首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Heavy crudes (bitumen) are extremely viscous and contain high concentrations of asphaltene, resins, nitrogen and sulfur containing heteroaromatics and several metals, particularly nickel and vanadium. These properties of heavy crude oil present serious operational problems in heavy oil production and downstream processing. There are vast deposits of heavy crude oils in many parts of the world. In fact, these reserves are estimated at more than seven times the known remaining reserves of conventional crude oils. It has been proven that reserves of conventional crude oil are being depleted, thus there is a growing interest in the utilization of these vast resources of unconventional oils to produce refined fuels and petrochemicals by upgrading. Presently, the methods used for reducing viscosity and upgradation is cost intensive, less selective and environmentally reactive. Biological processing of heavy crudes may provide an ecofriendly alternative or complementary process with less severe process conditions and higher selectivity to specific reactions to upgrade heavy crude oil. This review describes the prospects and strengths of biological processes for upgrading of heavy crude oil.  相似文献   

2.
AIMS: To study the desulphurization of dibenzothiophene (DBT), a recalcitrant thiophenic component of fossil fuels, by two bacteria namely Rhodococcus sp. and Arthrobacter sulfureus isolated from oil-contaminated soil/sludge in order to use them for reducing the sulphur content of diesel oil in compliance with environmental regulations. METHODS AND RESULTS: The desulphurization pathway of DBT by the two bacteria was determined by gas chromatography (GC) and GC-mass spectrometry. Both organisms were found to produce 2-hydroxy biphenyl (2-HBP), the desulphurized product of DBT. Sulphur contents of culture supernatants of Rhodococcus sp. and A. sulfureus grown with DBT as sole sulphur source were analysed by X-ray fluorescence indicating sulphur levels of 8 and 10 ppm, respectively, as compared with 27 ppm in control. In order to study desulphurization of diesel oils obtained from an oil refinery, resting cell studies were carried out which showed a decrease of about 50% in sulphur content of the oil obtained from the hydrodesulphurization (HDS) unit of the refinery. CONCLUSIONS: Rhodococcus sp. and A. sulfureus selectively remove sulphur from DBT to form 2-HBP. Application of these bacteria for desulphurization of diesel showed promising potential for decreasing the sulphur content of diesel oil. SIGNIFICANCE AND IMPACT OF THE STUDY: The process of microbial desulphurization described herein can be used for significantly reducing the sulphur content of oil, particularly, after the process of HDS which would help in meeting the regulatory standards for sulphur level in diesel oil.  相似文献   

3.
4.
Sulphur compounds present in coal impose severe limitations on its utilization since sulphur-containing gases emitted into the atmosphere upon direct combustion of coal cause serious environmental pollution problems. Removal of sulphur compounds from coal by microbial action has many advantages over physical and chemical desulphurization methods. The potential use of various microorganisms for the removal of sulphur compounds from coal is presented. Environmental conditions and major process variables affecting the process performance are identified and their possible effects are discussed. Various process schemes for microbial desulphurization (MDS) of coal are suggested. It is concluded that microbial methods have a high potential in removing sulphur compounds from coal. However, more research and development work is needed in this field to overcome present technological problems.  相似文献   

