首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identifying the species most vulnerable to extinction as a result of climate change is a necessary first step in mitigating biodiversity decline. Species distribution modeling (SDM) is a commonly used tool to assess potential climate change impacts on distributions of species. We use SDMs to predict geographic ranges for 243 birds of Australian tropical savannas, and to project changes in species richness and ranges under a future climate scenario between 1990 and 2080. Realistic predictions require recognition of the variability in species capacity to track climatically suitable environments. Here we assess the effect of dispersal on model results by using three approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting species to track climate change at a rate of 30 km per decade. As expected, the projected distributions and richness patterns are highly sensitive to the dispersal scenario. Projected future range sizes decreased for 66% of species if full dispersal was assumed, but for 89% of species when no dispersal was assumed. However, realistic future predictions should not assume a single dispersal scenario for all species and as such, we assigned each species to the most appropriate dispersal category based on individual mobility and habitat specificity; this permitted the best estimates of where species will be in the future. Under this "realistic" dispersal scenario, projected ranges sizes decreased for 67% of species but showed that migratory and tropical-endemic birds are predicted to benefit from climate change with increasing distributional area. Richness hotspots of tropical savanna birds are expected to move, increasing in southern savannas and southward along the east coast of Australia, but decreasing in the arid zone. Understanding the complexity of effects of climate change on species' range sizes by incorporating dispersal capacities is a crucial step toward developing adaptation policies for the conservation of vulnerable species.  相似文献   

2.
Analyzing the relationships between the distribution of animal species and climatic variables is not only important for understanding which factors govern species distribution but also for improving our ability to predict future ecological responses to climate change. In the context of global climate change, amphibians are of particular interest because of their extreme sensitivity to the variation of temperature and precipitation regimes. We analyzed species–climate relationships for 17 amphibian species occurring in Italy using species distribution data at the 10 × 10 km resolution. A machine learning method, Random Forests, was used to model the distribution of amphibians in relation to a set of 18 climatic variables. The results showed that the variables which had the highest importance were those related to precipitation, indicating that precipitation is an important factor in determining amphibian distribution. Future projections showed a complex response of species distributions, emphasizing the potential severity of climate change on the distributions of amphibians in Italy. The species that will decrease the most are those occurring in mountainous and Mediterranean areas. Our results provide some preliminary information that could be useful for amphibian conservation, indicating if future conservation priorities for some species should be enhanced.  相似文献   

3.

Background

Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation. Many plethodontid species in southern Appalachia exist in high elevation habitats that may be at or near their thermal maxima, and may also have limited dispersal abilities across warmer valley bottoms.

Methodology/Principal Findings

We used a maximum-entropy approach (program Maxent) to model the suitable climatic habitat of 41 plethodontid salamander species inhabiting the Appalachian Highlands region (33 individual species and eight species included within two species complexes). We evaluated the relative change in suitable climatic habitat for these species in the Appalachian Highlands from the current climate to the years 2020, 2050, and 2080, using both the HADCM3 and the CGCM3 models, each under low and high CO2 scenarios, and using two-model thresholds levels (relative suitability thresholds for determining suitable/unsuitable range), for a total of 8 scenarios per species.

Conclusion/Significance

While models differed slightly, every scenario projected significant declines in suitable habitat within the Appalachian Highlands as early as 2020. Species with more southern ranges and with smaller ranges had larger projected habitat loss. Despite significant differences in projected precipitation changes to the region, projections did not differ significantly between global circulation models. CO2 emissions scenario and model threshold had small effects on projected habitat loss by 2020, but did not affect longer-term projections. Results of this study indicate that choice of model threshold and CO2 emissions scenario affect short-term projected shifts in climatic distributions of species; however, these factors and choice of global circulation model have relatively small affects on what is significant projected loss of habitat for many salamander species that currently occupy the Appalachian Highlands.  相似文献   

