首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research on tropical dry forest (TDF) succession i0s needed for effective conservation and management of this threatened and understudied ecosystem. We used a highly replicated chronosequence within a 37,242‐ha TDF landscape to investigate successional patterns by plant size class and to evaluate the influence of stand age, topographic position, soil properties and spatial autocorrelation on forest structure and composition. We used a SPOT5 satellite image to obtain a land‐cover thematic map, and sampled woody vegetation (adults: >5 cm diam; saplings: 1–5 cm) and soil properties in 168 plots distributed among four vegetation classes: VC1 (3–8‐yr‐old forest), VC2 (9–15‐yr‐old forest), VC3 (>15‐yr‐old forest on flat areas), VC4 (>15‐yr‐old forest on hills). Stem density decreased with stand age and was lowest in VC3, while height, basal area and species density increased with age and were higher in older than in younger forests. Topographic position also influenced forest structure and composition. Basal area and height were largely determined by stand age, whereas stem and species density, and composition were influenced mostly by soil variables associated with fertility, and by spatial autocorrelation. Adults and saplings showed contrasting patterns and correlates of community structure, but similar patterns and correlates of composition, possibly due to the prevalence of coppicing. Our results show that our sampling approach can overcome several limitations of chronosequence studies, and provide insights in the patterns and drivers of succession, as well as guidelines for forest management and conservation. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

2.
Abstract. We asked whether forest structure and understory light environments across a tropical moist forest chronosequence followed predictions of a 4‐phase model of secondary succession (establishment, thinning, transition and steady‐state) and whether seedling density and diversity were functions of light availability as predicted by this model. Using aerial photographs, we identified eight second‐growth stands (two each aged ca. 20, 40, 70, and 100 yr) and two old‐growth stands within Barro Colorado Nature Monument, Panama. Trees and seedlings were sampled in nested, contiguous quadrats in 2 160‐m transects in each stand. Light was measured as percent transmittance of diffuse photosynthetically active radiation (TPAR) at each seedling quadrat and by estimation of percent total incident radiation during the growing season from hemispherical canopy photographs. Basal area, tree density, and canopy height followed predictions of the 4‐phase model. Percent total radiation, but not TPAR, declined with stand age as did seedling density. While seedlings were more likely to occur in quadrats at higher light levels, much variation in seedling density was not related to light availability. Seedling patch sizes were small irrespective of light patches, estimated as semivariance ranges. Seedling species richness was a function of seedling density; estimates of species diversity unbiased by density did not vary systematically as a function of stand age. Proximate seed sources, efficient dispersal mechanisms, and appropriate establishment conditions can promote establishment of species‐rich communities early in successions of heterogeneous tropical moist forest.  相似文献   

3.
Caatinga vegetation continues to be converted into mosaics of secondary forest stands, but the affect of this process on biodiversity has not yet been examined. We used 35 regenerating and old‐growth stands of Caatinga to examine the recovery of plant assemblages subsequent to slash‐and‐burn agriculture and cattle ranching/pasture in northeastern Brazil. Plant assemblages were contrasted in terms of community structure (stem density/basal area/species richness/diversity), functional (leaf habit/reproductive traits) and taxonomic composition. Soil attributes were also examined to infer potential drivers for cross‐habitat differences. As expected, plant assemblages clearly differed across a large set of community‐level attributes, including all trait categories relative to leaf habit and reproduction (pollination syndrome/floral color, size, type). Overall, old‐growth forest stands supported distinct and more diverse assemblages at the plot and habitat level; e.g., long‐lived tree species were almost exclusively found in old‐growth forest stands. For most attributes, plant assemblages subsequent to pasture exhibited intermediate values between those exhibited by old‐growth forest and those of agriculture‐related stands. Surprisingly, soils exhibited similar fertility‐related scores across habitats. Our results indicate that: (1) sprouting/resprouting represents an important mechanism of forest regeneration; (2) assemblage‐level attributes suggest recovery at distinct rates; (3) forest regeneration implies community‐level changes in both vegetative and reproductive functional attributes, including directional changes; (4) Caatinga is not able to completely recover in a period of 15‐yr following land abandonment; and (5) historical land use affects recovery rates and successional pathways/taxonomic trajectories. Seasonally dry tropical forests may intrinsically cover a wide range of patterns relative to successional model, recovery rates and successional pathways.  相似文献   

