首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fanconi anemia (FA) is a cancer susceptibility disorder characterized by chromosomal instability and hypersensitivity to DNA cross-linking agents. So far 11 complementation groups have been identified, from which only FA-D1/BRCA2 and FA-J are defective downstream of the central FANCD2 protein as cells from these groups are capable of monoubiquitinating FANCD2. In this study we show that cells derived from patients from the new complementation groups, FA-I, FA-J and FA-L are all proficient in DNA damage induced Rad51 foci formation, making the cells from FA-D1/BRCA2 patients that are defective in this process the sole exception. Although FA-B patient HSC230 was previously reported to also have biallelic BRCA2 mutations, we found normal Rad51 foci formation in cells from this patient, consistent with the recent identification of an X-linked gene being mutated in four unrelated FA-B patients. Thus, our data show that none of the FA proteins, except BRCA2, are required to sequester Rad51 into nuclear foci. Since cells from the FA-D1 and FA-J patient groups are both able to monoubiquitinate FANCD2, the "Rad51 foci phenotype" provides a convenient assay to distinguish between these two groups. Our results suggest that FANCJ and FANCD1/BRCA2 are part of the integrated FANC/BRCA DNA damage response pathway or, alternatively, that they represent sub-pathways in which only FANCD1/BRCA2 is directly connected to the process of homologous recombination.  相似文献   

2.
The BRCA2 breast cancer tumor suppressor is involved in the repair of double strand breaks and broken replication forks by homologous recombination through its interaction with DNA repair protein Rad51. Cells defective in BRCA2.FANCD1 are extremely sensitive to mitomycin C (MMC) similarly to cells deficient in any of the Fanconi anemia (FA) complementation group proteins (FANC). These observations suggest that the FA pathway and the BRCA2 and Rad51 repair pathway may be linked, although a functional connection between these pathways in DNA damage signaling remains to be determined. Here, we systematically investigated the interaction between these pathways. We show that in response to DNA damage, BRCA2-dependent Rad51 nuclear focus formation was normal in the absence of FANCD2 and that FANCD2 nuclear focus formation and mono-ubiquitination appeared normal in BRCA2-deficient cells. We report that the absence of BRCA2 substantially reduced homologous recombination repair of DNA breaks, whereas the absence of FANCD2 had little effect. Furthermore, we established that depletion of BRCA2 or Rad51 had a greater effect on cell survival in response to MMC than depletion of FANCD2 and that depletion of BRCA2 in FANCD2 mutant cells further sensitized these cells to MMC. Our results suggest that FANCD2 mediates double strand DNA break repair independently of Rad51-associated homologous recombination.  相似文献   

3.
Surprisingly, biallelic mutations in the BRCA2 breast-cancer-susceptibility gene were found in Fanconi anemia (FA), a rare hereditary disorder characterized by chromosomal instability, hypersensitivity to DNA cross-linking agents, and cancer susceptibility. This suggests that a defect in the FA pathway might predispose to familial breast cancer. A previously reported molecular interaction between BRCA1 and the FA protein, FANCD2, supports the hypothesis that both breast-cancer-susceptibility genes are components of the FA pathway, functioning in DNA-damage response. However, an alternative hypothesis, that group FA-D1 with mutated BRCA2 represents a FA-like syndrome that is involved in a pathway distinct from the FA pathway, cannot be excluded. Similar syndromes would also be expected when recombination genes, such as Rad51 and its paralogs, are mutated.  相似文献   