4.
Climate warming and the decline of amphibians and reptiles in Europe   总被引:16,自引:2,他引:14  
Aim We explore the relationship between current European distributions of amphibian and reptile species and observed climate, and project species potential distributions into the future. Potential impacts of climate warming are assessed by quantifying the magnitude and direction of modelled distributional shifts for every species. In particular we ask, first, what proportion of amphibian and reptile species are projected to lose and gain suitable climate space in the future? Secondly, do species projections vary according to taxonomic, spatial or environmental properties? And thirdly, what climate factors might be driving projections of loss or gain in suitable environments for species? Location Europe. Methods Distributions of species are modelled with four species–climate envelope techniques (artificial neural networks, generalized linear models, generalized additive models, and classification tree analyses) and distributions are projected into the future using five climate‐change scenarios for 2050. Future projections are made considering two extreme assumptions: species have unlimited dispersal ability and species have no dispersal ability. A novel hybrid approach for combining ensembles of forecasts is then used to group linearly covarying projections into clusters with reduced inter‐model variability. Results We show that a great proportion of amphibian and reptile species are projected to expand distributions if dispersal is unlimited. This is because warming in the cooler northern ranges of species creates new opportunities for colonization. If species are unable to disperse, then most species are projected to lose range. Loss of suitable climate space for species is projected to occur mainly in the south‐west of Europe, including the Iberian Peninsula, whilst species in the south‐east are projected to gain suitable climate. This is because dry conditions in the south‐west are projected to increase, approaching the levels found in North Africa, where few amphibian species are able to persist. Main conclusions The impact of increasing temperatures on amphibian and reptile species may be less deleterious than previously postulated; indeed, climate cooling would be more deleterious for the persistence of amphibian and reptile species than warming. The ability of species to cope with climate warming may, however, be offset by projected decreases in the availability of water. This should be particularly true for amphibians. Limited dispersal ability may further increase the vulnerability of amphibians and reptiles to changes in climate.  相似文献   

5.
Many patterns observed in ecology, such as species richness, life history variation, habitat use, and distribution, have physiological underpinnings. For many ectothermic organisms, temperature relationships shape these patterns, but for terrestrial amphibians, water balance may supersede temperature as the most critical physiologically limiting factor. Many amphibian species have little resistance to water loss, which restricts them to moist microhabitats, and may significantly affect foraging, dispersal, and courtship. Using plaster models as surrogates for terrestrial plethodontid salamanders (Plethodon albagula), we measured water loss under ecologically relevant field conditions to estimate the duration of surface activity time across the landscape. Surface activity time was significantly affected by topography, solar exposure, canopy cover, maximum air temperature, and time since rain. Spatially, surface activity times were highest in ravine habitats and lowest on ridges. Surface activity time was a significant predictor of salamander abundance, as well as a predictor of successful recruitment; the probability of a juvenile salamander occupying an area with high surface activity time was two times greater than an area with limited predicted surface activity. Our results suggest that survival, recruitment, or both are demographic processes that are affected by water loss and the ability of salamanders to be surface-active. Results from our study extend our understanding of plethodontid salamander ecology, emphasize the limitations imposed by their unique physiology, and highlight the importance of water loss to spatial population dynamics. These findings are timely for understanding the effects that fluctuating temperature and moisture conditions predicted for future climates will have on plethodontid salamanders.  相似文献   

6.
South-eastern Spain is a key area for assessing the effects of climatic change on Mediterranean biodiversity since it represents an ecotone between the Mediterranean macrobioclimate and a vegetation with subtropical components. It also maintains many restricted-distribution species such as forests of Tetraclinis articulata, which with the exception of Malta, only is found here in Europe. The likely response of the species under B2 and A2 climatic scenarios is studied, using the species distribution model (SDM) and a high-resolution regional climate model (RCM). The results point to a marked increase in potential habitat under the B2 scenario, including a shift toward higher altitude and latitude values. Under the A2 scenario a substantial reduction in potential habitat is to be expected, accompanied by a drastic change in its geographical distribution, with the emergence of a new suitable area in the mountains of the interior and the total loss of the species’ present coastal habitat. Under the B2 scenario the network of reserves seems to be adequate since this would provide a substantial increase in the protected habitat, the present and future potential habitats partially overlap and most of the reserves are sufficiently close to allow the migration of the species by means of short-distance dispersal mechanisms. Under the A2 scenario, two existing reserves in the interior would be suitable, although the probability of natural migration is low due to the low dispersal capability of the species and the absence of overlapping areas between the present and future potential distribution areas.  相似文献   

