首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proline-hydroxyproline (Pro-Hyp) stimulated hyaluronic acid production in cultured synovium cells. It was detected in guinea pig blood after oral ingestion of collagen hydrolysates. Oral administration of collagen hydrolysates increased the amount of proteoglycans in the epiphyses. It also reduced the morphological changes associated with osteoarthritic cartilage destruction of the knee joint. The results suggest that collagen hydrolysates have therapeutic potential for treatment of osteoarthritis.  相似文献   

2.
K Fujii  D Corcoran  M L Tanzer 《Biochemistry》1975,14(20):4409-4413
A cross-linked tripeptide has been isolated from alkaline hydrolysates of NaB3H4-reduced calf bone collagen. The peptide contains dihydroxylysinonorleucine, the most abundant cross-link in bone collagen, and it has a single N-terminal proline and a single C-terminal valine. These amino acids are in peptide linkage with the cross-link, in a trans configuration with respect to the secondary amine.  相似文献   

3.
A rapid and inexpensive method was devised for the determination of lysine-derived aldimine crosslink contents in collagen. The aldimines were converted to their secondary amine derivatives by NaBH4 reduction, and the acid or base collagen hydrolysates analysed directly for these derivatives (HLHNL and HLNL). It was found that in native bone, dentin and cartilage collagen fibres, every two tropocollagen molecules are joined by a minimum of one aldimine crosslink. Negligible amounts of HLNL and HNHNL were found in unreduced collagens, indicating that maturation does not involve a simple in vivo reduction of the aldimine crosslinks.  相似文献   

4.
Lysinoalanine was identified in hydrolysates of dentine and bone collagen. The compound was isolated and purified by ion exchange chromatography on P-cellulose and QAE-Sephadex columns. Identity with lysinoalanine was demonstrated by 1H-nmr spectroscopy, amino acid analysis and paper chromatography. This is the first example of occurrence of lysinoalanine in native proteins.  相似文献   

5.
Calf skin acid-soluble collagen, containing about 34 residues of lysine plus hydroxylysine per 100,000 dalton polypeptide chain, was treated with [14C]glucose in the presence or absence of NaCNBH3. In 144 h, under the conditions employed, the presence of NaCNBH3 increased the extent of glycosylation from 8 to 15% of the total residues of lysine plus hydroxylysine. The extent of glycosylation was estimated, using acid hydrolysates of the protein, by isolation and determination of reduced adducts (1-lysinohexitols) employing a system of paper chromatography followed by chromatography on an amino acid analyzer. By those means the difficulties of using specific color reactions such as that with thiobarbituric acid were obviated. Identification of the reduced adducts as forms of 1-lysinohexitol was made by comparison of that substance prepared by treatment of polylysine with [14C]glucose in the presence of NaCNBH3. Of interest is the fact that treatment of the polymer with glucose for 144 h under conditions similar to those used for the collagen, resulted in an increase of extent of glycosylation from 3 to about 50% of the total lysine residues when NaCNBH3 was present in the incubation medium. The greater degree of glycosylation of lysine residues in polylysine as compared with collagen (15 versus about 50%) may be ascribed to the different orders of macromolecular structure in the protein that could sequester certain of the residues from reaction with glucose. 1-Lysinohexitol was also identified in hydrolysates of neutral salt-soluble guinea pig skin collagen that had been reacted with glucose and then treated with NaB3H4. The glycosylated collagens were fragmented by treatment with CNBr, and modified lysine residues were found to occur along the entire length of the collagen chains. The use of NaCNBH3 in the manner described above permits measurement of both aldimine and ketoamine forms of the adducts made with glucose. The possible physiological significance of the reversibility of the ketoamine form of adduct is discussed briefly.  相似文献   

