首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In ant–plant protection mutualisms, plants provide nesting space and nutrition to defending ants. Several plant–ants are polygynous. Possessing more than one queen per colony can reduce nestmate relatedness and consequently the inclusive fitness of workers. Here, we investigated the colony structure of the obligate acacia‐ant Pseudomyrmex peperi, which competes for nesting space with several congeneric and sympatric species. Pseudomyrmex peperi had a lower colony founding success than its congeners and thus, appears to be competitively inferior during the early stages of colony development. Aggression assays showed that P. peperi establishes distinct, but highly polygynous supercolonies, which can inhabit large clusters of host trees. Analysing queens, workers, males and virgin queens from two supercolonies with eight polymorphic microsatellite markers revealed a maximum of three alleles per locus within a colony and, thus, high relatedness among nestmates. Colonies had probably been founded by one singly mated queen and supercolonies resulted from intranidal mating among colony‐derived males and daughter queens. This strategy allows colonies to grow by budding and to occupy individual plant clusters for time spans that are longer than an individual queen’s life. Ancestral states reconstruction indicated that polygyny represents the derived state within obligate acacia‐ants. We suggest that the extreme polygyny of Pseudomyrmex peperi, which is achieved by intranidal mating and thereby maintains high nestmate relatedness, might play an important role for species coexistence in a dynamic and competitive habitat.  相似文献   

2.
Myrmecophytes (ant–plants) have special hollow structures (domatia) in which obligate ant partners nest. As the ants live only on the plants and feed exclusively on plant food bodies, sap-sucking homopterans in the domatia, and/or the homopterans honeydew, they are suitable for the study of colony size regulation by food. We examined factors regulating ant colony size in four myrmecophytic Macaranga species, which have strictly species-specific association with Crematogaster symbiont ants. Intra- and interspecific comparison of the plants showed that the ant biomass per unit food biomass was constant irrespective of plant developmental stage and plant species, suggesting that the ant colony size is limited by food supply. The primary food offered by the plants to the ants was different among Macaranga species. Ants in Macaranga beccariana and Macaranga bancana relied on homopterans rather than food bodies, and appeared to regulate the homopteran biomass and, as a consequence, regulate the ants own biomass. In contrast, ants in Macaranga winkleri and Macaranga trachyphylla relied primarily on food bodies rather than homopterans, and the plants appeared to manipulate the ant colony size. Per capita plant investment in ants (ant dry weight plant dry weight–1) was different among the four Macaranga species. The homoptera-dependent M. beccariana and M. bancana harbored lower biomass of ants than the food-body dependent M. winkleri, suggesting that energy loss is involved in the homoptera-interposing symbiotic system which has one additional trophic level. The plants investment ratio to the ants generally decreased as plants grew. The evolution of the plant reward-offering system in ant–plant–homopteran symbioses is discussed with an emphasis on the role of homopterans.  相似文献   

3.
4.
To examine interspecific variation in the intensity of ant defense among three sympatric species of obligate myrme‐cophytes of Macaranga (Euphorbiaceae), we measured the ratio of ant biomass to plant biomass, ant aggressiveness to artificial damage on host plants, and increase in herbivore damage on host plants when symbiont ants were removed. Increase in herbivore damage from two‐ and four‐week ant exclusion varied significantly among the three species. The decreasing order of vulnerability to herbivory was M. winkleri, M. trachyphylla, and M. beccariana. The antip/ant biomass ratio (= rate of the dry weight of whole ant colonies to the dry weight of whole aboveground plant parts) and ant agressiveness also varied significantly among the three species; the orders of both the ant/plant biomass ratio and ant aggressiveness were the same as in the herbivory increase. These results indicated that the intensity of ant defense differs predictably among sympatric species of obligate myrmecophytes on Macaranga. In addition to the interspecific difference in the total intensity of ant defense, when symbiont ants were excluded, both patterns of within‐plant variation in the amount of herbivore damage and compositions of herbivore species that caused the damage differed among species. This suggests that the three Macaranga species have different systems of ant defense with reference to what parts of plant tissue are protected and what herbivorous species are avoided by ant defense. Thus, it is important to consider the interspecific variation in ant defense among Macaranga species to understand the herbivore community on Macaranga plants and the mechanisms that promote the coexistence of multiple Macaranga myrmecophytes.  相似文献   