4.
Fanconi anemia (FA) is a chromosome fragility syndrome characterized by bone marrow failure and cancer susceptibility. The central FA protein FANCD2 is known to relocate to chromatin upon DNA damage in a poorly understood process. Here, we have induced subnuclear accumulation of DNA damage to prove that histone H2AX is a novel component of the FA/BRCA pathway in response to stalled replication forks. Analyses of cells from H2AX knockout mice or expressing a nonphosphorylable H2AX (H2AX(S136A/S139A)) indicate that phosphorylated H2AX (gammaH2AX) is required for recruiting FANCD2 to chromatin at stalled replication forks. FANCD2 binding to gammaH2AX is BRCA1-dependent and cells deficient or depleted of H2AX show an FA-like phenotype, including an excess of chromatid-type chromosomal aberrations and hypersensitivity to MMC. This MMC hypersensitivity of H2AX-deficient cells is not further increased by depleting FANCD2, indicating that H2AX and FANCD2 function in the same pathway in response to DNA damage-induced replication blockage. Consequently, histone H2AX is functionally connected to the FA/BRCA pathway to resolve stalled replication forks and prevent chromosome instability.  相似文献   

5.
Modulation of the DNA repair pathway is an emerging target for the development of anticancer drugs. DNA interstrand cross-links (ICLs), one of the most severe forms of DNA damage caused by anticancer drugs such as cisplatin and mitomycin C (MMC), activates the Fanconi anemia (FA)/BRCA DNA repair pathway. Inhibition of the FA/BRCA pathway can enhance the cytotoxic effects of ICL-inducing anticancer drugs and can reduce anticancer drug resistance. To find FA/BRCA pathway inhibitory small molecules, we established a cell-based high-content screening method for quantitating the activation of the FA/BRCA pathway by measuring FANCD2 foci on DNA lesions and then applied our method to chemical screening. Using commercial LOPAC1280 chemical library screening, ouabain was identified as a competent FA/BRCA pathway inhibitory compound. Ouabain, a member of the cardiac glycoside family, binds to and inhibits Na+/K+-ATPase and has been used to treat heart disease for many years. We observed that ouabain, as well as other cardiac glycoside family members―digitoxin and digoxin―down-regulated FANCD2 and FANCI mRNA levels, reduced monoubiquitination of FANCD2, inhibited FANCD2 foci formation on DNA lesions, and abrogated cell cycle arrest induced by MMC treatment. These inhibitory activities of ouabain required p38 MAPK and were independent of cellular Ca2+ ion increase or the drug uptake-inhibition effect of ouabain. Furthermore, we found that ouabain potentiated the cytotoxic effects of MMC in tumor cells. Taken together, we identified an additional effect of ouabain as a FA/BRCA pathway-inhibiting chemosensitization compound. The results of this study suggest that ouabain may serve as a chemosensitizer to ICL-inducing anticancer drugs.  相似文献   

6.
FANCD2 is an evolutionarily conserved Fanconi anemia (FA) gene that plays a key role in DNA double-strand-type damage responses. Using complementation assays and immunoblotting, a consortium of American and European groups assigned 29 patients with FA from 23 families and 4 additional unrelated patients to complementation group FA-D2. This amounts to 3%-6% of FA-affected patients registered in various data sets. Malformations are frequent in FA-D2 patients, and hematological manifestations appear earlier and progress more rapidly when compared with all other patients combined (FA-non-D2) in the International Fanconi Anemia Registry. FANCD2 is flanked by two pseudogenes. Mutation analysis revealed the expected total of 66 mutated alleles, 34 of which result in aberrant splicing patterns. Many mutations are recurrent and have ethnic associations and shared allelic haplotypes. There were no biallelic null mutations; residual FANCD2 protein of both isotypes was observed in all available patient cell lines. These analyses suggest that, unlike the knockout mouse model, total absence of FANCD2 does not exist in FA-D2 patients, because of constraints on viable combinations of FANCD2 mutations. Although hypomorphic mutations arie involved, clinically, these patients have a relatively severe form of FA.  相似文献   