4.
Chronosequences, commonly used to assess succession, have been questioned because of their failure to project successional trajectories. Here, we develop a simple analytical approach combining both chronosequence and dynamic data to test the power of age of abandonment and site factors to explain and predict succession. The approach proceeds by first fitting statistical models relating age to attribute values (the chronosequence model) and their observed changes (the dynamic model) to test explanatory power. Predictive power is then tested by bootstrapping the chronosequence model to derive confidence intervals for expected changes and comparing them with the dynamic model. Finally, residuals from both models are tested against site factors. The procedure was applied to six attributes (basal area, plant density, mean plant height, species richness, evenness, and composition) of the woody community (plants >1 cm dbh within 0.1‐ha plots) in nine abandoned cattle pastures (0–12 yr) and three old growth tropical dry forests monitored over 6 yr. Age explained 60–97 percent of the variance in community attributes and only 32–57 percent in observed changes. It significantly overestimated basal area and mean height, while species richness and composition were highly predicted. Besides age, management history also explained successional dynamics. Our results suggest age is not necessarily a reliable predictor of short‐term successional dynamics, and explanatory power is not indicative of predictive power. Because of this low reliability, caution is needed when applying chronosequences to evaluate ecosystem services' recovery. The analytical approach developed here contributes to a better exploration of those possible limitations.  相似文献   

5.
Almost half of lowland tropical forests are at various stages of regeneration following deforestation or fragmentation. Changes in tree communities along successional gradients have predictable bottom‐up effects on consumers. Liana (woody vine) assemblages also change with succession, but their effects on animal succession remain unexplored. Here we used a large‐scale liana removal experiment across a forest successional chronosequence (7–31 years) to determine the importance of lianas to ant community structure. We conducted 1,088 surveys of ants foraging on and living in trees using tree trunk baiting and hand‐collecting techniques at 34 paired forest plots, half of which had all lianas removed. Ant species composition, β‐diversity, and species richness were not affected by liana removal; however, ant species co‐occurrence (the coexistence of two or more species in a single tree) was more frequent in control plots, where lianas were present, versus removal plots. Forest stand age had a larger effect on ant community structure than the presence of lianas. Mean ant species richness in a forest plot increased by ca. 10% with increasing forest age across the 31‐year chronosequence. Ant surveys from forest >20 years old included more canopy specialists and fewer ground‐nesting ant species versus those from forests <20 years old. Consequently, lianas had a minimal effect on arboreal ant communities in this early successional forest, where rapidly changing tree community structure was more important to ant species richness and composition.  相似文献   

6.
 以海南岛霸王岭自然保护区1 hm2老龄原始林样地的调查材料为基础,分析了热带山地雨林群落的组成、高度结构、径级结构及有关的树种多样性特征。结果表明:霸王岭热带山地雨林树种较丰富,物种多样性指数较高。树种数和树木的密度都随高度级、径级的增加而呈负指数或负幂函数递减;热带山地雨林不同高度级、不同径级和不同小样方斑块内的树种数都与树木密度呈显著的正相关关系。热带山地雨林经过自然的演替达到老龄顶极群落后,最后进入主林层的只是少部分树种的少数个体。  相似文献   

7.
Domestic livestock influence patterns of secondary succession across forest ecosystems. However, the effects of cattle on the regeneration of tropical dry forests (TDF) in Mexico are poorly understood, largely because it is difficult to locate forests that are not grazed by cattle or other livestock. We describe changes in forest composition and structure along a successional chronosequence of TDF stands with and without cattle (chronic grazing or exclusion from grazing for ~ 8 year). Forest stands were grouped into five successional stages, ranging from recently abandoned to mature forest, for a total of 2.7 ha of the sampled area. The absence of cattle increased woody plant (tree and shrub) density and species richness, particularly in mid-successional and mature forest stands. Species diversity and evenness were generally greater in sites where cattle were removed and cattle grazing in early successional stands reduced establishment and/or recruitment of new individuals and species. Removal of cattle from forest stands undergoing succession appears to facilitate a progressive and non-linear change of forest structure and compositional attributes associated with rapid recovery, while cattle browsing acts as a chronic disturbance factor that compromises the resilience and structural and functional integrity of the TDF in northwestern Mexico. These results are important for the conservation, management, and restoration of Neotropical dry forests.  相似文献   