5.
Ants are widely employed by plants as an antiherbivore defence. A single host plant can associate with multiple, symbiotic ant species, although usually only a single ant species at a time. Different plant‐ant species may vary in the degree to which they defend their host plant. In Kenya, ant–acacia interactions are well studied, but less is known about systems elsewhere in Africa. A southern African species, Vachellia erioloba, is occupied by thorn‐dwelling ants from three different genera. Unusually, multiple colonies of all these ants simultaneously and stably inhabit trees. We investigated if the ants on V. erioloba (i) deter insect herbivores; (ii) differ in their effectiveness depending on the identity of the herbivore; and (iii) protect the tree against an important herbivore, the larvae of the lepidopteran Gonometa postica. We show that experimental exclusion of ants leads to greater levels of herbivory on trees. The ants inhabiting V. erioloba are an effective deterrent against hemipteran and coleopteran, but not lepidopteran herbivores. Defensive services do not vary among ant species, but only Crematogaster ants exhibit aggression towards G. postica. This highlights the potential of the V. erioloba–ant mutualism for studying ant–plant interactions that involve multiple, simultaneously resident thorn‐dwelling ant species.  相似文献   

6.
1. The benefits to trophobionte hemipterans are affected by the ant tending level, which is a widely accepted statement. The ant tending level is closely related to multiple factors. It is clear that the ant tending level can be affected by the temporal factor, age‐specific, the density of the hemipterans, and quantity and quality of honeydew produced by hemipterans. 2. Few studies of ant–hemipteran mutualisms have reported the patterns of host plants‐dependent effects, and whether host plants influence the ant tending level that is also unclear. As such, laboratory experiments were conducted to test whether the colony growth rate of an invasive mealybug Phenacoccus solenopsis Tinsley, parasitism of Aenasius bambawalei Hayat, an dominant parasitoid of P. solenopsis, are affected by tending by ghost ants (Tapinoma melanocephalum(Fabricius)], host plants (tomato and cotton), and interactions between the two factors. The difference in the ant tending level between the host plants was also determined. 3. The results showed that mealybug colony growth and parasitism were significantly affected by ant tending and host plant separately. There were significant interactions between the independent factors on the mealybug colony growth rate and percentage parasitism. These results suggest that benefits to mealybugs are host plant‐dependent.  相似文献   

7.
Symbiotic interactions between butterfly larvae and ants, termed myrmecophily, require a range of behavioural and morphological adaptations (ant‐organs). Here, using light and scanning electron microscopy, we describe the complete life cycle of two species of Theope (Lepidoptera: Riodinidae) that have contrasting ways of life. Theope thestias larvae are facultatively tended by several ant species, whereas Theope pieridoides have obligate symbiotic interactions with Azteca ants that inhabit a myrmecophytic tree. Morphological differences associated with their different degrees of intimacy with tending ants are visible from hatching. In T. thestias, the untended first‐instar larva has elongated bifurcated setae and a few tiny perforated cupola organs (PCOs), whereas in T. pieridoides, the ant‐tended first instar has short dendritic setae, larger and more numerous PCOs, and functional tentacle nectary organs (TNOs). Throughout ontogeny, T. pieridoides always shows more conspicuous ant‐organs than T. thestias, with the exception of balloon setae, which are larger and more numerous in T. thestias. In addition, mature T. pieridoides larvae have an anterior set of ant‐organs, including a new type, here described and termed anterior glandular openings (AGOs). Based on the behavioural responses of ants in contact with these structures, a new interpretation for the mechanism whereby Theope larvae can manipulate the behaviour of their tending ants is proposed. Until now, three ecological syndromes can be defined among Theope species: (1) oligophagous larvae with facultative myrmecophily; (2) monophagous larvae with obligate myrmecophily; and (3) polyphagous larvae with obligate myrmecophily. These results suggest that differences in the degree of specificity in the ant–plant interactions may have an important role in the evolution of host‐plant use in Theope. © 2013 The Linnean Society of London  相似文献   