7.
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least 11 complementation groups (A, B, C, D1, D2, E, F, G, I, J, and L), and eight FA genes have been cloned. The FANCD1 gene is identical to the breast cancer susceptibility gene, BRCA2. The FA proteins cooperate in a common pathway, but the function of BRCA2/FANCD1 in this pathway remains unknown. Here we show that monoubiquitination of FANCD2, which is activated by DNA damage, is required for targeting of FANCD2 to chromatin, where it interacts with BRCA2. FANCD2-Ub then promotes BRCA2 loading into a chromatin complex. FANCD2(-/-) cells are deficient in the assembly of DNA damage-inducible BRCA2 foci and in chromatin loading of BRCA2. Functional complementation with the FANCD2 cDNA restores BRCA2 foci and its chromatin loading following DNA damage. BRCA2(-/-) cells expressing a carboxy-terminal truncated BRCA2 protein form IR-inducible BRCA2 and FANCD2 foci, but these foci fail to colocalize. Functional complementation of these cells with wild-type BRCA2 restores the interaction of BRCA2 and FANCD2. The C terminus of BRCA2 is therefore required for the functional interaction of BRCA2 and FANCD2 in chromatin. Taken together, our results demonstrate that monoubiquitination of FANCD2, which is regulated by the FA pathway, promotes BRCA2 loading into chromatin complexes. These complexes appear to be required for normal homology-directed DNA repair.  相似文献   

8.
Fanconi anemia (FA) is a rare autosomal recessive disorder characterized by congenital abnormalities, progressive bone marrow failure, and cancer susceptibility. FA cells are hypersensitive to DNA crosslinking agents. FA is a genetically heterogeneous disease with at least 11 complementation groups. The eight cloned FA proteins interact in a common pathway with established DNA-damage-response proteins, including BRCA1 and ATM. Six FA proteins (A, C, E, F, G, and L) regulate the monoubiquitination of FANCD2 after DNA damage by crosslinking agents, which targets FANCD2 to BRCA1 nuclear foci containing BRCA2 (FANCD1) and RAD51. Some forms of hexavalent chromium [Cr(VI)] are implicated as respiratory carcinogens and induce several types of DNA lesions, including DNA interstrand crosslinks. We have shown that FA-A fibroblasts are hypersensitive to both Cr(VI)-induced apoptosis and clonogenic lethality. Here we show that Cr(VI) treatment induced monoubiquitination of FANCD2 in normal human fibroblasts, providing the first molecular evidence of Cr(VI)-induced activation of the FA pathway. FA-A fibroblasts demonstrated no FANCD2 monoubiquitination, in keeping with the requirement of FA-A for this modification. We also found that Cr(VI) treatment induced significantly more S-phase-dependent DNA double strand breaks (DSBs), as measured by γ-H2AX expression, in FA-A fibroblasts compared to normal cells. However, and notably, DSBs were repaired equally in both normal and FA-A fibroblasts during recovery from Cr(VI) treatment. While previous research on FA has defined the genetic causes of this disease, it is critical in terms of individual risk assessment to address how cells from FA patients respond to genotoxic insult.  相似文献   

9.
Fanconi anemia (FA) is a rare autosomal recessive disorder characterized by congenital abnormalities, progressive bone marrow failure, and cancer susceptibility. FA cells are hypersensitive to DNA crosslinking agents. FA is a genetically heterogeneous disease with at least 11 complementation groups. The eight cloned FA proteins interact in a common pathway with established DNA-damage-response proteins, including BRCA1 and ATM. Six FA proteins (A, C, E, F, G, and L) regulate the monoubiquitination of FANCD2 after DNA damage by crosslinking agents, which targets FANCD2 to BRCA1 nuclear foci containing BRCA2 (FANCD1) and RAD51. Some forms of hexavalent chromium [Cr(VI)] are implicated as respiratory carcinogens and induce several types of DNA lesions, including DNA interstrand crosslinks. We have shown that FA-A fibroblasts are hypersensitive to both Cr(VI)-induced apoptosis and clonogenic lethality. Here we show that Cr(VI) treatment induced monoubiquitination of FANCD2 in normal human fibroblasts, providing the first molecular evidence of Cr(VI)-induced activation of the FA pathway. FA-A fibroblasts demonstrated no FANCD2 monoubiquitination, in keeping with the requirement of FA-A for this modification. We also found that Cr(VI) treatment induced significantly more S-phase-dependent DNA double strand breaks (DSBs), as measured by gamma-H2AX expression, in FA-A fibroblasts compared to normal cells. However, and notably, DSBs were repaired equally in both normal and FA-A fibroblasts during recovery from Cr(VI) treatment. While previous research on FA has defined the genetic causes of this disease, it is critical in terms of individual risk assessment to address how cells from FA patients respond to genotoxic insult.  相似文献   