8.
Secondary succession following land abandonment, represented by a chronosequence of 15 old fields (0–80 years old) and two old-growth forests, was studied in the tropical montane cloud forest region of Veracruz, Mexico. The objective was to determine successional trajectories in forest structure and species richness of trees ≥5 cm DBH, in terms of differences in seed dispersal mode, shade tolerance, and phytogeographical affinity. Data were analyzed using AIC model selection and logistic regressions. Mean and maximum canopy height reached values similar to old-growth forest at 35 and 80 years, respectively. Species richness and diversity values were reached earlier (15 and 25 years, respectively) while basal area and stem density tended to reach old-growth forest values within 80 years. Along the chronosequence, the proportion of species and individuals of wind-dispersed trees declined, that of bird dispersed small seeded trees remained constant, while that of gravity and animal dispersed large seeded trees increased; shade-intolerant species and individuals declined, while intermediate and shade-tolerant trees increased. Shade-tolerant canopy trees were rare during succession, even in the old-growth forest. Tropical tree species were more frequent than temperate ones throughout the chronosequence, but temperate tree individuals became canopy dominants at intermediate and old-growth forest stages.  相似文献   

9.
Lianas (woody vines) can have profound effects on tree recruitment, growth, survival, and diversity in tropical forests. However, the dynamics of liana colonization soon after land abandonment are poorly understood, and thus it is unknown whether lianas alter tree regeneration early in succession. We examined the liana community in 43 forests that ranged from 1 to 31 yr old in central Panama to determine how fast lianas colonize young forests and how the liana community changes with forest succession. We found that lianas reached high densities early in succession, commonly exceeding 1000 stems/ha within the first 5 yr of forest regeneration. Lianas also increased rapidly during early succession in terms of basal area but did not show evidence of saturation within the 30 yr of our chronosequence. The relative contribution of lianas to total woody plant community in terms of basal area and density increased rapidly and reached a saturation point within 5 yr (basal area) to 15 yr (density) after land abandonment. Our data demonstrate that lianas recruit early and in high density in tropical forest regeneration, and thus lianas may have a large effect on the way in which secondary forests develop both early and throughout succession.  相似文献   

10.
The rising discussion on carbon balance of tropical forests often does not consider the sequestration potential of secondary dry forests, which are becoming an increasing importance due to land use change and reforestation. We have developed an easy applicable tool for the estimation of biomass increment of tropical secondary forest stands on the base of tree ring analysis. The existence of annual rings was shown by a combination of anatomical examination and radiocarbon estimations. With tree ring analysis, forest inventories and destructive sampling the above-ground biomass increment of secondary forest stands of age between 9 and 48 years in the dry forest region of Guanacaste, Costa Rica were estimated. The above-ground biomass increment of the tree layer varies between 2.4 and 3.2 Mg/ha yr in different stands. Lianas contribute with up to 23% additional production. Differences in productivity among the stands along a chronosequence were not significant. The measured carbon allocation potential of 1.7–2.1 Mg C/ha yr lies in the range of reported values from other tropical dry forests and old growth humid forests as well.  相似文献   

