首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the genetic variation of Avicennia germinans using 172 AFLP (Amplified Fragment Length Polymorphism) bands of 45 plants from four localities on the Colombian Pacific coast: 11 from Virudó (Chocó), 10 from La Plata (Valle), 12 from Tumaco (Nariño), and 12 from Chontal (Nariño). AFLP variation among localities (16.2%) was highly significant (AMOVA; P < 0.0001). All the analyses showed that Tumaco was the most genetically distinct locality of the four under study. The other three localities, La Plata, Virudó, and Chontal, apparently form a large single subpopulation with high‐to‐moderate gene flow among localities. We also found the genetic diversity of A. germinans on the Colombian Pacific coast (HE= 0.251) higher than that estimated by others over the broad geographic range of A. germinans. All these results together show that mangroves on the Colombian Pacific coast deserve a strong investigative effort to improve our ecological, evolutionary, and biogeographic knowledge of this important tropical forest type.  相似文献   

2.
Rhizophora mangle, one of the five species of the genus Rhizophora, is found widely distributed along the American and West African coasts. This species is one of the principal constituents of the mangrove ecosystem in Colombia and is also found within the most important economic activities for the communities that inhabit the littoral. In order to assess the degree of genetic diversity of R. mangle in five populations of the Colombian Pacific, nuclear microsatellite molecular markers were used. In 92 individuals sampled, it was found that 100% of the loci were polymorphic , and no private alleles were detected. The population structure of R. mangle in the Colombian Pacific, was highly significant (P < 0.001); however, the greatest differentiation was detected at the within-population level (94.62%). For the populations of La Plata, Virudó and Charambirá, the tendency toward panmixia could be the cause of the low differentiation among these three locations. Within populations, the genetic diversity revealed a deviation from Hardy–Weinberg equilibrium with high significance in Virudó and Tumaco, where it appears the intense anthropogenic activity has exercised strong pressure on the red mangrove, resulting in the possible fragmentation of the local landscape and therefore an increase in the rate of endogamy within these populations. Despite this situation, our study―one of the first developed in genetics of the red mangrove in Colombia―did not show evidence of recent bottleneck effects or deterioration in its genetic composition, which could be exploited to propose management and restoration programs for the zones where the forests of this species are degraded. Handling editor: K. Martens  相似文献   

3.
Pelliciera rhizophorae is a unique Neotropical mangrove species belonging to Pelliciera genus. We isolated eight microsatellite loci from this species. All loci were polymorphic and showed three to nine alleles per locus in Colombian Pacific and Caribbean populations. Polymorphic information content ranged from 0.46 to 0.69. Two loci (PeRh‐14 and PeRh‐19) showed null alleles on the Caribbean coast, which suggest genetic differentiation between Pacific and Caribbean populations of P. rhizophorae. Development of these microsatellite loci constitutes a new molecular tool to carry out studies in the genome of the species and to evaluate its population dynamics.  相似文献   

4.
Aim To elucidate the role of vicariance versus dispersal at the microevolutionary scale in annual killifish populations belonging to the Austrolebias bellottii species complex (Rivulidae). Within this complex, A. bellottii and A. apaii have low vagility and occur widely within the study area, making them excellent models for testing biogeographic hypotheses of differentiation. Location South America, in the Paraná–Uruguay–La Plata river basin. Methods Molecular data and morphometric analyses were used to reconstruct the phylogeographic history and morphological variation of 24 populations of two taxa of the A. bellottii species complex. Phylogenetic analyses using maximum likelihood (ML) and Bayesian inference (BI) model‐based methods, estimates of clade divergence times implemented in beast , non‐metric multidimensional scaling, analysis of molecular variance results, and morphological analyses elucidated the role of vicariance versus dispersal hypotheses in population differentiation in the aforementioned river basin. Results In the A. bellottii species complex from the Paraná–Uruguay–La Plata river basin, past allopatric fragmentation from vicariance events seems to be the most plausible scenario for diversification since the Late Miocene and more recently since the Plio‐Pleistocene. The Plio‐Pleistocene vicariance produced the differentiation of three major clades in A. bellottii populations. One clade from the eastern Uruguay River drainage was separated from another in western Uruguay and the Paraná–La Plata River drainages. A later vicariance event split populations to the south (lower Paraná–La Plata Basin) and north (middle Paraná) of the western Paraná River drainage. However, our results do not exclude the possibility of dispersal events among A. bellottii populations from both the Uruguay and Paraná river drainages, which could occur in these river basins during hypothesized connectivity cycles of the Late Pliocene and Pleistocene. Main conclusions Past allopatric fragmentation caused by different vicariance events seems to be the main driver of diversification in the A. bellottii species complex since the Plio‐Pleistocene. However, the current molecular data suggest that populations from both drainages of the Paraná–Uruguay rivers may have experienced cycles of connectivity during the Pleistocene, perhaps including multiple vicariance or dispersal events from populations located in the western lower Uruguay River drainage, which encompassed climatic and geological changes in the Paraná–Uruguay–La Plata Basin.  相似文献   