10.
Nimustine (ACNU) and temozolomide (TMZ) are DNA alkylating agents which are commonly used in chemotherapy for glioblastomas. ACNU is a DNA cross-linking agent and TMZ is a methylating agent. The therapeutic efficacy of these agents is limited by the development of resistance. In this work, the role of the Fanconi anemia (FA) repair pathway for DNA damage induced by ACNU or TMZ was examined. Cultured mouse embryonic fibroblasts were used: FANCA(-/-), FANCC(-/-), FANCA(-/-)C(-/-), FANCD2(-/-) cells and their parental cells, and Chinese hamster ovary and lung fibroblast cells were used: FANCD1/BRCA2mt, FANCG(-/-) and their parental cells. Cell survival was examined after a 3 h ACNU or TMZ treatment by using colony formation assays. All FA repair pathways were involved in ACNU-induced DNA damage. However, FANCG and FANCD1/BRCA2 played notably important roles in the repair of TMZ-induced DNA damage. The most effective molecular target correlating with cellular sensitivity to both ACNU and TMZ was FANCD1/BRCA2. In addition, it was found that FANCD1/BRCA2 small interference RNA efficiently enhanced cellular sensitivity toward ACNU and TMZ in human glioblastoma A172 cells. These findings suggest that the down-regulation of FANCD1/BRCA2 might be an effective strategy to increase cellular chemo-sensitization towards ACNU and TMZ.  相似文献   

11.
We have recently described an involvement of H2AX into the Fanconi anemia (FA) BRCA pathway through recruitment of FA protein FANCD2 to the sites of stalled replication forks. We showed that BRCA1 mediates the recruitment of FANCD2 by γH2AX to damaged chromatin and cells deficient or depleted of H2AX exhibit an FA-like phenotype, including an excess of chromatid-type chromosomal aberrations and hypersensitivity to MMC. Here, we discuss a model for the FA pathway and how it could partially explain the common phenotypes of H2AX, BRCA2 and FA deficiencies.  相似文献   

12.
Fanconi贫血是一种罕见的隐性遗传性疾病,临床常以先天性畸形、进行性骨髓衰竭和遗传性肿瘤倾向为主要表现而确诊。FA病人细胞对DNA交联剂如丝裂霉素C (MMC)高度敏感。目前已经发现至少12种FA基因的缺失或突变能够引起FA表型的出现,其中10种相应的编码蛋白形成FA复合物共同参与FA/BRCA2 DNA损伤修复途径—FA途径。FA核心复合物蛋白FANCL具有泛素连接酶活性,在结合酶UBE2T共同作用下,催化下游蛋白FANCD2单泛化,泛素化FANCD2与BRCA2形成新的复合物,修复DNA损伤。去泛素化酶USP1在DNA修复完毕后移除FANCD2的单体泛素,使因损伤修复而阻滞的细胞周期继续进行。机体很可能在不同信号通路对FANCD2泛素化/去泛素化的精细调节下,调控FA途径参与不同的DNA修复过程。  相似文献   