11.
Testing the relations between tree parameters and the richness and composition of lichen communities in near-natural stands could be a first step to gather information for forest managers interested in conservation and in biodiversity assessment and monitoring. This work aims at evaluating the influence of tree age and age-related parameters on tree-level richness and community composition of lichens on spruce in an Alpine forest. The lichen survey was carried out in four sites used for long-term monitoring. In each site, tree age, diameter at breast height, tree height, the first branch height, and crown projection area were measured for each tree. Trees were stratified into three age classes: (1) <100 years old, immature trees usually not suitable for felling, (2) 100–200 years old, mature trees suitable for felling, and (3) >200 years old, over-mature trees normally rare or absent in managed stands. In each site, seven trees in each age class were selected randomly. Tree age and related parameters proved to influence both tree-level species richness and composition of lichen communities. Species richness increased with tree age and related parameters indicative of tree size. This relation could be interpreted as the result of different joint effects of age per se and tree size with its area-effect. Species turnover is also suspected to improve species richness on over-mature trees. Similarly to species richness, tree-level species composition can be partially explained by tree-related parameters. Species composition changed from young to old trees, several lichens being associated with over-mature trees. This pool of species, including nationally rare lichens, represents a community which is probably poorly developed in managed forests. In accordance to the general aims of near-to-nature forestry, the presence of over-mature trees should be enhanced in the future forest landscape of the Alps especially in protected areas and Natura 2,000 sites, where conservation purposes are explicitly included in the management guidelines.  相似文献   

12.
Conversion of tropical forests to agriculture affects vertebrate assemblages, but we do not know how fast or to what extent these assemblages recover after field abandonment. We addressed this question by examining amphibians and reptiles in secondary forests in southeastern Mexico. We used chronosequence data (12 secondary forests fallow for 1–23 yr and 3 old‐growth forest sites) to analyze successional trajectories and estimate recovery times of assemblage attributes for amphibians and reptiles. We conducted 6 surveys at each site over 14 mo (1200 person‐hours) and recorded 1552 individuals, including 25 species of amphibians and 36 of reptiles, representing 96 and 74 percent of the expected regional number of species, respectively. Abundance, species richness, and species diversity of amphibians increased rapidly with successional age, approaching old‐growth forest values in < 30 yr. Species richness and species diversity of reptiles reached old‐growth forest values in < 20 yr. By contrast, the abundance of reptiles and the assemblage composition of amphibians and reptiles recovered more slowly. Along the chronosequence, we observed more species replacement in reptile assemblages than in amphibian assemblages. Several species in the old‐growth forest were absent from secondary forests. Dispersal limitation and harsh conditions prevailing in open sites and early successional environments appear to preclude colonization by old‐growth forest species. Furthermore, short fallow periods and isolation of forest remnants lead to the formation of new assemblages dominated by species favored by human disturbances.  相似文献   

13.
Tree species composition and structure of a 40-year chronosequence of secondary forests was compared with old-growth forests in southern Bahia, Brazil. Twelve stands were randomly selected that represented three age classes: 10, 25, and 40 year old with four replications in each class. All stands selected had been established after abandonment from swidden cultivation and were surrounded by old-growth forests. In every stand, ten 0.01-ha transects were established and all stems (≥5 cm diameter at breast height) were measured and identified. Results were compared with the dataset of two neighboring old-growth sites. Mean diameter, total height, and stand basal area increased with age. Number of trees/ha peaked in 40 year old stands. The results showed that secondary forests in this region take much more than 40 years to recover the structure of old-growth forests. In contrast, species richness recovery was rapid with a continuous accumulation of species with age in secondary forests. Species richness and diversity increased with age as did similarity between secondary stands and old-growth stands. More than half of the species found in the 40 year old stands were shared with the neighboring old-growth forests. However, species richness and diversity were higher in old growth sites.  相似文献   

14.
Jon K. Piper 《Biotropica》2006,38(1):122-126
Tubú (Montanoa guatemalensis, Asteraceae) is a popular tree used in windbreaks in the San Luis valley near the Monteverde cloud forests of Costa Rica. Seventy‐eight woody taxa from 32 families were found in the understory of 19 tubú windbreaks (five 4‐yr‐old, eight 12‐yr‐old, and six 20‐yr‐old). Mean size of tubú increased with stand age, but tubú was neither replacing itself nor spreading from the windbreaks. Density of other trees and shrubs ≥1 m was higher in 4‐yr‐old plots than in 20‐yr‐old plots, but density of other trees <1 m tall did not vary with windbreak age. Whereas richness of species ≥1 m was higher for 12‐ and 20‐yr‐old plots than for 4‐yr‐old plots, species richness of trees <1 m tall did not vary with windbreak stand age. Higher proportions of the woody colonists in 12‐ and 20‐yr‐old plots were animal dispersed than in 4‐yr‐old plots. Tubú windbreaks may undergo major changes in woody species composition, with Daphnopsis americana, Inga punctata, and Trichilia havanensis likely to predominate in the future.  相似文献   