5.
A cline of allozyme variation inAbies mariesii   总被引:1,自引:0,他引:1  
Genetic variation at 22 allozyme loci was examined for 1,003 trees from 11 isolated natural populations ofAbies mariesii covering all except the southernmost region of its geographic range. Genetic diversity within species (H es=0.063) was low compared to many other long-lived woody species. Most of the genetic variation is found within populations (G ST=0.144) despite their isolated distribution. Genetic distance between populations was positively correlated with geographic distance. Genetic diversity within populations was generally low (meanH ep=0.054), but varied across populations in a clinal fashion such that genetic variation decreased with increasing latitude. These genetic characteristics may reflect the distribution history of this species.  相似文献   

6.
Genetic monitoring of reintroduced plantpopulations can allow assessment of the successin establishing new populations thatgenetically resemble native populations. Weused a PCR-based method (Intersimple SequenceRepeats) to quantify genetic variation in fourreintroduced populations of Abroniaumbellata ssp. breviflora, an annualforb native to the Pacific Coast that isstate-listed endangered in Oregon. Thereintroduced populations ranged in size from 18to 4,111 individuals in the year they weresampled. Genetic variation was also quantifiedin the natural population that served as theseed source for the reintroduction efforts. Atotal of 77 loci (bands) was observed using twoISSR primers, providing 65 polymorphic loci. Asignificant, positive regression was observedbetween the log of population size for the fivepopulations and genetic variation when measuredas percent polymorphic loci (P), expectedheterozygosity (He> ), and with adissimilarity index (1 – Sxy) based on bandsharing. Two of the reintroduced populationsmaintained approximately 90% of the geneticvariation we observed in the source population. Based on these results, we predict thatreintroduced populations of A. u. ssp.breviflora that have at least 1,000individuals should maintain 90% of the geneticvariation of the source population.  相似文献   

7.
This study analyzed the genetic diversity and patterns of genetic structure in Colombian populations of Avicennia germinans L. using microsatellite loci. A lower genetic diversity was found on both the Caribbean (Ho = 0.439) and the Pacific coasts (Ho = 0.277) than reported for the same species in other locations of Central American Pacific, suggesting the deterioration of genetic diversity. All the populations showed high inbreeding coefficients (0.131–0.462) indicating heterozygotes deficience. The genetic structure between the Colombian coasts separated by Central American Isthmus was high (FRT = 0.39) and the analyses of the genetic patterns of A. germinans revealed a clear differentiation of populations and no-recent gene flow evidence between coasts. Genetic structure was found within each coast (FST = 0.10 for the Caribbean coast and FST = 0.22 for the Pacific coast). The genetic patterns along the two coasts appear to reflect a forcing by local geomorphology and marine currents. Both coasts constitute a different Evolutionary Significant Unit, so we suggest for future transplantations plans that propagules or saplings of the populations of the Caribbean coast should not be mixed with those of the Pacific Colombian coast. Besides, we suggest that reforestation efforts should carefully distinguish propagules sources within each coast.  相似文献   

8.
Genetic variation within and among five populations of the pearl oyster Pinctada fucata, from China (Daya Bay, Sanya Bay and Beibu Bay), Japan (Mie Prefecture) and Australia (Port Stephens) was studied using AFLP. Three primer pairs generated 184 loci among which 91.8-97.3% is polymorphic. An overall genetic diversity of 0.38 among populations and an average of 0.37 within populations (ranging from 0.35 in Japanese population to 0.39 in Beibu Bay population) were observed. Genetic differentiation among the five populations is low but significant as indicated by pairwise GST (0.0079-0.0404). AMOVA further shows that differentiation is significant among the five populations but is not significant at a broader geographical scale, among the three groups of Chinese, Japanese and Australian populations or among the two groups of Australian and north Pacific populations. The low level of genetic differentiation indicated that P. fucata populations in the west Pacific are genetically linked. Among the five populations, the Australian one is more differentiated from the others, based on both pairwise AMOVA and GST analyses, and is genetically isolated by distance as indicated by Mantel test. However, genetic differences among the three Chinese populations are not correlated with the geographic distances, suggesting that Hainan Island and Leizhou Peninsula may act as barriers blocking gene flow.  相似文献   

