for IgA2, correlates with increased local TGF-beta expression, and induces monocyte IL-10 expression, suggesting that IgA Abs could thereby contribute to the tolerance developed in IT-treated allergic patients.  相似文献   

10.
IgA is unique in being able to form a diverse range of polymeric structures. Increases in the levels of dimeric IgA1 (dIgA1) in serum have been implicated in diseases such as IgA nephropathy. We have determined the solution structure for dIgA1 by synchrotron x-ray and neutron scattering and analytical ultracentrifugation. The Guinier radius of gyration (RG) of 7.60-8.65 nm indicated that the two monomers within dIgA1 are arranged in an extended conformation. The distance distribution curve P(r) gave an overall length (L) of 22-26 nm. These results were confirmed by the sedimentation coefficient and frictional ratio of dIgA1. Constrained scattering modeling starting from the IgA1 monomer solution structure revealed a near-planar dimer structure for dIgA1. The two Fc regions form a slightly bent arrangement in which they form end-to-end contacts, and the J chain was located at this interface. This structure was refined by optimizing the position of the four Fab regions. From this, the best-fit solution structures show that the four Fab Ag-binding sites are independent of one another, and the two Fc regions are accessible to receptor binding. This arrangement allows dIgA1 to initiate specific immune responses by binding to FcalphaRI receptors, while still retaining Ag-binding ability, and to be selectively transported to mucosal surfaces by binding to the polymeric Ig receptor to form secretory IgA. A mechanism for the involvement of dIgA1 oligomers in the pathology of IgA nephropathy is discussed in the light of this near-planar structure.  相似文献   

11.
A specific and sensitive enzyme-linked immunosorbent assay (ELISA) was used to detect IgA rheumatoid factor (RF) in sera from 88 patients with IgA nephropathy (IgA GN), a disease characterized by abnormalities of IgA production. Significantly higher levels of IgA antiglobulins were demonstrated in IgA GN patients than in normal healthy controls and patients with other forms of chronic primary glomerulonephritis (mean +/- SEM 28.4 +/- 6.6 vs 6.0 +/- 0.4 and 8.3 +/- 1.2 micrograms/ml respectively; p less than 0.002). Interestingly, in contrast to rheumatoid arthritis, IgA RF activity was not associated with IgM antiglobulins. Analysis of sera fractionated by gel chromatography at acid pH revealed that anti-IgG activity resided predominantly in the polymeric fractions of IgA as confirmed by the ability to bind "free" secretory component. Several findings in patients with IgA GN suggest that the IgA deposited in the glomeruli is polymeric, and levels of circulating macromolecular IgA are increased. Our findings confirm a general perturbation of IgA metabolism in this disease. Although the polymeric nature of the IgA RF is suggestive of a mucosal origin, additional evidence is needed to confirm this hypothesis.  相似文献   

12.
Intrauterine immunization of ovariectomized rats with SRBC is known to elicit pronounced IgA and IgG antibody responses in uterine secretions of immunized uteri. To determine whether secretory component (SC), the receptor for transporting polymeric IgA from tissues to mucosal surfaces, was also influenced by Ag, ovariectomized rats were immunized and boosted by placing SRBC into the lumena of individual uterine horns. In response to Ag, the levels of polymeric IgA, as well as free SC and SC bound to polymeric IgA, increased in uterine secretions. When ovariectomized animals were treated with estradiol, a fivefold increase in SC levels was observed in the immunized horns, indicating that a hormone response is superimposed on the Ag-induced stimulation of uterine SC. To determine whether IFN-gamma influences the presence of SC in uterine secretions, IFN-gamma was placed in the uterine lumena of ovariectomized nonimmunized rats. When uterine secretions were analyzed, significantly higher levels of SC were found in IFN-gamma-exposed uteri than were present in saline treated control animals. In contrast, intrauterine instillation of IFN-gamma had no effect on the levels of IgA in uterine secretions. This response was specific for IFN-gamma in that IFN-alpha/beta had no effect on uterine SC or IgA levels. These results indicate that intrauterine instillation of Ag, in addition to evoking pronounced antibody responses, stimulates the production of SC, which may be responsible for the transport of polymeric IgA from tissue to uterine secretions. Furthermore, they indicate that IFN-gamma placed in the uterine lumen stimulates SC production and suggest that the uterine SC response to Ag may be mediated by the action of IFN-gamma on uterine epithelial cells.  相似文献   