8.
《法国昆虫学会纪事》2012,48(6):459-464
Summary

Carbohydrate food is of high importance for survival of ant colonies. Ants are known to use sugary excretions (honeydew) of various insects, nectar of floral and extrafloral nectaries, and even sap of some trees. However, the ability of ants to use sap of herbaceous plants has not been mentioned. This is the first evidence that ants of the genus Myrmica can intentionally ‘cut off’ young cereal sprouts to obtain plant sap. The investigation was carried out in a laboratory in 2018 and 2019 and involved three ant species of the genus Myrmica [12 colonies of M. rubra (Linnaeus, 1758); eight colonies of M. ruginodis Nylander, 1846; and five colonies of M. scabrinodis Nylander, 1846]. First observations were made occasionally in 10 ant colonies during the study of ant–aphid interactions. After three days of carbohydrate starvation, ants were supplied with the plants of wheat infested with aphids of Schizaphis graminum (Rondani, 1852). Within the first day in addition to ordinary trophobiotic relations with aphids, the workers of all the studied colonies demonstrated unexpected behaviour: they ‘cut off’ some sprouts and collected sap of these plants. The experimental investigation in 15 ant colonies of various sizes (about 150, 300 and 500 workers) supplied with the plants infested or non-infested with aphids has shown that getting sap of herbs depends greatly on ant colony needs and available resources. The number of damaged plants was much higher both in the larger colonies of ants and in the absence of aphids. This way of getting carbohydrates allows ants to quickly obtain some extra food needed to maintain colony viability and seems to be one of the mechanisms promoting survival of ants in conditions of acute carbohydrate deficiency. At the same time, ants avoid using plant sap when there are more available alternative carbohydrate resources.  相似文献   

9.
Tropical plants of different genera defend themselves via symbiotic ant colonies, which are housed and often nourished by their host plant. Many studies deal with the defensive effects of the ants, but none has linked the plants' investment in this type of defence to the size and defensive efficacy of the symbiotic ant colony. We show here that ant-food production by the obligate myrmecophyte, Macaranga triloba, is limited by nutrient supply. The colony size of the ants in untreated plants (which had not been affected by experiments in advance of colony collection and determination of food body production) was significantly correlated with the amount of food produced by their hosts, and the plants' level of leaf damage was significantly and negatively correlated with the number of inhabiting ant workers. Our study provides the first field data that show that nutrient availability can directly influence a myrmecophyte's investment in its ants. Further studies are needed to evaluate whether soil nutrient contents in general can be a factor that limits the ability of myrmecophytes to defend themselves indirectly by nourishing symbiotic ants.  相似文献   

10.
  • Although the production of extranuptial nectar is a common strategy of indirect defence against herbivores among tropical plants, the presence of extranuptial nectaries in reproductive structures is rare, especially in ant‐plants. This is because the presence of ants in reproductive organs can generate conflicts between the partners, as ants can inhibit the activity of pollinators or even castrate their host plants. Here we evaluate the hypothesis that the ant‐plant Miconia tococa produces nectar in its petals which attracts ants and affects fruit set.
  • Floral buds were analysed using anatomical and histochemical techniques. The frequency and behaviour of floral visitors were recorded in field observations. Finally, an ant exclusion experiment was conducted to evaluate the effect of ant presence on fruit production.
  • The petals of M. tococa have a secretory epidermis that produces sugary compounds. Nectar production occurred during the floral bud stage and attracted 17 species of non‐obligate ants (i.e. have a facultative association with ant‐plants). Ants foraged only on floral buds, and thus did not affect the activity of pollinators in the neighbouring open flowers. The presence of ants in the inflorescences increased fruit production by 15%.
  • To our knowledge, the production of extranuptial nectar in the reproductive structures of a myrmecophyte is very rare, with few records in the literature. Although studies show conflicts between the partners in the ant–plant interaction, ants that forage on M. tococa floral buds protect the plant against floral herbivores without affecting bee pollination.
  相似文献   