5.
Goal, Scope, and Background The main goal of the study is a comprehensive life cycle assessment of kerosene produced in a refinery located in Thessaloniki (Greece) and used in a commercial jet aircraft. Methods The Eco-Indicator 95 weighting method is used for the purpose of this study. The Eco-Indicator is a method of aggregation (or, as described in ISO draft 14042, 'weighting through categories') that leads to a single score. In the Eco-indicator method, the weighing factor (We) applied to an environmental impact index (greenhouse effect, ozone depletion, etc.) stems from the 'main' damage caused by this environmental impact. Results and Discussion The dominant source of greenhouse gas emissions is from kerosene combustion in aircraft turbines during air transportation, which contributes 99.5% of the total CO2 emissions. The extraction and refinery process of crude oil contribute by around 0.22% to the GWP. This is a logical outcome considering that these processes are very energy intensive. Transportation of crude oil and kerosene have little or no contribution to this impact category. The main source of CFC-11 equivalent emissions is refining of crude oil. These emissions derive from emissions that result from electricity production that is used during the operation of the refinery. NOx emissions contribute the most to the acidification followed by SO2 emissions. The main source is the use process in a commercial jet aircraft, which contributes approximately 96.04% to the total equivalent emissions. The refinery process of crude oil contributes by 2.11% mainly by producing SO2 emissions. This is due to the relative high content of sulphur in the input flows of these processes (crude oil) that results to the production of large amount of SO2. Transportation of crude oil by sea (0.76%) produces large amount of SO2 and NOx due to combustion of low quality liquid fuels (heavy fuel oil). High air emissions of NOx during kerosene combustion result in the high contribution of this subsystem to the eutrophication effect. Also, water emissions with high nitrous content during the refining and extraction of crude oil process have a big impact to the water eutrophication impact category. Conclusion The major environmental impact from the life cycle of kerosene is the acidification effect, followed by the greenhouse effect. The summer smog and eutrophication effect have much less severe effect. The main contributor is the combustion of kerosene to a commercial jet aircraft. Excluding the use phase, the refining process appears to be the most polluting process during kerosene's life cycle. This is due to the fact that the refining process is a very complicated energy intensive process that produces large amounts and variety of pollutant substances. Extraction and transportation of crude oil and kerosene equally contribute to the environmental impacts of the kerosene cycle, but at much lower level than the refining process. Recommendation and Perspective The study indicates a need for a more detailed analysis of the refining process which has a very high contribution to the total equivalent emissions of the acidification effect and to the total impact score of the system (excluding the combustion of kerosene). This is due to the relative high content of sulphur in the input flows of these processes (crude oil) that results to the production of large amount of SO2.  相似文献   

6.
ABSTRACT: BACKGROUND: The desulphurization of dibenzothiophene (DBT), a recalcitrant thiophenic fossil fuel component by Serratia marcescens (UCP 1549) in order for reducing the sulphur content was investigated. The study was carried out establishing the growth profile using Luria Bertani medium to different concentrations of DBT during 120hours at 28oC, and orbital shaker at 150rpm. RESULTS: The results indicated that concentrations of DBT 0.5, 1.0 and 2.0 mM do not affected the growth of the bacterium. The DBT showed similar Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MCB) (3.68 mM). The desulphurization of DBT by S. marcescens was used with 96 hours of growth on 2mM of DBT, and was determined by gas chromatography (GC) and GC-mass spectrometry. In order to study the desulphurization process by S. marcescens was observed the presence of a sulfur-free product at 16 hours of cultivation The results show that S. marcescens oxidizes DBT to its corresponding DBT-5 oxide and then to DBT-sulfone, without the formation of any biphenyl. CONCLUSIONS: The data suggests the use of metabolic pathway "4S" by S. marcescens (UCP 1549) and formed biphenyl. The microbial desulphurization process by S. Serratia can be suggest significant reducing sulphur content in DBT, and showed promising potential for reduction of the sulfur content in diesel oil.  相似文献   

7.
The objective of this study was to isolate local bacterial strains capable of removing sulphur from oil fractions without degrading the hydrocarbon. Oil biodesulphurization is an important step in combating pollution problems emanating from burning fossil fuels. Organisms which survive on oil are plentiful in local Kuwaiti soils; however, those that selectively only attack the carbon–sulphur bond are more difficult to find. Three strains were isolated based on their ability to use dibenzothiophene (DBT) as a sole source of sulphur for growth at 30 °C. Similar to other biodesulphurization organisms, the strains convert DBT to [2-hydroxybiphenyl (2-HBP) as detected by gas chromatography (GC). The specific desulphurization activity was in the range 5–13 mol 2-HBP/g-cell × h. Identification of the strains, based on 16 rRNA gene sequence similarity, showed the strains to be Rhodococcus erythropolis and Rhodococcus globerulus. The biodesulphurization activity was enhanced by promoting oxidore-ductase enzyme co-expression through the addition of a carbon source. The desulphurization was limited by the availability of DBT to the organism. Interfacial mass transfer through the aqueous-organic layer was confirmed to be a limiting factor.  相似文献   