7.
Global climate change affects the distributions of ectotherms and may be the cause of several conservation problems, such as great displacement of climatic suitable spaces for species and, consequently, important reductions of the extent of liveable places, threatening the existence of many of them. Species exposure (and hence vulnerability) to global climate change is linked to features of their climatic niches (such as the relative position of the inhabited localities of each species in the climatic space), and therefore to characteristics of their geographic ranges (such as the extent of the distributions or altitudinal range inhabited by the species). In order to analyze the pattern of response of Argentine reptiles to global climate change, we ran phylogenetic generalized least squares models using species exposure to global climate change as a response variable, and (i) niche properties (breadth and position of the species in the climate space) and (ii) general features of the distribution of species (maximum latitude, altitudinal range, maximum elevation, distributional range and proximity to the most important dispersal barrier) as predictors. Our results suggest that the best way to explain climate change exposure is by combining breadth and position of climatic niche of the species or combining geographic features that are indicators of both niche characteristics. Our best model shows that in our study area, species with the narrowest distributional ranges that also inhabit the highest elevations are the most exposed to the effects of global climate change. In this sense, reptile species from Yungas, Puna and Andes ecoregions could be especially vulnerable to the effects of climate change. We believe that these types of models may represent an interesting tool for determining species and places particularly threatened by the effects of global climate change, which should be strongly considered in conservation planning.  相似文献   

8.
This study assessed potential changes in the distributions of Australian butterfly species in response to global warming. The bioclimatic program, BIOCLIM, was used to determine the current climatic ranges of 77 butterfly species restricted to Australia. We found that the majority of these species had fairly wide climatic ranges in comparison to other taxa, with only 8% of butterfly species having a mean annual temperature range spanning less than 3 °C. The potential changes in the distributions of 24 butterfly species under four climate change scenarios for 2050 were also modelled using BIOCLIM. Results suggested that even species with currently wide climatic ranges may still be vulnerable to climate change; under a very conservative climate change scenario (with a temperature increase of 0.8–1.4 °C by 2050) 88% of species distributions decreased, and 54% of species distributions decreased by at least 20%. Under an extreme scenario (temperature increase of 2.1–3.9 °C by 2050) 92% of species distributions decreased, and 83% of species distributions decreased by at least 50%. Furthermore, the proportion of the current range that was contained within the predicted range decreased from an average of 63% under a very conservative scenario to less than 22% under the most extreme scenario. By assessing the climatic ranges that species are currently exposed to, the extent of potential changes in distributions in response to climate change and details of their life histories, we identified species whose characteristics may make them particularly vulnerable to climate change in the future.  相似文献   