9.
Genetic variation and differentiation of 12 populations of Picea jezoensis from the Russian Far East were studied using 20 allozyme loci. The mean number of alleles per locus was 2.63, the percent of polymorphic loci was 88.1%, the observed heterozygosity was 0.181, and the mean value of expected heterozygosity amounted to 0.189. The values of expected heterozygosity of the northern and central mainland populations were higher than in the southern part of the natural range. A significant bias of Hardy–Weinberg heterozygosity to equilibrium heterozygosity (Heq) suggests that most of the mainland populations have recently experienced a severe expansion in population size while populations from Kamchatka Peninsula have undergone a reduction in population size. Unbiased Nei’s genetic distance values were low within and between the mainland and Sakhalin Island populations (DN=0.008). The largest values (DN=0.063) were found between the mainland/Sakhalin and Kamchatka Peninsula populations. Based on genetic distance, P. jezoensis and P. kamtschatkensis could be considered as distinct taxa, but P. ajanensis, P. microsperma, and P. komarovii do not warrant taxonomic recognition.  相似文献   

10.
Genetic variation and population structure of hair crab (Erimacrus isenbeckii) were examined using nucleotide sequence analysis of 580 base pairs (bp) in the 3′ portion of the mitochondrial cytochrome c oxidase subunit I gene (COI) of 20 samples collected from 16 locales in Japan (the Hokkaido and Honshu Islands) and one in Korea. A total of 27 haplotypes was defined by 23 variable nucleotide sites in the examined COI region. Pairwise population F ST estimates and neighbor-joining tree inferred distinct genetic differentiation between the representative samples from the Pacific Ocean off the Eastern Hokkaido Island and the Sea of Japan, while others were intermediate between these two groups. AMOVA also showed a weak but significant differentiation among these three groups. The present results suggest a moderate population structure of hair crab, probably influenced by high gene flow between regional populations due to sea current dependent larval dispersal of this species.  相似文献   

11.
Random amplified polymorphic DNA (RAPD) markers were used to analyze 119 DNA samples of three Colombian Anopheles nuneztovari populations to study genetic variation and structure. Genetic diversity, estimated from heterozygosity, averaged 0.34. Genetic flow was greater between the two populations located in Western Colombia (F ST: 0.035; Nm: 6.8) but lower between these two and the northeastern population (F ST: 0.08; Nm: 2.8). According to molecular variance analysis, the genetic distance between populations was significant (phi ST 0.1131, P < 0.001). The variation among individuals within populations (phi ST 0.8869, P < 0.001)was also significant, suggesting a greater degree of population subdivision, not considered in this study. Both the parameters evaluated and the genetic flow suggest that Colombian An. nuneztovari populations are co-specific.  相似文献   

12.
Aim The aim of this study is to detect extant patterns of population genetic structure of Fraxinus mandshurica var. japonica in Japan, and to provide insights into the post‐glacial history of this species during the Holocene. Location Hokkaido and Honshu islands, Japan (including the Oshima and Shimokita peninsulas). Methods We examined nine polymorphic nuclear microsatellite loci to assess genetic variation within and among 15 populations across almost the entire range of the species in Japan. Extant patterns of geographical structure were analysed using Bayesian clustering, Monmonier’s algorithm, analysis of molecular variance, Mantel tests and principal coordinates analysis. Recent bottlenecks within populations and regional genetic variation were also assessed. Results Northern populations (Hokkaido Island and the Shimokita Peninsula) formed a single homogeneous deme, maintaining the highest level of allelic diversity on the Oshima Peninsula. By contrast, southern populations (Honshu Island) demonstrated strong substructure on both coasts. Specifically, populations on the Pacific side of Honshu exhibited significant bottlenecks and erosion of allelic diversity but preserved distinct subclusters diverging from widespread subclusters on the Japan Sea side of this island. Main conclusions Genetic evidence and life history traits suggest that F. mandshurica occupied cryptic northern refugia on the Oshima Peninsula during the Last Glacial Maximum, which is reflected in the species’ extant northern distribution. Strong geographical structure in southern populations, in agreement with fossil pollen records, suggests geographical isolation by mountain ranges running north–south along Honshu. Given that this tree species is cold‐adapted and found in riparian habitats, populations on the Pacific side of Honshu probably contracted into higher‐elevation swamps during warm post‐glacial periods, leading to a reduction of effective population sizes and rare allelic richness.  相似文献   

13.
The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction‐site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome‐wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.  相似文献   