6.
Non-collagenous phosphoproteins, almost all of which can be extracted in EDTA at neutral pH in the presence of proteinase inhibitors, are identified in the matrix of chicken bone, and are therefore not covalently bound to collagen. Similarly, all the peptides containing gamma-carboxyglutamic acid are present in the EDTA extract and none in the insoluble residue, confirming that none is covalently linked to chicken bone collagen. However, organic phosphorus is also found to be present in chicken bone collagen, principally in the alpha2-chains. Of the total protein-bound organic phosphorus present in chicken bone matrix, approx. 80% is associated with the non-collagenous proteins and 20% with collagen. The soluble non-collagenous proteins contain both O-phosphoserine and O-phosphothreonine and these account for essentially of their organic phosphorus content. In contrast, collagen contains neither O-phosphoserine nor O-phosphothreonine. Indeed, no phosphorylated hydroxy amino acid, phosphoamidated amino acid or phosphorylated sugar could be identified in purified components of collagen, which contain approximately four to five atoms of organic phosphorus per molecule of collagen. Peptides containing organic phosphorus were isolated from partial acid hydrolysates and enzymic digests of purified collagen components, which contain an as-yet-unidentified cationic amino acid. These data, the very high concentrations of glutamic acid in the phosphorylated peptides, and the pH-stability of the organic phosphorus moiety in intact collagen chains strongly suggest that at least part of the organic phosphorus in collagen is present as phosphorylated glutamic acid. This would indicate that the two major chemically different protein fractions in chicken bone matrix that contain organic phosphorus may represent two distinct metabolic pools of organic phosphorus under separate biological control.  相似文献   

7.
This paper describes the isolation from reduced collagen of two new amino acids believed to be involved, in their non-reduced form, as intermolecular cross-links stabilizing the collagen fibre. The reduction of intact collagen fibrils with tritiated sodium borohydride was found to stabilize the aldehyde-mediated cross-links to acid hydrolysis and thus allowed their location and isolation from acid hydrolysates on an automatic amino acid analyser. Comparison of the radioactive elution patterns from the autoanalyser of collagen treated in various ways before reduction permitted a preliminary classification of the peaks into cross-link precursors, intramolecular and intermolecular cross-links. The techniques employed to isolate the purified components on a large scale and to identify them structurally are described in detail. Two labile intermolecular cross-links were isolated in their reduced forms, one of which was identified by high-resolution mass spectrometry as N-(5-amino-5-carboxypentyl)hydroxylysine. The structure of this compound was confirmed by chemical synthesis. The cross-link precursor α-aminoadipic δ-semialdehyde was isolated in its reduced form, -hydroxynorleucine, together with its acid degradation product -chloronorleucine. A relatively stable intermolecular cross-link was isolated and partially characterized by mass spectrometry as an aldol resulting from the reaction of the δ-semialdehyde derived from lysine and hydroxylysine.  相似文献   

8.
A procedure for the extraction of protein and production of peptides by enzymic hydrolysis from bone and skin wastes containing collagen was developed. Fat and inorganic components were first removed in a pretreatment step and a high molecular weight protein extracted under acidic conditions (pH 3) using a 1 h reaction time at 60 °C. The molecular weight of extract from pig skin was greater than 100 kDa. The extract had a high water retention capacity, was beneficial for repair of rough skin, had no odor problem and was demonstrated to be safe in skin patch tests. It was thus considered acceptable for use in cosmetic materials. Pretreated fish bone and pig skin were hydrolyzed with a commercial enzyme. The hydrolysates had a high anti-radical activity (IPOX50, 0.18 and 0.45 mg ml−1) and a high potential for decreasing blood pressure (IC50, 0.16 and 0.41 mg ml−1), suggesting the hydrolysates could be a useful additive in food materials.  相似文献   

9.
The major reducible crosslinks found in collagen were separated and analyzed on an extended basic amino acid analyzer column. Reaction with ninhydrin allows the direct analysis of collagen crosslinks, including hydroxyaldol-histidine, a naturally occurring, nonreducible crosslink. In addition to known crosslinks, direct amino acid analysis of tissue hydrolysates reveals the presence of an unknown, ninhydrin-reactive component, in both NaB3H4-reduced and unreduced collagenous tissues. Initial fractionation of hydrolysates on a Bio-Gel P-2 gel filtration column provides partial separaton of amino acids and crosslinks and enables more direct analysis of the crosslinks present in the samples, as well as detecting potential new crosslinks. The results also show that, prior to NaB3H4 reduction, substantial amounts of known crosslinks are normally present in bovine skin and bone.  相似文献   