9.
Aim To determine the potential combined effects of climate change and land transformation on the modelled geographic ranges of Banksia. Location Mediterranean climate South West Australian Floristic Region (SWAFR). Methods We used the species distribution modelling software Maxent to relate current environmental conditions to occurrence data for 18 Banksia species, and subsequently made spatial predictions using two simple dispersal scenarios (zero and universal), for three climate‐severity scenarios at 2070, taking the impacts of land transformation on species’ ranges into account. The species were chosen to reflect the biogeography of Banksia in the SWAFR. Results Climate‐severity scenario, dispersal scenario, biogeographic distribution and land transformation all influenced the direction and magnitude of the modelled range change responses for the 18 species. The predominant response of species to all climate change scenarios was range contraction, with exceptions for some northern and widespread species. Including land transformation in estimates of modelled geographic range size for the three climate‐severity scenarios generally resulted in smaller gains and larger declines in species ranges across both dispersal scenarios. Including land transformation and assuming zero dispersal resulted, as expected, in the greatest declines in projected range size across all species. Increasing climate change severity greatly increased the risk of decline in the 18 Banksia species, indicating the critical role of mitigating future emissions. Main conclusions The combined effects of climate change and land transformation may have significant adverse impacts on endemic Proteaceae in the SWAFR, especially under high emissions scenarios and if, as expected, natural migration is limiting. Although these results need cautious interpretation in light of the many assumptions underlying the techniques used, the impacts identified warrant a clear focus on monitoring across species ranges to detect early signs of change, and experiments that determine physiological thresholds for species in order to validate and refine the models.  相似文献   

10.
Climate change is one of the major threats to global amphibian diversity, and consequently, the species distribution is expected to shift considerably in the future. Therefore, predicting such shifts is important to guide conservation and management plans. Here, we used eight independent environmental variables and four representative concentration pathways (RCPs) to model the current and future habitat suitability of the Korean clawed salamander (Onychodactylus koreanus) and then defined the dispersal limits of the species using cost distance analysis. The current habitat suitability model generated using the maximum entropy algorithm was highly consistent with the known distribution of the species and had good predictive performance. Projections onto years 2050 and 2070 predicted a drastic decrease of habitat suitability across all RCPs, with up to 90.1% decrease of suitable area and 98.0% decrease of optimal area predicted from binary presence grids. The models also predicted a northeastward shift of habitat suitability toward high‐elevation areas and a persistence of suitability along the central ridge of the Baekdudaegan Range. This area is likely to become a climatic refugium for the species in the future, and it should be considered as an area of conservation priority. Therefore, we urge further ecological studies and population monitoring to be conducted across the range of O. koreanus. The vulnerability to rapid climate change is also shared by other congeneric species, and assessing the impacts of climate change on these other species is needed to better conserve this unique lineage of salamanders.  相似文献   

11.
Macroclimatic niches are indirect and potentially inadequate predictors of the realized environmental conditions that many species experience. Consequently, analyses of niche evolution based on macroclimatic data alone may incompletely represent the evolutionary dynamics of species niches. Yet, understanding how an organisms’ climatic (Grinnellian) niche responds to changing macroclimatic conditions is of vital importance for predicting their potential response to global change. In this study, we integrate microclimatic and macroclimatic data across 26 species of plethodontid salamanders to portray the relationship between microclimatic niche evolution in response to changing macroclimate. We demonstrate stronger phylogenetic signal in microclimatic niche variables than at the macroclimatic scale. Even so, we find that the microclimatic niche tracks climatic changes at the macroscale, but with a phylogenetic lag at million-year timescales. We hypothesize that behavioral tracking of the microclimatic niche over space and phenology generates the lag: salamanders preferentially select microclimates similar to their ancestral conditions rather than adapting with changes in physiology. We demonstrate that macroclimatic variables are weak predictors of niche evolution and that incorporating spatial scale into analyses of niche evolution is critical for predicting responses to climate change.  相似文献   