13.
Intracellular and secreted IgA from pokeweed mitogen (PWM)-stimulated normal peripheral blood lymphocytes, from 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated peripheral blood lymphocytes of a patient with chronic lymphocytic leukemia (CLL), or from an IgA-producing human Epstein Barr virus (EBV)-transformed lymphoblastoid cell line were analyzed by molecular-sieve chromatography, electrophoresis in sodium dodecyl sulfate, and sucrose density ultracentrifugation. Fluorochrome-labeled anti-human IgA and secretory component (SC) were used as probes for the detection of polymeric IgA in individual cells. These methods demonstrated that the majority of intracellular IgA occurred in monomeric form, even when the predominant form of secreted IgA was polymeric. Sequential analyses of the IgA secreted by PWM-stimulated normal peripheral blood lymphocytes revealed that the proportion of polymeric IgA increased with the time of culture and that polymers represented the prevalent form of secreted IgA from the fifth day of culture. Although approximately one-half of TPA-stimulated CLL cells bound fluorochrome-labeled SC, only trace amounts of extracellular and intracellular polymeric IgA were detected in both culture supernatants and lysates. Culture supernatants of an IgA-secreting EBV-transformed cell line contained predominantly polymeric IgA. However, intracellular IgA was largely represented by monomers. The predominance of intracellular monomers in polymeric IgA-secreting cells suggested that the pathway of the assembly of human IgA molecules is analogous to that described for mouse IgA synthesis.  相似文献   

14.
Binding of dimeric immunoglobulin (Ig)A to the polymeric Ig receptor (pIgR) stimulates transcytosis of pIgR across epithelial cells. Through the generation of a series of pIgR chimeric constructs, we have tested the ability of ligand to promote receptor dimerization and the subsequent role of receptor dimerization on its intracellular trafficking. Using the cytoplasmic domain of the T cell receptor-ζ chain as a sensitive indicator of receptor oligomerization, we show that a pIgR:ζ chimeric receptor expressed in Jurkat cells initiates a ζ-specific signal transduction cascade when exposed to dimeric or tetrameric IgA, but not when exposed to monomeric IgA. In addition, we replaced the pIgR’s transmembrane domain with that of glycophorin A to force dimerization or with a mutant glycophorin transmembrane domain to prevent dimerization. Forcing dimerization stimulated transcytosis of the chimera, whereas preventing dimerization abolished ligand-stimulated transcytosis. We conclude that binding of dimeric IgA to the pIgR induces its dimerization and that this dimerization is necessary and sufficient to stimulate pIgR transcytosis.  相似文献   

15.
Both IgG and secretory IgA Abs in mucosal secretions have been implicated in blocking the earliest events in HIV-1 transit across epithelial barriers, although the mechanisms by which this occurs remain largely unknown. In this study, we report the production and characterization of a human rIgA(2) mAb that carries the V regions of IgG1 b12, a potent and broadly neutralizing anti-gp120 Ab which has been shown to protect macaques against vaginal simian/HIV challenge. Monomeric, dimeric, polymeric, and secretory IgA(2) derivatives of b12 reacted with gp120 and neutralized CCR5- and CXCR4-tropic strains of HIV-1 in vitro. With respect to the protective effects of these Abs at mucosal surfaces, we demonstrated that IgG1 b12 and IgA(2) b12 inhibited the transfer of cell-free HIV-1 from ME-180 cells, a human cervical epithelial cell line, as well as Caco-2 cells, a human colonic epithelial cell line, to human PBMCs. Inhibition of viral transfer was due to the ability of b12 to block both viral attachment to and uptake by epithelial cells. These data demonstrate that IgG and IgA MAbs directed against a highly conserved epitope on gp120 can interfere with the earliest steps in HIV-1 transmission across mucosal surfaces, and reveal a possible mechanism by which b12 protects the vaginal mucosal against viral challenge in vivo.  相似文献   