10.
11.
A recently described procedure for amino acid analyses has been modified and adapted for use in quantitating the unique mixture of products commonly found in hydrolysates of the collagens. The method involves precolumn derivatization of hydrolysates with 9-fluorenylmethyl chloroformate (FMOC-CL), chromatographic separation of the derivatives and excess reagent on a reverse-phase column, and quantitation based on the fluorescent properties of the derivatives. The method takes advantage of the ease with which stable derivatives are formed with the FMOC reagent. Using a ternary gradient system, a complete amino acid analysis with good resolution of all components can be performed within 35 min. The sensitivity of the method is comparable to levels attained by other derivatives and the fluorescence response of each derivative is linear over the total range of 1-800 pmol. Given these parameters, the method allows complete amino acid analyses to be performed on 100 ng of collagen corresponding to a single picomole of a collagen chain (Mr 100,000).  相似文献   

12.
Pyridinoline, a cross-linking compound of collagen fibers, was found in human urine. A significant portion of urinary pyridinoline was in free form. The ratio of total pyridinoline to creatinine changed with age. It was high in children and decreased with growth. It was low and constant in adults, and increased slightly in old age. It was increased significantly in patients with certain bone and joint diseases. Urinary pyridinoline may serve as a useful marker for the breakdown of collagen fibers of skeletal tissues.  相似文献   

13.
Insulin, ribonuclease, papain and collagen solutions saturated with nitrogen, N2O or air were irradiated with doses of 10 to 640 Gy of gamma rays. Protein solutions were also oxidized enzymatically in a system of horse-radish peroxidase: hydrogen peroxide. Column chromatography (Sephadex G-75 or Sephacryl S-200) of treated protein solutions revealed that they contain protein molecular aggregates. Nitrogen saturation of solution before irradiation was most favourable for radiation-induced aggregation of proteins. Fluorescence analysis of protein solutions resulted in detection of dityrosyl structures in irradiated as well as in enzymatically oxidized proteins. Concentration of dityrosine in proteins studied was determined fluorimetrically in their hydrolysates separated on BioGel P-2 column. In irradiated proteins, dityrosine was present almost exclusively in their aggregated forms. In proteins oxidized enzymatically, dityrosine was also present in fractions containing apparently unchanged protein. Mechanisms which could account for differences in the yield of dityrosine formation in radiolysis and in enzymatic oxidation of proteins are suggested.  相似文献   

14.
Summary Electron-microscopical autoradiography and cytochemical techniques have been used to identify the distinct and separate subcellular structures involved in the secretion of 1) procollagen, 2) dihydroxyphenylalanine (DOPA), which is a precursor of a collagen-crosslinking compound, and 3) DOPA oxidase, which converts DOPA to a putative crosslinking compound of collagen in the axial skeleton of the gorgonian coral Leptogorgia virgulata. Some skeletal-protein hydrolysates contain material that co-elutes with DOPA. The data indicate that these skeletogenic cells, corticocytes, are capable of modifying the number of non-reducible, tyrosine-derived crosslinkages of collagen by the secretion of a crosslinking compound that acts extracellularly on collagen. A mechanism for a cell-mediated control of the mechanical properties of collagen is thereby presented.  相似文献   

15.
An HPLC method for quantifying the 3-hydroxypyridinium crosslinks of collagen is described. It can be applied to crude hydrolysates of all types of connective tissue. Mineralized tissues can be hydrolyzed directly and analyzed without interference from the mineral ions. The hydroxylysyl (HP) and lysyl (LP) forms of hydroxypyridinium residue were resolved on a reverse-phase C18 column using a gradient of acetonitrile in water and 0.01 M n-heptafluorobutyric acid as an ion-pairing agent. The crosslinking amino acids were accurately quantified down to 2 PM (1 ng) injected, by detecting their natural fluorescence with a spectrofluorometer. Tissues in which hydroxypyridinium crosslinks were plentiful included all forms of cartilage, bone, dentin, ligament, tendon, fascia, intervertebral disc, lung, gut, cervix, aorta, and vitreous humor. Among normal tissues, LP, the minor form of the crosslink, was present in significant amounts relative to HP only in bone and dentin. Both crosslinks were essentially absent from skin, cornea, rat tail tendon, and basement membranes.  相似文献   