15.
萌生是植物营养繁殖的重要方式之一, 树木的萌生更新对群落结构的维持、植被的动态和演替具有重要意义。本研究基于古田山常绿阔叶林内处于不同演替阶段的25个30 m × 30 m样方中胸径 ≥ 5 cm的木本植物萌生茎发生情况的调查数据, 应用线性回归模型分析了不同演替群落的萌生特征及其地形解释。结果发现: (1)样地内共有56种木本植物存在萌生现象, 占总物种数的53.8%。(2)群落(样方)水平的萌生能力与海拔显著负相关, 与坡度和坡向的相关性较弱。(3)群落水平的萌生能力与林分年龄显著负相关; 在控制地形因子的影响下, 林分年龄对萌生指标解释量仍然达到20%-30%。萌生个体数和萌生物种丰富度所占比例随林分年龄显著下降, 萌生物种主茎的平均胸径随林分年龄显著增加。研究表明, 古田山常绿阔叶林萌生能力随林分年龄的增大而下降, 可能由演替序列上物种组成的变化(即萌生能力较强物种的多度下降)和群落结构的变化(即大径级个体增多)导致。另外, 萌生能力受到海拔、坡向等地形因素的影响。  相似文献   

16.
Land-use history and large-scale disturbances interact to shape secondary forest structure and composition. How introduced species respond to disturbances such as hurricanes in post-agriculture forest recovery is of particular interest. To examine the effects of hurricane disturbance and previous land use on forest dynamics and composition, we revisited 37 secondary forest stands in former cattle pastures across Puerto Rico representing a range of exposure to the winds of Hurricane Georges in 1998. Stands ranged from 21 to>80 yr since agricultural abandonment and were measured 9 yr posthurricane. Stem density decreased as stands aged, while basal area and species richness tended to increase. Hurricane disturbance exerted contrasting effects on stand structure, contingent on stand age. In older stands, the basal area of large trees fell, shifting to a stand structure characteristic of younger stands, while the basal area of large trees tended to rise in younger stands with increasing hurricane disturbance. These results demonstrate that large-scale natural disturbances can alter the successional trajectory of secondary forest stands recovering from human land use, but stand age, precipitation and soil series were better predictors of changes in stand structure across all study sites. Species composition changed substantially between census intervals, but neither age nor hurricane disturbance consistently predicted species composition change. However, exposure to hurricane winds tended to decrease the abundance of the introduced tree Spathodea campanulata, particularly in smaller size classes. In all sites the abundance of the introduced tree Syzygium jambos showed a declining trend, again most strongly in smaller size classes, suggesting natural thinning through succession.  相似文献   

17.
Abstract. We used a forest chronosequence at the Barro Colorado Nature Monument (BCNM) to examine changes in the abundance and species composition of seeds in the soil during forest succession. At each of eight sites varying from 20 yr to 100 yr since abandonment, and at two old-growth (> 500 yr) forest stands, we established two 160-m transects and sampled the surface 0–3 cm of soil in cores collected at each 5 m interval. Seed densities were estimated from the number of seedlings germinated from the soil over a six-week period. Contrary to expectation, neither the density of the soil seed bank, nor species richness or diversity were directly related to age since abandonment, but the density of the soil seed bank was correlated with the abundance of seed-bank-forming species in the standing vegetation. In marked contrast to published studies, herbaceous taxa were rare even in the youngest stands, and the common tree species, which accounted for most seeds in the soil, were present in all stands. The pioneer tree Miconia argentea (Melastomataceae) was the single most common species in the seed bank, accounting for 62% of seeds and present in 92% of soil samples. Rapid recovery of the vegetation of young regrowth stands on BCNM, when compared to sites elsewhere may be partly due to allochthonous seed rain from nearby mature forest stands and the lack of seed inputs of weeds and grasses from agricultural and pasture lands which may inhibit forest succession.  相似文献   

