首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Aspartyl aminopeptidase (DAP), encoded by the DNPEP gene, is believed to be a cytosolic protein with high enzymatic activity in the neuroendocrine tissues. Bioinformatic analysis revealed that the genomic segment spanning the DNPEP gene is evolutionarily conserved from Caenorhabditis elegans to humans. In the present study, we sought to determine whether the expression of DAP is associated with its clustered genes when expressed in pancreatic islet cells. Using anti-DAP specific antibody in immunofluorescent stainings, we found that DAP was specifically expressed in islet alpha cells but not in exocrine acinar cells. Moreover, using electron microscopy, we found that DAP was associated with a lysosomal-like structure and secretory granules, suggesting that it plays an important role in post-translational processing and the secretion of hormones in islet cells. The identification and characterization of DNPEP syntenic genes confirm that conserved clustered genes can preferentially be expressed in the same signaling pathway.  相似文献   

2.
3.
4.
Death associated protein 3 (DAP3) is known to be a highly conserved protein, and is responsible for regulating apoptosis induced by various stimuli. To understand the molecular mechanism of how DAP3 induces apoptosis, we performed yeast two-hybrid screening, and identified a novel DAP3-binding protein termed death ligand signal enhancer (DELE). In this report, we show that DELE actually binds to DAP3 in mammalian cells. We found that the cells stably expressing DELE are susceptible to apoptosis induction by the stimulation of TNF-α and TRAIL. In addition, knockdown of DELE expression rescued the HeLa cells from apoptosis induction by these stimuli. Moreover, activation of caspase-3, caspase-8 and caspase-9 induced by stimulation of TNF-α, anti-Fas or TRAIL was significantly inhibited by the knockdown of DELE expression. These results demonstrated the biological significance of DELE for apoptosis signal mediated by death receptors.  相似文献   

5.
To understand the epigenetic regulation required for germ cell-specific gene expression in the mouse, we analysed DNA methylation profiles of developing germ cells using a microarray-based assay adapted for a small number of cells. The analysis revealed differentially methylated sites between cell types tested. Here, we focused on a group of genomic sequences hypomethylated specifically in germline cells as candidate regions involved in the epigenetic regulation of germline gene expression. These hypomethylated sequences tend to be clustered, forming large (10 kb to ∼9 Mb) genomic domains, particularly on the X chromosome of male germ cells. Most of these regions, designated here as large hypomethylated domains (LoDs), correspond to segmentally duplicated regions that contain gene families showing germ cell- or testis-specific expression, including cancer testis antigen genes. We found an inverse correlation between DNA methylation level and expression of genes in these domains. Most LoDs appear to be enriched with H3 lysine 9 dimethylation, usually regarded as a repressive histone modification, although some LoD genes can be expressed in male germ cells. It thus appears that such a unique epigenomic state associated with the LoDs may constitute a basis for the specific expression of genes contained in these genomic domains.  相似文献   

6.
The plo gene, encoding the Arcanobacterium pyogenes cholesterol-dependent cytolysin, pyolysin (PLO), was localized to a 2.7-kb genomic islet of reduced %G+C content and alternate codon usage frequency. This islet, conserved among isolates from diverse hosts and geographical locations, separated the housekeeping genes smc and ftsY, which are found adjacent in many prokaryotes. The ftsY and ffh genes, located downstream of the plo islet, encode components of the signal recognition particle. Mutational analysis suggested that these genes were essential for viability in A. pyogenes. The A. pyogenes ffh gene was unable to complement a conditional ffh mutant of Escherichia coli and its overexpression was toxic in E. coli. Mutagenesis of the islet-encoded orf121 did not affect plo expression, indicating that it may not be involved directly in the regulation of plo expression. Regardless, the presence of the plo gene as part of a genomic islet inserted between genes essential for normal growth may provide selective pressure for the retention of this important virulence factor.  相似文献   