13.
Bruun D  Folias A  Akkari Y  Cox Y  Olson S  Moses R 《DNA Repair》2003,2(9):1007-1013
BRCA1 and BRCA2 proteins act in repair of interstrand crosslinks (ICLs) and maintenance of genome stability and are known to be part of the Fanconi anemia (FA) pathway. We have investigated the role of the BRCA1 and BRCA2 genes in genome stability following ICL damage in normal and FA cells. To circumvent cell lethality of complete disruptions in BRCA1 or BRCA2, small inhibitory RNA (siRNA) was used to transiently deplete the expression of the proteins. Using chromosomal stability after ICL damage as the end point, we find that BRCA1 functions in more than just the FA pathway for genome maintenance, whereas BRCA2 appears to act predominantly in the FA pathway. Depletion of BRCA1 causes a marked decrease, although not a complete absence of, ubiquitination of FANCD2. In contrast to BRCA1, BRCA2 is not needed for normal ubiquitination of FANCD2 after DNA damage, a requirement for the FA pathway to function. Thus, BRCA2 is epistatic to FA genes for ICL repair, but not for damage-induced modification of FANCD2 and may act downstream form FANCD2.  相似文献   

14.
15.
The encouraging response rates of BRCA1- and BRCA2-mutated cancers toward PARP inhibitors make it worthwhile to identify other potential determinants of PARP inhibitor responsiveness. Since the Fanconi anemia (FA) pathway coordinates several DNA repair pathways, including homologous recombination in which BRCA1 and BRCA2 play important roles, we investigated whether this pathway harbors other predictors of PARP inhibitor sensitivity. Lymphoblastoid cell lines derived from individuals with FA or clinically related syndromes, such as Warsaw breakage syndrome, were tested for PARP inhibitor sensitivity. Remarkably, we found a strong variability in PARP inhibitor sensitivity among different FANCD1/BRCA2-deficient lymphoblasts, suggesting that PARP inhibitor response depends on the type of FANCD1/BRCA2 mutation. We identified the DNA helicases FANCM and DDX11 as determinants of PARP inhibitor response. These results may extend the utility of PARP inhibition as effective anticancer treatment.  相似文献   

16.
Positional cloning of a novel Fanconi anemia gene, FANCD2   总被引:31,自引:0,他引:31  
Fanconi anemia (FA) is a genetic disease with birth defects, bone marrow failure, and cancer susceptibility. To date, genes for five of the seven known complementation groups have been cloned. Complementation group D is heterogeneous, consisting of two distinct genes, FANCD1 and FANCD2. Here we report the positional cloning of FANCD2. The gene consists of 44 exons, encodes a novel 1451 amino acid nuclear protein, and has two protein isoforms. Similar to other FA proteins, the FANCD2 protein has no known functional domains, but unlike other known FA genes, FANCD2 is highly conserved in A. thaliana, C. elegans, and Drosophila. Retroviral transduction of the cloned FANCD2 cDNA into FA-D2 cells resulted in functional complementation of MMC sensitivity.  相似文献   

17.
Fanconi anemia (FA) is a rare recessive disease, characterized by congenital defects, bone marrow failure, and increased cancer susceptibility. FA is caused by biallelic mutation of any one of sixteen genes. The protein products of these genes function cooperatively in the FA-BRCA pathway to repair DNA interstrand crosslinks (ICLs). A central step in the activation of this pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Monoubiquitinated FANCD2 and FANCI localize to discrete chromatin regions where they function in ICL repair. Despite their critical role in ICL repair, very little is known about the structure, function, and regulation of the FANCD2 and FANCI proteins, or how they are targeted to the nucleus and chromatin. In this study, we describe the functional characterization of an amino-terminal FANCD2 nuclear localization signal (NLS). We demonstrate that the amino terminal 58 amino acids of FANCD2 can promote the nuclear expression of GFP and is necessary for the nuclear localization of FANCD2. Importantly, mutation of this FANCD2 NLS reveals that intact FANCD2 is required for the nuclear localization of a subset of FANCI. In addition, the NLS is necessary for the efficient monoubiquitination of FANCD2 and FANCI and, consequently, for their localization to chromatin. As a result, FANCD2 NLS mutants fail to rescue the ICL sensitivity of FA-D2 patient cells. Our studies yield important insight into the domain structure of the poorly characterized FANCD2 protein, and reveal a previously unknown mechanism for the coordinate nuclear import of a subset of FANCD2 and FANCI, a key early step in the cellular ICL response.  相似文献   

