首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细菌非编码小RNA(smallnon.codingRNAs,sRNAs)是一类长度为50~500nt、不编码蛋白质的功能RNA,在应对胁迫、毒力产生和新陈代谢等生命过程中起重要的调控作用。其主要通过碱基配对与靶mRNA发生作用,导致mRNA翻译和稳定性改变,从而在转录后水平调节基因的表达,最终影响细菌各种生命活动。近年来,利用生物信息学和分子生物学技术,已在细菌中筛选并鉴定得到了几百个sRNA。该文对细菌sRNA的筛选和鉴定方法作一简要综述。  相似文献   

2.
A plethora of RNAs with regulatory functions has been discovered in many non-pathogenic and pathogenic bacteria. In Staphylococcus aureus, recent findings show that a large variety of RNAs control target gene expression by diverse mechanisms and many of them are expressed in response to specific internal or external signals. These RNAs comprise trans-acting RNAs, which regulate gene expression through binding with mRNAs, and cis-acting regulatory regions of mRNAs. Some of them possess multiple functions and encode small but functional peptides. In this review, we will present several examples of RNAs regulating pathogenesis, antibiotic resistance, and host-pathogen interactions and will illustrate how regulatory proteins and RNAs form complex regulatory circuits to express the virulence factors in a dynamic manner.  相似文献   

3.
4.
5.
RNA-based pathways that regulate protein expression are much more widespread than previously thought. Regulatory RNAs, including 5' and 3' untranslated regions next to the coding sequence, cis-acting antisense RNAs and trans-acting small non-coding RNAs, are effective regulatory molecules that can influence protein expression and function in response to external cues such as temperature, pH and levels of metabolites. This Review discusses the mechanisms by which these regulatory RNAs, together with accessory proteins such as RNases, control the fate of mRNAs and proteins and how this regulation influences virulence in pathogenic bacteria.  相似文献   

6.
A wide range of proteins and RNA molecules in plants have been recently identified as non-cell autonomous, phloem-mobile molecules and suggested to play important roles in physiological and developmental processes. Systemic movement of both protein-coding mRNAs and non-coding small RNAs is shown to correlate with the epigenetic changes brought about across grafting junctions, supporting their potential roles as long-distance signaling molecules. Plants appear to have evolved this unique RNA-based signaling mechanism to control systemic regulation of various responses to environmental stimuli and challenges such as photoperiods, nutrient availabilities, and pathogen attacks. This mechanism may have been exploited by viroids, non-coding RNA pathogens, to spread infection cell to cell and through phloem. A model describing potential molecular mechanisms by which the systemic RNA trafficking occurs will be presented.  相似文献   

7.
8.
9.
It is commonly known that animal pathogens often target and suppress programmed cell death (pcd) pathway components to manipulate their hosts. In contrast, plant pathogens often trigger pcd. In cases in which plant pcd accompanies disease resistance, an event called the hypersensitive response, the plant surveillance system has learned to detect pathogen-secreted molecules in order to mount a defence response. In plants without genetic disease resistance, these secreted molecules serve as virulence factors that act through largely unknown mechanisms. Recent studies suggest that plant bacterial pathogens also secrete antiapoptotic proteins to promote their virulence. In contrast, a number of fungal pathogens secrete pcd-promoting molecules that are critical virulence factors. Here, we review recent progress in determining the role and regulation of plant pcd responses that accompany both resistance and susceptible interactions. We also review progress in discerning the mechanisms by which plant pcd occurs during these different interactions.  相似文献   

10.
细菌小RNA (Small RNAs,sRNAs)是一类长度大约在40?400个核酸之间,不编码蛋白质的RNA,在细菌适应环境方面起重要的调节作用。当环境中温度、营养、外膜蛋白、pH、铁等条件改变时,sRNA常常通过连接双组分信号转导系统和调节蛋白,来传递压力信号并调节应激响应,其作用方式一般是通过碱基互补配对的方式与靶mRNA结合,从而调控靶mRNA的翻译和稳定性;或直接与靶标蛋白质结合,调节靶标蛋白质的生物活性。本文总结了细菌在多种环境压力下,sRNA的调控响应机制。  相似文献   

11.
Small noncoding RNAs controlling pathogenesis   总被引:5,自引:0,他引:5  
Infectious diseases are a leading cause of mortality worldwide. A major challenge in achieving their eradication is a better understanding of bacterial pathogenesis processes. The recent discovery of small noncoding RNAs (sRNAs) as modulators of gene expression in response to environmental cues has brought a new insight into bacterial regulation. sRNAs coordinate complex networks of stress adaptation and virulence gene expression. sRNAs generally ensure such a regulation by pairing to mRNAs of effector and/or regulatory genes, or by binding to proteins. An updated view on bacterial models responsible for important infections illustrates the key role of sRNAs in the control of pathogenesis.  相似文献   

12.
13.
14.
15.
RyhB是一种大小为90个核苷酸的细菌非编码小RNA分子(small noncoding RNA, sRNA).当铁缺乏时,RyhB通过下调一系列与铁的储存和利用相关蛋白的表达水平以维持体内的铁平衡,而其本身的表达则受到负调控因子Fur(ferric uptake regulator)的调节.在体内,RyhB与Hfq蛋白和核糖核酸酶E (ribonuclease E, RNase E)形成核蛋白复合物sRNP来发挥活性.sRNP通过RyhB与靶基因的互补配对序列作用于靶基因的核糖体结合位点,阻断靶mRNA的翻译,并迅速引起靶mRNA的降解.此外,RyhB还可以通过影响致病菌的生物膜形成、趋化性、耐酸性等方面的能力对细菌的致病力进行调节.本文综述了RyhB的结构、功能及作用机制方面的研究进展,并对其存在的生理意义进行了探讨.  相似文献   

16.
Dual RNAs in plants   总被引:1,自引:0,他引:1  
Bardou F  Merchan F  Ariel F  Crespi M 《Biochimie》2011,93(11):1950-1954
  相似文献   

17.
18.
19.
RNA regulation in plant abiotic stress responses   总被引:1,自引:0,他引:1  
  相似文献   

20.
Regulatory roles for small RNAs in bacteria   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号