7.
Death-associated protein (DAP) kinase plays an important role in IFN-gamma, tumor necrosis factor (TNF)-alpha, or Fas-ligand induced apoptosis. TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF ligand family and can induce caspase-dependent apoptosis in cancer cells while sparing most of the normal cells. However, some of the cancer cell lines are insensitive to TRAIL, and such resistance cannot be explained by the dysfunction of TRAIL receptors or their known downstream targets. We reported previously that DAP kinase promoter is frequently methylated in non-small cell lung cancer (NSCLC), and such methylation is associated with a poor clinical outcome. To determine whether DAP kinase promoter methylation contributes to TRAIL resistance in NSCLC cells, we measured DAP kinase promoter methylation and its gene expression status in 11 NSCLC cell lines and correlated the methylation/expression status with the sensitivity of cells to TRAIL. Of the 11 cell lines, 1 had a completely methylated DAP kinase promoter and no detectable DAP kinase expression, 4 exhibited partial promoter methylation and substantially decreased gene expression, and the other 6 cell lines showed no methylation in the promoter and normal DAP kinase expression. Therefore, the amount of DAP kinase expression amount was negatively correlated to its promoter methylation (r = -0.77; P = 0.003). Interestingly, the cell lines without the DAP kinase promoter methylation underwent substantial apoptosis even in the low doses of TRAIL, whereas those with DAP kinase promoter methylation were resistant to the treatment. The resistance to TRAIL was reciprocally correlated to DAP kinase expression in 10 of the 11 cell lines at 10 ng/mL concentration (r = 0.91; P = 0.001). We treated cells resistant to TRAIL with 5-aza-2'-deoxycytidine, a demethylating reagent, and found that these cells expressed DAP kinase and became sensitive to TRAIL. These results suggest that DAP kinase is involved in TRAIL-mediated cell apoptosis and that a demethylating agent may have a role in enhancing TRAIL-mediated apoptosis in some NSCLC cells by reactivation of DAP kinase.  相似文献   

8.
9.
10.
The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization.  相似文献   

11.
12.
13.
DAP12 is an immunoreceptor tyrosine-based activation motif (ITAM)-bearing transmembrane adapter molecule that is associated with the NK-activating receptors. DAP12 is expressed not only in NK cells, but also in myeloid cells. Previously, we reported that DAP12 was likely to be involved in monocyte differentiation to macrophage. In this study, we established the mutant DAP12-M1 transfectants (Y76F-M1) that have mutation at their ITAM motifs. We observed that Y76F-M1 cells could not differentiate to macrophages by stimulation via DAP12, whereas wild type DAP12 transfectants (FDAP-M1) could. Furthermore, we demonstrated that the apoptosis signal mediated by LPS was inhibited in Y76F-M1 cells, but was augmented in FDAP-M1 cells. In contrast to the LPS-mediated apoptosis, the combination of LPS and DAP12 stimulation showed good cell viability in FDAP-M1 cells. Collectively our studies demonstrated that DAP12 has a critical role for macrophage differentiation and LPS induced apoptosis in M1 leukemia cells.  相似文献   

14.
The accumulation of the cytoskeletal beta- and gamma-actin mRNAs was determined in a variety of mouse tissues and organs. The beta-isoform is always expressed in excess of the gamma-isoform. However, the molar ratio of beta- to gamma-actin mRNA varies from 1.7 in kidney and testis to 12 in sarcomeric muscle to 114 in liver. We conclude that, whereas the cytoskeletal beta- and gamma-actins are truly coexpressed, their mRNA levels are subject to differential regulation between different cell types. The human gamma-actin gene has been cloned and sequenced, and its chromosome location has been determined. The gene is located on human chromosome 17, unlike beta-actin which is on chromosome 7. Thus, if these genes are also unlinked in the mouse, the coexpression of the beta- and gamma-actin genes in rodent tissues cannot be determined by gene linkage. Comparison of the human beta- and gamma-actin genes reveals that noncoding sequences in the 5'-flanking region and in intron III have been conserved since the duplication that gave rise to these two genes. In contrast, there are sequences in intron III and the 3'-untranslated region which are not present in the beta-actin gene but are conserved between the human gamma-actin and the Xenopus borealis type 1 actin genes. Such conserved noncoding sequences may contribute to the coexpression of beta- and gamma-actin or to the unique regulation and function of the gamma-actin gene. Finally, we demonstrate that the human gamma-actin gene is expressed after introduction into mouse L cells and C2 myoblasts and that, upon fusion of C2 cells to form myotubes, the human gamma-actin gene is appropriately regulated.  相似文献   