16.
A collagen was isolated from squid skin, a processing waste product. The biofunctional activities of enzymatic squid skin collagen hydrolysates were determined to produce a value-added material. Five low-molecular-mass hydrolysate fractions, F1 (>30 kD), F2 (10–30 kD), F3 (3–10 kD), F4 (1–3 kD), and F5 (<1 kD), were manufactured from its enzymatic hydrolysate by ultrafiltration. Fraction F3 had the strongest antihyaluronidase inhibitory activity. Gly, Val, and Pro were major amino acids in F3, while Met, Tyr, and His were minor ones. The molecular mass of F3 was in the range of 3.4 to 10 kD. F3 exhibited copper chelating ability in a concentration-dependent manner. The ferrous chelating ability of F3 was almost 50% at 200 µg/mL. F3 also inhibited tyrosinase activity by 39.65% at 1 mg/mL. Furthermore, F3 had stronger hydroxyl radical scavenging activity (IC50 = 149.94 µg/mL) than ascorbic acid (IC50 = 212.94 µg/mL). Therefore, the squid collagen hydrolysate can be utilized as a nutraceutical or cosmeceutical agent.  相似文献   

17.
Due to the high occurrence rate of overextension injuries to tendons and ligaments, it is important to understand the fundamental mechanisms of damage to these tissues' primary load-bearing elements: collagen fibrils and their constituent molecules. Based on our recent observations of a new subrupture, overload-induced mode of fibril disruption that we call discrete plasticity, we have sought in the current study to re-explore whether the tensile overload of collagen fibrils can alter the helical conformation of collagen molecules. In order to accomplish this, we have analyzed the conformation of collagen molecules within repeatedly overloaded tendons in relation to their undamaged matched-pair controls using both differential scanning calorimetry and variable temperature trypsin digestion susceptibility. We find that tensile overload reduces the specific enthalpy of denaturation of tendons, and increases their susceptibility to trypsin digestion, even when the digestion is carried out at temperatures as low as 4 °C. Our results indicate that the tensile overload of collagen fibrils can uncoil the helix of collagen molecules, placing them in a stable, denatured state.  相似文献   

18.
L Graham  G L Mechanic 《Biochemistry》1989,28(19):7889-7895
Secondary amine cross-links occur in collagen and elastin from a number of tissue sources. Quantification of these cross-links by amino acid analysis is complicated by the problem of separating cross-links, which are often minor components, from the more common amino acids and also because relatively large amounts of a cross-link are required to determine a color factor. A specific radioactive labeling method has been developed and used to quantify cross-links in bone collagen. Primary amines such as lysine and hydroxylysine are first guanidinated with 3,5-dimethylpyrazole-1-carboxamidine nitrate (DMPC). Secondary amines, which are unreactive with DMPC, are then quantitatively cyanoethylated with [14C]acrylonitrile. This procedure can be used to detect any secondary amine cross-link, with higher sensitivity than ninhydrin analysis, in peptide form as well as in acid hydrolysates. It is applied here in conjunction with [3H]NaBH4 reduction to simultaneously quantify Schiff base cross-links and amounts of in vivo reduction of Schiff bases in mineralized versus nonmineralized bovine bone.  相似文献   

19.
Long lived proteins undergo age-related postsynthetic modifications that destabilize them by altering their conformation, charge, and helicity, thereby enhancing their resistance toward proteolysis and propensity to aggregate. The unexpected finding of substantial amounts of ornithine, the nonprotein amino acid, and decarbamidation product of arginine in acid hydrolysates of lens crystallins and skin collagen led us to investigate its source and mechanism of formation. In order to exclude ornithine formation as an artifact of acid hydrolysis, proteins were reductively alkylated with formaldehyde to convert ornithine to dimethyl-ornithine. The proteins were assayed for carboxymethyl-ornithine and glycated ornithine ("furornithine") by liquid chromatography coupled to electrospray ionization mass spectrometry. Ornithine in acid hydrolysates of human lens and skin proteins increased from 1 to 15 nmol/mg protein from ages 10 to 90 years, whereas dimethyl-ornithine increased from 0.5 to 15 and from 0 to 5 nmol/mg protein, respectively. Carboxymethyl-ornithine and furornithine increased with age in lens and skin from approximately 0 to 60 and 0 to 180 pmol/mg protein, respectively. In collagen, ornithine was elevated above levels of nondiabetic controls only when both diabetes and end stage renal disease were present. The age-related increase of these modifications provides evidence for substantial in vivo formation of ornithine in aging human tissue proteins. The mechanism of ornithine formation is not known, but data suggest that arginine-derived advanced glycation end products might serve as precursors for the in vivo conversion of ornithine from arginine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号