11.
Ants that are obligate plant associates protect their host against herbivores and aggressively defend the resources offered by the plant. Workers of Pseudomyrmex nigropilosus Emery (Hymenoptera: Formicidae), an acacia ant that parasitizes the mutualism by not defending the tree, are seen stealing food from other ant‐defended acacia trees. In the present study, hypotheses of evasion, chemical crypsis, chemical repellence and temporal activity patterns are tested in the field aiming to determine how P. nigropilosus enters other acacia trees, successfully circumventing the defence of the resident ants. When parasitic ants are stealing, resident ants are evaded by stopping walking, changing their walking direction or walking faster. Resident and parasitic workers have similar temporal activity patterns. Parasitic workers can walk 2.6‐fold faster compared with any of the three species of acacia‐ants from which they usually steal food. Behavioural assays suggest that P. nigropilosus do not have chemical repellence but that chemical crypsis may be involved in the evasion strategy. This last hypothesis needs to be explored further by chemical and olfactory analyses. The combination of speed and evasive reactions allows parasitic ants to access well‐defended acacia trees.  相似文献   

12.
Myrmecophytes depend on symbiotic ants (plant‐ants) to defend against herbivores. Although these defensive mechanisms are highly effective, some herbivorous insects can use myrmecophytes as their host‐plants. The feeding habits of these phytophages on myrmecophytes and the impacts of the plant‐ants on their feeding behavior have been poorly studied. We examined two phasmid species, Orthomeria alexis and O. cuprinus, which are known to feed on Macaranga (Euphorbiaceae) myrmecophytes in a Bornean primary forest. Our observations revealed that: (i) each phasmid species relied on two closely‐related myrmecophytic Macaranga species for its host‐plants in spite of their normal plant‐ant symbioses; and (ii) there was little overlap between their host‐plant preferences. More O. cuprinus adults and nymphs were found on new leaves, which were attended by more plant‐ants than mature leaves, while most adults and nymphs of O. alexis tended to avoid new leaves. In a feeding choice experiment under ant‐excluded conditions, O. alexis adults chose a non‐host Macaranga myrmecophyte that was more intensively defended by plant‐ants and was more palatable than their usual host‐plants almost as frequently as their usual host‐plant, suggesting that the host‐plant range of O. alexis was restricted by the presence of plant‐ants on non‐host‐plants. Phasmid behavior that appeared to minimize plant‐ant attacks is described.  相似文献   

13.
Current evidence suggests that ant–plant relationships may influence species composition, abundance, and interactions at the community scale. The main resource that plants offer to ants is extrafloral nectar (EFN) and the major part of published studies shown benefits from ants to plants possessing EFNs. However, the complementary question of whether and how ants benefit from EFNs is rarely addressed. Here, we present the results of a long-term study to demonstrate whether EFN has a positive effect on ant colony fitness. We quantified colony growth rate, survival and the final weight of individuals as measures of benefit derived from EFN. Our results provide clear evidence that EFN can have a significant positive impact on the survivorship, growth and reproduction of the Myrmicinae Cephalotes pusillus. In fact, a diet rich in EFN (providing at least 30 cal per day) resulted in five times more individuals per colony, greater body weights, and more eggs. These results have shed new light on the relationships between ants and EFN-bearing plants such as in tropical and temperate systems. The ant C. pusillus is the first case in which we have firm evidence that EFN improves colony growth and development, corroborating more than 100 years of experimental evidence of benefits to plants in these widespread relationships.  相似文献   