18.
The seedling stage is generally the most important bottleneck for the successful regeneration of trees in forests. The traits of seedlings, particularly biomass allocation and root traits, are more easily quantified than the traits of adults. In this study, we tested the hypothesis that seedling traits vary and trade‐off tracking the changing environment during secondary succession. We measured the major morphological traits of 27 dominant species and the major environmental factors in a chronosequence (30‐yr‐old fallow, 60‐yr‐old fallow, and old growth forest) after shifting cultivation in a tropical lowland rain forest on Hainan Island, China. The 30‐yr‐old fallow had higher light and nutrient availability, and the older forests had higher soil water content. Redundancy analysis based on species abundance and environmental factors revealed groups of seedlings that dominate in different stages of succession. Seedlings in different stages of succession had different strategies of biomass allocation for harvesting resources that varied in availability. Species characteristic of younger forest had higher allocation to roots and higher specific leaf area, while species characteristic of older forest had higher allocation to leaves. Our study suggests that the variations and trade‐offs in the major functional traits of tree seedlings among successional classes may reflect changes in environmental conditions during succession.  相似文献   

19.
Nearly all published rates of secondary forest (SF) regrowth for Amazonia are inferred from chronosequences. We examined SF regrowth on abandoned pastures over a 4‐year period to determine if measured rates of forest recovery differ from chronosequence predictions. We studied the emergence, development and death of over 1300 stems in 10 SFs representing three age classes (<1–5, 6–10 and 11–14 years old). Mean tree biomass accumulation in both the <1–5 and 6–10 years old (4.4 and 5.7 Mg ha−1 yr−1, respectively) abandoned pastures was lower than predicted and deviated significantly (57% and 41%) from rates estimated from the chronosequence. The older SFs, with a mean growth rate of 9.9 Mg ha−1 yr−1 followed the rate predicted by the chronosequence. Understocking was the primary cause of low biomass recovery rates in the youngest forests; although the youngest stands had a diameter at breast height increment three times the oldest stands, the youngest stands lacked sufficient density to cumulatively produce high biomass accumulation rates. Four years of measurement indicated that the youngest stands had developed 59% of the stems measured in the older stands during the same time period. The 6–10‐year‐old stands were rapidly self‐thinning and approached stem density values measured in the same aged stands at the onset of the study. Mortality was high for all stands, with 54% of the original stems remaining after 4 years in intermediate‐aged stands. The forests were dominated by the tree Vismia, which represented 55–66% of the biomass in all stands. The Vismia share of the biomass was decreasing over time, with other genera replacing the pioneer. Our measured rates of regrowth indicate that generalized estimates of forest regrowth through chronosequence studies will overestimate forest regrowth for the youngest forests that were under land use for longer time‐periods before abandonment. Certified Emission Reductions under the Clean Development Mechanism of the Kyoto protocol should consider these results when predicting and compensating for carbon sequestered under natural forest management.  相似文献   

20.
Forest restoration by planting trees often accelerates succession, but the trajectories toward reference ecosystems have rarely been evaluated. Using a chronosequence (4–53 years) of 26 riparian forest undergoing restoration in the Brazilian Atlantic Forest, we modeled how the variables representing forest structure, tree species richness and composition, and the proportion of plant functional guilds change through time. We also estimated the time required for these variables to reach different types of reference ecosystems: old‐growth forest (OGF), degraded forest, and secondary forest. Among the attributes which follow a predictable trajectory over time are: the basal area, canopy cover, density and tree species richness, as well as proportions of shade tolerant and slow growing species or individuals. Most of the variation in density of pteridophythes, lianas, shrubs and phorophythes, proportion of animal‐dispersed individuals, rarefied richness and floristic similarity with reference ecosystems remain unexplained. Estimated time to reach the reference ecosystems is, in general, shorter for structural attributes than for species composition or proportion of functional guilds. The length of this time varies among the three types of reference ecosystems for most attributes. For instance, tree species richness and proportion of shade tolerant or slow growing individuals become similar to secondary forests in about 40 years, but is estimated to take 70 years or more to reach the OGF. Of all the variables considered, canopy cover, basal area, density, and richness of the understory—by their ecological relevance and predictability—are recommended as ecological indicators for monitoring tropical forest restoration success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号