12.
MigClim: Predicting plant distribution and dispersal in a changing climate   总被引:1,自引:0,他引:1  
Aim Many studies have forecasted the possible impact of climate change on plant distributions using models based on ecological niche theory, but most of them have ignored dispersal‐limitations, assuming dispersal to be either unlimited or null. Depending on the rate of climatic change, the landscape fragmentation and the dispersal capabilities of individual species, these assumptions are likely to prove inaccurate, leading to under‐ or overestimation of future species distributions and yielding large uncertainty between these two extremes. As a result, the concepts of ‘potentially suitable’ and ‘potentially colonizable’ habitat are expected to differ significantly. To quantify to what extent these two concepts can differ, we developed Mig Clim, a model simulating plant dispersal under climate change and landscape fragmentation scenarios. Mig Clim implements various parameters, such as dispersal distance, increase in reproductive potential over time, landscape fragmentation or long‐distance dispersal. Location Western Swiss Alps. Methods Using our Mig Clim model, several simulations were run for two virtual species by varying dispersal distance and other parameters. Each simulation covered the 100‐year period 2001–2100 and three different IPCC‐based temperature warming scenarios were considered. Results of dispersal‐limited projections were compared with unlimited and no‐dispersal projections. Results Our simulations indicate that: (1) using realistic parameter values, the future potential distributions generated using Mig Clim can differ significantly (up to more than 95% difference in colonized surface) from those that ignore dispersal; (2) this divergence increases under more extreme climate warming scenarios and over longer time periods; and (3) the uncertainty associated with the warming scenario can be as large as the one related to dispersal parameters. Main conclusions Accounting for dispersal, even roughly, can importantly reduce uncertainty in projections of species distribution under climate change scenarios.  相似文献   

13.
Understanding the impact of past climatic events on the demographic history of extant species is critical for predicting species' responses to future climate change. Palaeoclimatic instability is a major mechanism of lineage diversification in taxa with low dispersal and small geographical ranges in tropical ecosystems. However, the impact of these climatic events remains questionable for the diversification of species with high levels of gene flow and large geographical distributions. In this study, we investigate the impact of Pleistocene climate change on three Neotropical orchid bee species (Eulaema bombiformis, E. meriana and E. cingulata) with transcontinental distributions and different physiological tolerances. We first generated ecological niche models to identify species‐specific climatically stable areas during Pleistocene climatic oscillations. Using a combination of mitochondrial and nuclear markers, we inferred calibrated phylogenies and estimated historical demographic parameters to reconstruct the phylogeographical history of each species. Our results indicate species with narrower physiological tolerance experienced less suitable habitat during glaciations and currently exhibit strong population structure in the mitochondrial genome. However, nuclear markers with low and high mutation rates show lack of association with geography. These results combined with lower migration rate estimates from the mitochondrial than the nuclear genome suggest male‐biased dispersal. We conclude that despite large effective population sizes and capacity for long‐distance dispersal, climatic instability is an important mechanism of maternal lineage diversification in orchid bees. Thus, these Neotropical pollinators are susceptible to disruption of genetic connectivity in the event of large‐scale climatic changes.  相似文献   

14.
Climate change and the outbreak ranges of two North American bark beetles   总被引:2,自引:0,他引:2  
Abstract
  • 1 One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large‐scale disturbances to pine forests in the south‐eastern and western United States, respectively.
  • 2 Our objective was to investigate potential range shifts under climate change of outbreak areas for both bark beetle species and the areas of occurrence of the forest types susceptible to them.
  • 3 To project range changes, we used discriminant function models that incorporated climatic variables. Models to project bark beetle ranges employed changed forest distributions as well as changes in climatic variables.
  • 4 Projected outbreak areas for southern pine beetle increased with higher temperatures and generally shifted northward, as did the distributions of the southern pine forests.
  • 5 Projected outbreak areas for mountain pine beetle decreased with increasing temperature and shifted toward higher elevation. That trend was mirrored in the projected distributions of pine forests in the region of the western U.S. encompassed by the study.
  • 6 Projected outbreak areas for the two bark beetle species and the area of occurrence of western pine forests increased with more precipitation and decreased with less precipitation, whereas the area of occurrence of southern pine forests decreased slightly with increasing precipitation.
  • 7 Predicted shifts of outbreak ranges for both bark beetle species followed general expectations for the effects of global climate change and reflected the underlying long‐term distributional shifts of their host forests.
  相似文献   