14.
Yu H  Ge S  Hong DY 《Biochemical genetics》2000,38(5-6):138-146
We investigated the levels and patterns of genetic diversity of Pinus densata Master in Yunnan. Horizontal starch-gel electrophoresis was performed on macrogametophytes collected from nine populations in northwestern Yunnan, China. Compared with other gymnosperm species, P. densata has higher mean values for all measures of genetic diversity. Allozyme polymorphism (0.99 criterion) was 97.0% and 71.4% at the species and population levels, respectively. The average number of alleles per locus was 3.1 and 2.0 at the species and population levels. Mean expected heterozygosity was substantially higher in P. densata than average values investigated for other gymnosperms both at the population (H ep = 0.174±0.031) and at the species (H es = 0.190) levels. Of the total genetic variation, less than 12% was partitioned among populations (G ST = 0.112). Our allozyme survey supports the suggestion that the observed higher diversity in P. densata may be attributed partly to its hybrid origin between two genetically distinct species, P. yunnanensis and P. tabulaeformis. In addition, we suggest that introgression would give rise to the increase in genetic diversity occurring in P. densata.  相似文献   

15.
Castilleja levisecta (Scrophulariaceae), the golden paintbrush, is an insect-pollinated herbaceaous perennial found in the Pacific Northwest. Currently restricted to two island populations off British Columbia and nine populations (eight on islands) in Washington, C. levisecta is a rare species threatened with extinction. Allozymes were used to describe genetic diversity and structure in these eleven populations. Despite its threatened status and small geographic range, exceptionally high levels of genetic diversity are maintained within C. levisecta. All sixteen of the loci resolved were polymorphic within the species (Ps=100%), while the mean percentage of loci polymorphic within populations (Pp) was 65.7%. The mean number of alleles per polymorphic locus (APs) was 2.94 within the species and averaged 2.38 within populations (APp). Genetic diversity (Hes) was 0.285 for the species, whereas mean population genetic diversity (Hep) was 0.213. Smaller populations had, on average, fewer observed alleles and less genetic diversity. A significant negative correlation (r = –0.72) was found between genetic identity and geographic distance, indicating reduced gene flow between distant populations. The most geographically isolated population was one of the larger populations, one of the most genetically diverse and the most genetically divergent. A wide range of pairwise population genetic identities (I = 0.771 – 0.992) was found, indicating considerable genetic divergence between some populations. Overall, 19% of the total genetic diversity was distributed among populations. Results of this survey indicate that genetic augmentation of existing populations is unnecessary. The high allelic diversity found for the species and within its populations holds promise for conservation and restoration efforts to save this rare and threatened plant species.  相似文献   

16.

Pontoporia blainvillei (Gervais & d’Orbigny, 1844), the franciscana dolphin, is the most endangered small cetacean in the Western South Atlantic. It is an endemic species with a coastal and estuarine distribution that has been divided into four Franciscana Management Areas (FMAs). We used the mitochondrial DNA control region to conduct a phylogeographic analysis to evaluate the population structure of the franciscana and the influence of paleoceanographic events on its biogeographic history. We found nine populations along the entire distribution (ΦST?=?0.41, ΦCT?=?0.38, p?<?10–5), with estimated migration rates resulting in less than one female per generation. Populations from FMAIII and FMAIV in the south (including the Río de La Plata Estuary) showed higher long-term migration rates and effective population sizes than northern populations. The phylogeographic analysis supports the franciscana origin in the Río de La Plata Estuary, with further dispersal south and northwards. The first lineage split happened around 2.5 Ma, with lineage radiation throughout the Pleistocene until recent fragmentation events shaped current-day populations. We suggest that Pleistocene glaciations influenced the dispersion and population structure of the franciscana. Specifically, that the shift of the Brazil-Malvinas Confluence drove the dispersion northwards. Then, low sea-level periods caused either the isolation in estuarine refugia or local extinctions, followed by re-colonizations.

  相似文献   

17.
 To gain information on the extent and nature of genetic variation in Elymus alaskanus, levels and distribution of genetic variation were assessed within and among 13 populations originating from Iceland, Norway, Sweden and Russia using allozymes. The results showed that four (30.7%) of the 13 loci were polymorphic within the species, while the mean percentage of polymorphic loci within the populations was 1.9%. The mean number of alleles per locus for the species was 1.8 and 1.02 across the populations. Genetic diversity at the species level was low (H es=0.135), and mean population diversity was notably lower (H ep=0.005). A high degree of genetic differentiation was observed among populations. The salient points emerging from this study are: (1) statistically significant differences were found in allele frequencies among populations for every polymorphic locus (P<0.001), (2) the high mean coefficient of gene differentiation (G ST) showed that 95% of the total allozyme variation was attributable to differences among populations, and (3) relatively high genetic distances between the populations were obtained (mean D=0.16). The Norwegian populations had the highest genetic diversity as compared with the other populations. Geographical comparisons revealed three different groups of populations clearly differentiated, i.e. Scandinavia (Norway and Sweden), Iceland and Russia. Cluster and principal coordinates analyses revealed the same genetic patterns of relationships among populations. Generally, this study indicates that E. alaskanus contains low allozymic variation in its populations. The implications of these results for the conservation of the species are discussed. Received: 23 October 1998 / Accepted: 19 December 1998  相似文献   