16.
The human polymeric Ig receptor (pIgR), also called transmembrane secretory component, is expressed basolaterally on exocrine epithelia, and mediates specific external transport of dimeric IgA and pentameric IgM. The extracellular part of pIgR consists of five Ig-like domains (D1-D5), and a highly conserved D1 region appears to mediate the initial noncovalent ligand interaction. While the human pIgR binds both dimeric IgA and pentameric IgM with high affinity, the rabbit counterpart has virtually no binding capacity for pentameric IgM. This remarkable disparity constitutes evidence that the binding site of the two ligands differs with regard to essential receptor contact elements. Therefore, we expressed human/rabbit chimeric pIgRs in Madin-Darby canine kidney cells and found that human pIgR D1 is crucial for the interaction with pentameric IgM when placed in the context of a full-length receptor regardless of its backbone species. D1 contains three complementarity-determining region-like loops (CDR1-3), and to further map human D1 regions involved in pentameric IgM binding, we transfected Madin-Darby canine kidney cells with human/rabbit chimeric receptors in which the regions containing the CDR-like loops had been interchanged. Our results showed that the region containing the CDR2-like loop is the most essential for pentameric IgM binding. The region containing the CDR1-like loop also contributed substantially to this interaction, whereas only little contribution was provided by the region containing the CDR3-like loop, although it appeared to be necessary for maximal pentameric IgM binding.  相似文献   

17.
Transport of polymeric IgA onto mucosal surfaces to become secretory IgA is mediated by the polymeric Ig receptor (pIgR). To study the interaction of human dimeric IgA (dIgA) (the predominant form of IgA polymer) with the human pIgR (hpIgR), we generated recombinant wild-type dIgA1 and dIgA2m(1) and various mutant dIgA1 and analyzed their interaction with a recombinant human secretory component and membrane-expressed hpIgR. We found that wild-type dIgA1 and dIgA2m(1) bound to recombinant human secretory component with similar affinity and were transcytosed by the hpIgR to the same extent. Mutation of the IgA Calpha2 domain residue Cys311 to Ser reduced binding to hpIgR, possibly through disruption of noncovalent interactions between the Calpha2 domain and domain 5 of the receptor. Within the Calpha3 domain of IgA1, we found that combined mutation of residues Phe411, Val413, and Thr414, which lie close to residues previously implicated in hpIgR binding, abolished interaction with the receptor. Mutation of residue Lys377, located very close to this same region, perturbed receptor interaction. In addition, 4 aa (Pro440-Phe443), which lie on a loop at the domain interface and form part of the binding site for human FcalphaRI, appear to contribute to hpIgR binding. Lastly, use of a monomeric IgA1 mutant lacking the tailpiece revealed that the tailpiece does not occlude hpIgR-binding residues in IgA1 monomers. This directed mutagenesis approach has thus identified motifs lying principally across the upper surface of the Calpha3 domain (i.e., that closest to Calpha2) critical for human pIgR binding and transcytosis.  相似文献   