15.
  • 1 Insect pests, biological invasions and climate change are considered to represent major threats to biodiversity, ecosystem functioning, agriculture and forestry. Deriving hypothesis of contemporary and/or future potential distributions of insect pests and invasive species is becoming an important tool for predicting the spatial structure of potential threats.
  • 2 The western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte is a pest of maize in North America that has invaded Europe in recent years, resulting in economic costs in terms of maize yields in both continents. The present study aimed to estimate the dynamics of potential areas of invasion by the WCR under a climate change scenario in the Northern Hemisphere. The areas at risk under this scenario were assessed by comparing, using complementary approaches, the spatial projections of current and future areas of climatic favourability of the WCR. Spatial hypothesis were generated with respect to the presence records in the native range of the WCR and physiological thresholds from previous empirical studies.
  • 3 We used a previously developed protocol specifically designed to estimate the climatic favourability of the WCR. We selected the most biologically relevant climatic predictors and then used multidimensional envelope (MDE) and Mahalanobis distances (MD) approaches to derive potential distributions for current and future climatic conditions.
  • 4 The results obtained showed a northward advancement of the upper physiological limit as a result of climate change, which might increase the strength of outbreaks at higher latitudes. In addition, both MDE and MD outputs predict the stability of climatic favourability for the WCR in the core of the already invaded area in Europe, which suggests that this zone would continue to experience damage from this pest in Europe.
  相似文献   

16.
Vulnerability of 100 European butterfly species to climate change was assessed using 13 different criteria and data on species distributions, climate, land cover and topography from 1,608 grid squares 30′ × 60′ in size, and species characteristics increasing the susceptibility to climate change. Four bioclimatic model-based criteria were developed for each species by comparing the present-day distribution and climatic suitability of the occupied grid cells with projected distribution and suitability in the future using the HadCM3-A2 climate scenario for 2051–2080. The proportions of disadvantageous land cover types (bare areas, water, snow and ice, artificial surfaces) and cultivated and managed land in the occupied grid squares and their surroundings were measured to indicate the amount of unfavourable land cover and dispersal barriers for butterflies, and topographical heterogeneity to indicate the availability of potential climatic refugia. Vulnerability was also assessed based on species dispersal ability, geographical localization and habitat specialization. Northern European species appeared to be amongst the most vulnerable European butterflies. However, there is much species-to-species variation, and species appear to be threatened due to different combinations of critical characteristics. Inclusion of additional criteria, such as life-history species characteristics, topography and land cover to complement the bioclimatic model-based species vulnerability measures can significantly deepen the assessments of species susceptibility to climate change.  相似文献   

17.
The aim of this study is to evaluate the possible consequences of climate change on a representative sample of forest herbs in Europe. A fuzzy climatic envelope was used to predict the location of suitable climatic conditions under two climatic change scenarios. Expected consequences in terms of lost and gained range size and shift in distribution for 26 forest herbs were estimated. These results were combined in an Index of Predicted Range Change for each species. Finally, the effects of habitat fragmentation for potential dispersal routes were evaluated and options for management on a European scale are discussed. Generally, a good agreement of the estimated suitability under the present climate and the observed current distribution was observed. However, species vary a lot in the degree to which they occupy the presently climatically suitable areas in Europe. Many species are absent from large areas with suitable climate and thus could be said to have poor range‐filling capacity. A general change in location (range centroid) of the total suitable area was observed: The total suitable area will on average move strongly northwards and moderately eastwards under the relatively mild B1 scenario and more strongly so under the A2 scenario. The required average minimum migration rate per year to track the potential range shift is 2.1 km under the B1 scenario and 3.9 km under the A2 scenario. Moderate losses in the total suitable area in Europe are predicted for most species under both scenarios. However, the predicted changes are very variable, with one species (Actaea erythrocarpa) experiencing total range elimination in Europe (A2 scenario) while the total suitable area is predicted to show large increases for other species. The species that are predicted to experience the greatest proportional losses in their climatically suitable area within their presently realised range tend to have northern or eastern range centroids. The Index of Predicted Range Change roughly divides the species studied in four groups: One species face a high risk of extinction; eight species are expected to experience moderate to severe threat of extinction; 11 species are not considered at risk and, finally, six species may actually benefit from global warming. An analysis of potential migration routes shows the importance of maintaining and, if possible, improving the network of forest throughout Europe to make migration possible. It is also suggested to closely monitor the status of boreal and subalpine species that are most threatened by global warming. Finally it is recommended that special concern should be given to increased protection and restoration of forest habitats in southern montane areas for their crucial long‐term importance for the maintenance of European plant diversity.  相似文献   