15.
Eggers JH  Stock M  Fliegauf M  Vonderstrass B  Otto F 《Gene》2002,282(1-2):159-167
Inducibility of the mouse gene imap38 in the spleen has been recently described to correlate with resistance to Plasmodium chabaudi malaria. Here, we characterize the human ortholog gene himap1. The HIMAP1 34 kDa protein is localizable at the endoplasmic reticulum in transfected cells. It contains a GTP-binding domain, but it does not bind GTP, in contrast to mouse IMAP38. The himap1 gene belongs to a gene family clustered on chromosome 7q32-36 within a region highly syntenic to the mouse imap38 locus on chromosome 6B. The himap genes 1, 2, 3, and 4 display a conserved intron/exon structure. The mRNA of the himap1 gene is predominantly expressed in the spleen, in lymph nodes to a lesser extent, and only at very low levels in diverse cancer cell lines. In accordance, imap-like genes in mice and plants are associated with proliferative and apoptotic events suggesting a role in the control of cell death/survival.  相似文献   

16.
A novel endosperm-specific gene named Esr (e mbryo s urrounding r egion) has been isolated by differential display between early developmental stages of maize endosperms and embryos. It is expressed in a restricted region of the endosperm, surrounding the entire embryo at early stages (4 to 7 days after pollination, DAP) and ever-decreasing parts of the suspensor at subsequent stages. The expression starts at 4 DAP and is maintained until at least 28 DAP. A minimum of three Esr genes are present in the maize genome and at least two of them map to the short arm of chromosome 1 at position 56. The Esr genes contain no introns and show no significant nucleotide or amino acid sequence homologies to sequences in the databases. The open reading frames encode basic proteins of 14 kDa with presumptive signal peptides at their N-termini followed by a hypervariable and a conserved region. The gene product may play a role in the nutrition of the developing embryo or in the establishment of a physical barrier between embryo and endosperm.  相似文献   

17.
NKG2D splice variants: a reexamination of adaptor molecule associations   总被引:3,自引:0,他引:3  
NKG2D is a homodimeric C-type lectin-related receptor expressed on natural killer (NK) cells and T cells. In mice, alternative deoxyribonucleic acid (DNA) splicing generates two isoforms of NKG2D that differ in the length of their cytoplasmic domains. Their ability to induce cellular activation is mediated via association with two membrane-bound, signaling adaptor molecules, DAP10 and DAP12. It has been reported that the long form of NKG2D associates exclusively with DAP10, whereas the short variant can interact with either adaptor. The short isoform was reported to be almost undetectable in naïve NK cells. Using two distinct cell types, we demonstrate that like the short isoform, the long variant of NKG2D also associates not only with DAP10 but also with DAP12. Using reporter cells (70Z/3), we demonstrate that DAP12 can compete equally with DAP10 for association with both variants of NKG2D when DAP10 and DAP12 are coexpressed. Cross-linking either isoform of NKG2D induces a calcium flux when associated exclusively with DAP10 or DAP12. Moreover, using quantitative polymerase chain reaction (PCR), we also show that the short isoform of NKG2D is expressed in naïve NK cells. Our data suggest that signaling via mouse NKG2D isoforms is more complex than originally presented.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号