18.
Polyvalent bispecific antibodies were secreted by hybrid hybridoma cells when both parental clones expressed a naturally polymerizing immunoglobulin. Hybrid hybridomas made from IgA lambda 2 anti-trinitrophenyl (TNP) and IgA kappa anti-phosphocholine (PC) parental cells secreted polymeric IgA antibodies that bound both TNP and PC. Some of the TNP binding was dissociated from the PC binding under conditions of mild reduction and alkylation suggesting that the bispecific polymeric IgA contained disulfide-linked parental monomers as well as bispecific hybrid monomers. Hybrid hybridomas constructed from IgA lambda 2 anti-TNP and IgM kappa anti-ox erythrocyte parental cells secreted bispecific, polymeric immunoglobulin that contained mu-, alpha-, kappa-, and lambda 2-chains. The mu and kappa-chains dissociated from the alpha- and lambda 2-chains under conditions of mild reduction and alkylation, indicating that both parental monomers had been incorporated into the same polymeric immunoglobulin to form a heteropolymeric antibody molecule. Heterologous pairing of alpha and mu heavy chains in monomers was not detected. Hybrid hybridomas constructed from IgA lambda 2 and IgG3 lambda 2 or IgA lambda 2 and IgG1 kappa parents co-secreted both parental immunoglobulins, but the antibodies secreted by these clones did not form heteropolymers or exhibit heterologous heavy chain pairing. These findings establish that polyvalent, bispecific, polymeric immunoglobulin molecules can be produced by hybrid hybridomas when both parents express a naturally polymerizing class of heavy chain but not when only one parent does. Hybrid hybridomas that produce heteropolymeric immunoglobulins are sources of high avidity bispecific antibodies that may find a number of basic and practical applications. The hybridoma cells that produce these antibodies may provide useful tools for investigating the in situ determinants of immunoglobulin chain association and the regulation of antibody assembly and secretion.  相似文献   

19.
The expression of secretory component (SC), the epithelial receptor for polymeric Ig, was enhanced by the addition of human rIFN-gamma or rIL-4, as revealed by the binding of radiolabeled polymeric, J chain-containing IgA or anti-SC antisera to the human colonic adenocarcinoma epithelial cell line HT-29. In combination, these cytokines exhibited a synergistic effect, and the potentiating effect of IL-4 was inhibitable by polyclonal anti-IL-4 antisera. Because the binding of radiolabeled polymeric IgA (pIgA) to HT-29 cells was inhibited by unlabeled pIgA or a polyclonal anti-SC reagent, but not by IgG, monomeric IgA, or Fab alpha fragments, we conclude that the receptor involved in the increased binding of pIgA is indeed SC. These data suggest that the expression of SC on human epithelial cells and the subsequent binding of pIgA (produced in mucosal tissues and glands by subepithelial plasma cells) is regulated by lymphokines such as IL-4 and IFN-gamma that are presumably derived from T cells found in abundant numbers in these tissues. These findings demonstrate a novel pathway of interaction between T cell products and epithelial cells that may result in enhanced translocation of large amounts of locally produced pIgA through epithelial cells into external secretions.  相似文献   

20.
Translocation of dimeric IgA through neoplastic colon cells in vitro.   总被引:18,自引:0,他引:18  
We studied the translocation of dimeric IgA across epithelium, using neoplastic human colon cells in culture as a source of epithelial cells, and immunoelectronmicroscopy with peroxidase-labeled antigens and antibodies. The cells had some of the ultrastructural characteristics of normal, mature epithelial cells, i.e., polarity, desmosomal junctions, and secretory component on their basal and lateral plasma membranes. Horseradish peroxidase-labeled dimeric IgA, exposed to the cells at 0 degrees C, bound selectively to secretory component on the cell surfaces. At 37 degrees C, the bound dimeric IgA was taken into the cells by endocytosis and transported apically through the cytoplasm in vesicles. After 30 min, IgA was discharged across the apical surface. Neither colchicine (10(-4) M) nor cytochalasin B (10(-5) M) interfered with binding or endocytosis of dimeric IgA, but colchicine inhibited intracellular transport of the IgA-containing vesicles. These experiments demonstrated that dimeric IgA can be transported through living intestinal epithelial cells in vitro. The transport includes 1) specific binding of IgA dimers to secretory component on plasma membranes, 2) endocytosis of IgA in vesicles, 3) transcytoplasmic transport of the IgA-containing vesicles by a process involving microtubules, and 4) discharge of IgA at the apical surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号