18.
Climate change effects on biodiversity are already manifested, and yet no predictive knowledge characterizes the likely nature of these effects. Previous studies suggested an influence of topography on these effects, a possibility tested herein. Bird species with distributions restricted to montane (26 species) and Great Plains (19 species) regions of central and western North America were modeled, and climate change effects on their distributions compared: in general, plains species were more heavily influenced by climate change, with drastic area reductions (mode 35% of distributional area lost under assumption of no dispersal) and dramatic spatial movements (0–400 km shift of range centroid under assumption of no dispersal) of appropriate habitats. These results suggest an important generality regarding climate change effects on biodiversity, and provide useful guidelines for conservation planning.  相似文献   

19.
《Zoology (Jena, Germany)》2015,118(4):281-290
One of the fundamental goals in macroecology is to understand the relationship among species’ geographic ranges, ecophysiology, and climate; however, the mechanisms underlying the distributional geographic patterns observed remain unknown for most organisms. In the case of ectotherms this is particularly important because the knowledge of these interactions may provide a robust framework for predicting the potential consequences of climate change in these organisms. Here we studied the relationship of thermal sensitivity and thermal tolerance in Patagonian lizards and their geographic ranges, proposing that species with wider distributions have broader plasticity and thermal tolerance. We predicted that lizard thermal physiology is related to the thermal characteristics of the environment. We also explored the presence of trade-offs of some thermal traits and evaluated the potential effects of a predicted scenario of climate change for these species. We examined sixteen species of Liolaemini lizards from Patagonia representing species with different geographic range sizes. We obtained thermal tolerance data and performance curves for each species in laboratory trials. We found evidence supporting the idea that higher physiological plasticity allows species to achieve broader distribution ranges compared to species with restricted distributions. We also found a trade-off between broad levels of plasticity and higher optimum temperatures of performance. Finally, results from contrasting performance curves against the highest environmental temperatures that lizards may face in a future scenario (year 2080) suggest that the activity of species occurring at high latitudes may be unaffected by predicted climatic changes.  相似文献   

20.
Tropical montane taxa are often locally adapted to very specific climatic conditions, contributing to their lower dispersal potential across complex landscapes. Climate and landscape features in montane regions affect population genetic structure in predictable ways, yet few empirical studies quantify the effects of both factors in shaping genetic structure of montane-adapted taxa. Here, we considered temporal and spatial variability in climate to explain contemporary genetic differentiation between populations of the montane salamander, Pseudoeurycea leprosa. Specifically, we used ecological niche modelling (ENM) and measured spatial connectivity and gene flow (using both mtDNA and microsatellite markers) across extant populations of P. leprosa in the Trans-Mexican Volcanic Belt (TVB). Our results indicate significant spatial and genetic isolation among populations, but we cannot distinguish between isolation by distance over time or current landscape barriers as mechanisms shaping population genetic divergences. Combining ecological niche modelling, spatial connectivity analyses, and historical and contemporary genetic signatures from different classes of genetic markers allows for inference of historical evolutionary processes and predictions of the impacts future climate change will have on the genetic diversity of montane taxa with low dispersal rates. Pseudoeurycea leprosa is one montane species among many endemic to this region and thus is a case study for the continued persistence of spatially and genetically isolated populations in the highly biodiverse TVB of central Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号