14.
Many ant partners of tropical ant-plants prune the leaves and shoot tips of other plants growing around their hosts. According to the hypothesis proposed by Davidson et al. (Ecology 69:801-808), this specialized behaviour not only protects the host plants against overgrowth, but it also conveys a direct benefit to the ant colony as it removes contact points to the neighbouring vegetation where invasions of enemy ants could occur. Here we test this hypothesis by comparing pruning intensity in five closely related Crematogaster (subgenus Decacrema) plant-ant species (and one species of Technomyrmex) that differ in their exposure to competition by other ants. Pruning intensity was quantified by measuring the area loss of paper tape pieces wrapped around the stems of Macaranga host plants. All Crematogaster (Decacrema) ants tested but not Technomyrmex sp. pruned, but the intensity of the behaviour varied strongly between and within species. Pruning was significantly weaker in the three tested Crematogaster species inhabiting Macaranga host plants with a slippery, waxy stem surface, which functions as a mechanical barrier protecting the specific ant partners against generalist competitors. Pruning was generally stronger on more densely ant-populated trees. Even though the number of ants per twig length was lower in associations of ants with glaucous Macaranga hosts, only part of the variation of pruning activity could be explained by "ant density". When corrected for ant density, "wax-running" Crematogaster (Decacrema) ants still pruned more weakly than their congeners inhabiting non-glaucous Macaranga hosts. Pruning is obviously most important when an ant-plant is potentially accessible to intruders, but less necessary when the ant colony is isolated by a protective wax barrier. Our results support the hypothesis that "selfish" defence against invasions is the major selective pressure that has led to the development and maintenance of pruning behaviour in weakly competitive plant-ants.  相似文献   

15.
Summary. One of the most species-rich ant-plant mutualisms worldwide is the palaeotropical Crematogaster-Macaranga system. Although the biogeography and ecology of both partners have been extensively studied, little is known about the temporal structuring and the dynamics of the association. In this study we compared life-history traits of the specific Crematogaster (Decacrema) partner-ants and followed the development of ant colonies on eight different Macaranga host plant species, from colony founding on saplings to adult trees in a snapshot fashion. We found differences in the onset of alate production, queen number and mode of colony founding in the ant species and examined the consequences of these differences for the mutualism with the host plant. The lifespan of some host plants and their specific ant partners seemed to be well matched whereas on others we found an ontogenetic succession of specific partner ants. The partner ants of saplings or young plants often differed from specific partner ants found on larger trees of the same species. Not all specific Crematogaster species can re-colonize the crown region of adult trees, thus facilitating a change of ant species. Therefore lifespan of the ant colony as well as colony founding behaviour of the different partner ant species are important for these ontogenetic changes. The lifespan of a colony of two species can be prolonged via secondary polygyny. For the first time, also primary polygyny (pleometrosis) is reported from this myrmecophytic system.  相似文献   

16.
Trimble ST  Sagers CL 《Oecologia》2004,138(1):74-82
Carbon and nitrogen stable isotopes were used to examine variation in ant use of plant resources in the Cecropia obtusifolia / Azteca spp. association in Costa Rica. Tissue of ants, host plants and symbiotic pseudococcids were collected along three elevation transects on the Pacific slope of Costa Ricas Cordillera Central, and were analyzed for carbon and nitrogen isotopic composition. Worker carbon and nitrogen signatures were found to vary with elevation and ant colony size, and between Azteca species groups. Ants in the A. constructor species group appear to be opportunistic foragers at low elevations, but rely more heavily on their host plants at high elevations, whereas ants in the A. alfari species group consume a more consistent diet across their distribution. Further, isotope values indicate that both ant species groups acquire more nitrogen from higher trophic levels at low elevation and when ant colonies are small. Provisioning by the host is a substantial ecological cost to the interaction, and it may vary, even in a highly specialized association. Nonetheless, not all specialized interactions are equivalent; where interaction with one ant species group appears conditional upon the environment, the other is not. Differential host use within the Cecropia-Azteca association suggests that the ecological and evolutionary benefits and costs of association may vary among species pairs.  相似文献   

17.
Nest site selection in arboreal, domatia-dwelling ants, particularly those coexisting on a single host plant, is little understood. To examine this phenomenon we studied the African savannah tree Vachellia erioloba, which hosts ants in swollen-thorn domatia. We found four ant species from different genera (Cataulacus intrudens, Tapinoma subtile, Tetraponera ambigua and an unidentified Crematogaster species). In contrast to other African ant plants, many V. erioloba trees (41 % in our survey) were simultaneously co-occupied by more than one ant species. Our study provides quantitative field data describing: (1) aspects of tree and domatia morphology relevant to supporting a community of mutualist ants, (2) how ant species occupancy varies with domatia morphology and (3) how ant colony size varies with domatia size and species. We found that Crematogaster sp. occupy the largest thorns, followed by C. intrudens, with T. subtile in the smallest thorns. Thorn age, as well as nest entrance hole size correlated closely with ant species occupant. These differing occupancy patterns may help to explain the unusual coexistence of three ant species on individual myrmecophytic trees. In all three common ant species, colony size, as measured by total number of ants, increased with domatia size. Additionally, domatia volume and species identity interact to predict ant numbers, suggesting differing responses between species to increased availability of nesting space. The proportion of total ants in nests that were immatures varied with thorn volume and species, highlighting the importance of domatia morphology in influencing colony structure.  相似文献   