18.
West SC 《DNA Repair》2003,2(2):231-234
Fanconi anaemia (FA) is a rare cancer-prone syndrome associated with a defect in the repair of DNA cross-links. Six genes involved in FA have been previously cloned and characterised. Now the two remaining subtypes (FA-B and FA-D1) have been shown by Howlett et al. to be associated with mutations in BRCA2 and to express truncated BRCA2 proteins. Their results suggest that the six cloned FA genes are linked with BRCA2 in a common pathway. Here Steve West discusses some of the implications of these findings.  相似文献   

19.
Fanconi Anemia (FA) is an inherited multi-gene cancer predisposition syndrome that is characterized on the cellular level by a hypersensitivity to DNA interstrand crosslinks (ICLs). To repair these lesions, the FA pathway proteins are thought to act in a linear hierarchy: Following ICL detection, an upstream FA core complex monoubiquitinates the central FA pathway members FANCD2 and FANCI, followed by their recruitment to chromatin. Chromatin-bound monoubiquitinated FANCD2 and FANCI subsequently coordinate DNA repair factors including the downstream FA pathway members FANCJ and FANCD1/BRCA2 to repair the DNA ICL. Importantly, we recently showed that FANCD2 has additional independent roles: it binds chromatin and acts in concert with the BLM helicase complex to promote the restart of aphidicolin (APH)-stalled replication forks, while suppressing the firing of new replication origins. Here, we show that FANCD2 fulfills these roles independently of the FA core complex-mediated monoubiquitination step. Following APH treatment, nonubiquitinated FANCD2 accumulates on chromatin, recruits the BLM complex, and promotes robust replication fork recovery regardless of the absence or presence of a functional FA core complex. In contrast, the downstream FA pathway members FANCJ and BRCA2 share FANCD2''s role in replication fork restart and the suppression of new origin firing. Our results support a non-linear FA pathway model at stalled replication forks, where the nonubiquitinated FANCD2 isoform – in concert with FANCJ and BRCA2 – fulfills a specific function in promoting efficient replication fork recovery independently of the FA core complex.  相似文献   

20.
Bladder carcinomas frequently show extensive deletions of chromosomes 9p and/or 9q, potentially including the loci of the Fanconi anemia (FA) genes FANCC and FANCG. FA is a rare recessive disease due to defects in anyone of 13 FANC genes manifesting with genetic instability and increased risk of neoplasia. FA cells are hypersensitive towards DNA crosslinking agents such as mitomycin C and cisplatin that are commonly employed in the chemotherapy of bladder cancers. These observations suggest the possibility of disruption of the FA/BRCA DNA repair pathway in bladder tumors. However, mutations in FANCC or FANCG could not be detected in any of 23 bladder carcinoma cell lines and ten surgical tumor specimens by LOH analysis or by FANCD2 immunoblotting assessing proficiency of the pathway. Only a single cell line, BFTC909, proved defective for FANCD2 monoubiquitination and was highly sensitive towards mitomycin C. This increased sensitivity was restored specifically by transfer of the FANCF gene. Sequencing of FANCF in BFTC909 failed to identify mutations, but methylation of cytosine residues in the FANCF promoter region was demonstrated by methylation-specific PCR, HpaII restriction and bisulfite DNA sequencing. Methylation-specific PCR uncovered only a single instance of FANCF promoter hypermethylation in surgical specimens of further 41 bladder carcinomas. These low proportions suggest that in contrast to other types of tumors silencing of FANCF is a rare event in bladder cancer and that an intact FA/BRCA pathway might be advantageous for tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号