18.
Historical records suggest that the petrels of Round Island (near Mauritius, Indian Ocean) represent a recent, long‐distance colonization by species originating from the Atlantic and Pacific Oceans. The majority of petrels on Round Island appear most similar to Pterodroma arminjoniana, a species whose only other breeding locality is Trindade Island in the South Atlantic. Using nine microsatellite loci, patterns of genetic differentiation in petrels from Round and Trindade Islands were analysed. The two populations exhibit low but significant levels of differentiation in allele frequencies and estimates of migration rate between islands using genetic data are also low, supporting the hypothesis that these populations have recently separated but are now isolated from one another. A second population of petrels, most similar in appearance to the Pacific species P. neglecta, is also present on Round Island and observations suggest that the two petrel species are hybridizing. Vocalizations recorded on the island also suggest that hybrid birds may be present within the population. Data from microsatellite genotypes support this hypothesis and indicate that there may have been many generations of hybridization and back‐crossing between P. arminjoniana and P. neglecta on Round Island. Our results provide an insight into the processes of dispersal and the consequences of secondary contact in Procellariiformes.  相似文献   

19.
Genetic variation was studied in the southern subspecies of the Asian Dolly Varden Salvelinus malma krascheninnikovi from the Kuril Islands. Thirty-six genetic loci controlling 19 enzyme systems were analyzed in 13 Dolly Varden populations from the Shumshu, Paramushir, Onekotan, Rasshua, Simushir, Urup, Iturup, and Kunashir islands. In the studied populations, the proportion of polymorphic loci was 35 to 85% and the mean heterozygosity was 0.104 to 0.173; populations from the Kunashir Island were characterized by maximum heterozygosity. In the island populations examined, significant interpopulation heterogeneity of allele frequencies was found for all studied population pairs. For the all island populations, the interpopulation diversity (G ST = 0.188) was comparable to this parameter for the populations from the Kunashir Island only (G ST = 0.170). Genetic distances between populations did not correlate with the corresponding geographical distances, which indicates the lack of a pronounced gene exchange between the island populations. Cluster analysis and multidimensional scaling based on genetic distances did not reveal clear groups among the studied populations but indicated greater similarity within the Iturup–Simushir–Urup–Paramushir group and a greater genetic divergence of the Kunashir, Onekotan, Rasshua, and especially Shumshu populations. In the Shumshu population, allele frequencies indicate the admixture of genes of the northern Dolly Varden. The observed pattern of genetic differentiation was probably caused largely by genetic drift under the conditions of a limited gene flow because of homing (which is typical of the Dolly Varden) and the presence of isolated nonanadromous populations. The population–genetic analysis of the Dolly Varden from the Kuril Islands does not give grounds to distinguish any other isolated char species in this region than S. malma, which is represented by the southern form S. m. krascheninnikovi with an admixture of the northern form S. m. malma in the Shumshu Island.  相似文献   

20.
Genetic variation at 10 allozyme loci was analyzed in 14 populations of Polygala reinii (Polygalaceae), a perennial herb endemic to central Honshu, Japan, with a fragmented geographical distribution. The levels of genetic variation within species (P=80.0, A=3.10, HE=0.303) and within populations (P=42.1, A=1.61, HE=0.163) were considerably higher than the mean for other endemic plants or short-lived perennial herbs. Genetic differentiation among populations was also high (GST=0.404). The genetic distance phenogram tended to show a clustering of the populations reflecting the fragmentation of the species range. A principal component analysis revealed the same tendency, as well as three groupings of populations in the Tokai district, on the Kii Peninsula and in the northern Kinki district. A negative correlation was obtained between the levels of gene flow and geographical distance among the populations (r=–0.745, P<0.0001). These results indicated limited gene flow among populations in P. reinii, presumably due to the geographical isolation accompanying the fragmented distribution. On the other hand, the geographical differentiation between the Japan Sea and Pacific Ocean sides was found in P. reinii, suggesting the influence of postglacial migration on the establishment of the genetic structure of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号