18.
In many ant–plant mutualisms, ants establish colonies in hollow thorns, leaf pouches, or other specialized structures on their host plants, which they then defend from herbivores. Resource heterogeneity could affect the maintenance of these mutualisms if it leads to one or both partners altering their investment in the interaction. Such a phenomenon may be especially pertinent to the Acacia–ant mutualism found in East African savannas, where termite mounds have a profound effect on the spatial structuring of resources used by both plants and ants. Here, we examined whether the proximity to termite mounds of Acacia drepanolobium trees is associated with variation in the behavior of one of their ant associates, Crematogaster nigriceps. We found that ant colonies near termite mounds had decreased aggressive responses to simulated herbivory as well as increased off‐tree movement. We hypothesize that these changes are the result of resident ant colonies near termite mounds shifting investment from defense of their host plant to foraging for nearby resources.  相似文献   

19.
Ant–plant mutualisms are useful models for investigating how plant traits mediate interspecific interactions. As plant‐derived resources are essential components of ant diets, plants that offer more nutritious food to ants should be better defended in return, as a result of more aggressive behavior toward natural enemies. We tested this hypothesis in a field experiment by adding artificial nectaries to individuals of the species Vochysia elliptica (Vochysiaceae). Ants were offered one of four liquid foods of different nutritional quality: amino acids, sugar, sugar + amino acids, and water (control). We used live termites (Nasutitermes coxipoensis) as herbivore competitors and observed ant behavior toward them. In 88 hr of observations, we recorded 1,009 interactions with artificial nectaries involving 1,923 individual ants of 26 species. We recorded 381 encounters between ants and termites, of which 38% led to attack. Sixty‐one percent of these attacks led to termite exclusion from the plants. Recruitment and patrolling were highest when ants fed upon nectaries providing sugar + amino acids, the most nutritious food. This increase in recruitment and patrolling led to higher encounter rates between ants and termites, more frequent attacks, and faster and more complete termite removal. Our results are consistent with the hypothesis that plant biotic defense is mediated by resource quality. We highlight the importance of qualitative differences in nectar composition for the outcome of ant–plant interactions. Abstract in Portuguese is available with online material.  相似文献   

20.
Cursorial central‐place foragers like ants are expected to minimize travel costs by choosing the least resistive pathways to food resources. Tropical arboreal and semi‐arboreal ants locomote over a variety of plant surfaces, and their choice of pathways is selective. We measured the roughness of tree trunk and liana stem surfaces using laser scanning technology, and explored its consequences for running speed in various ant taxa. The average amplitude of tree trunk surface roughness differed interspecifically, and ranged from 1.4–2.2 mm among three common tree species (Anacardium excelsum, Alseis blackiana, and Dipteryx panamensis). The roughness of liana stems also varied interspecifically (among Tontelea ovalifolia, Bauhinia sp. and Paullinia sp.) and was an order of magnitude lower than tree surface roughness (mean amplitude ranged 0.09–0.19 mm). Field observations of various ant species foraging on tree trunks and liana stems, and on dowels covered with sandpaper, showed that their running speed declined with increasing amplitude of roughness. The effect of roughness on running speed was strongest for mid‐sized ants (Azteca trigona and Dolichoderus bispinosus). The accumulation rate of ants at baits did not vary with tree surface roughness, but was significantly lower on moss‐covered versus moss‐free bark. Collectively, these results indicate that the quality of plant substrates can influence the foraging patterns of arboreal ants, but likely is more important for resource discovery than for dominance on bare tree surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号