8.
This study assessed the dermal carcinogenic potential of raw bitumen derived from the Cold Lake Oil Sands deposit (located in Northeast Alberta, Canada) and two liquids which were under evaluation as part of a process to refine the crude bitumen at the Cold Lake site. The crude bitumen was dermally carcinogenic, inducing tumors in 26% of the treated animals with a median latency of 106 weeks. This response was significantly greater than the tumor yield previously reported for a raw bitumen derived from Athabasca tar sands by the Syncrude process, but was not substantially different from the carcinogenic potential of two crude petroleum oils. The GO-FINING product, a high boiling (259-519 degrees C), catalytically cracked gas oil was a relatively potent dermal carcinogen, inducing tumors in 86% of the treated animals with a median latency of 46 weeks. This result is consistent with the fact that the GO-FINING product contained appreciable levels of high boiling aromatic compounds. The HYCRACKING product, a high boiling (102-498 degrees C), severely hydroprocessed liquid was noncarcinogenic. This result was also consistent with the compositional data; the high boiling components were predominantly saturated species. Thus the carcinogenic properties of the liquid products prepared by these two processes were as predicted from the compositional information.  相似文献   

9.
Bioremoval of organic and inorganic sulphur from coal samples   总被引:1,自引:0,他引:1  
The microbial ecology of different Spanish coal samples has been studied. Several bacteria have been isolated from enrichment cultures and characterised and their biodesulphurization abilities evaluated. Using morphological and physiological properties, different isolates have been related to species of the Xanthomonas, Pseudomonas, Chryseomonas and Moraxella genera. Some of the isolates, B(30)15 and T(30)10, gave important levels of organic desulphurization, close to 70%. Other isolates, B(30)7 and B(30)8, were able to remove inorganic sulphur with high efficiencies, over 67%. One of the isolates, B(30)10, metabolically related to Xanthomonas maltophila, was able to remove both organic and inorganic sulphur at neutral pH, with efficiencies of 69% and 68% respectively. The results obtained underline the potential use of some of these strains for industrial coal desulphurization processes. Received: 26 June 1998 / Received revised: 1 October 1998 / Accepted: 2 October 1998  相似文献   

10.
In recent years, environmental problems caused by the use of fossil fuels and the depletion of petroleum reserves have driven the world to adopt biodiesel as an alternative energy source to replace conventional petroleum-derived fuels because of biodiesel's clean and renewable nature. Biodiesel is conventionally produced in homogeneous, heterogeneous, and enzymatic catalysed processes, as well as by supercritical technology. All of these processes have their own limitations, such as wastewater generation and high energy consumption. In this context, the membrane reactor appears to be the perfect candidate to produce biodiesel because of its ability to overcome the limitations encountered by conventional production methods. Thus, the aim of this paper is to review the production of biodiesel with a membrane reactor by examining the fundamental concepts of the membrane reactor, its operating principles and the combination of membrane and catalyst in the catalytic membrane. In addition, the potential of functionalised carbon nanotubes to serve as catalysts while being incorporated into the membrane for transesterification is discussed. Furthermore, this paper will also discuss the effects of process parameters for transesterification in a membrane reactor and the advantages offered by membrane reactors for biodiesel production. This discussion is followed by some limitations faced in membrane technology. Nevertheless, based on the findings presented in this review, it is clear that the membrane reactor has the potential to be a breakthrough technology for the biodiesel industry.  相似文献   

11.
Saeed Morsali 《农业工程》2018,38(3):242-247
This study provides an introduction and a novel view of the impacts of oil refineries industry on human health, ecosystem quality and resources. The scope and issues for dealing with these challenges are rather wide and complex because the Oil refineries are complex facilities. Several processes, such as distillation, vacuum distillation, or steam reforming are required to produce a large variety of oil products such as gasoline, light fuel oil or bitumen. The goals, perspectives and expectation for the environmental practice and control have changed dramatically over the last couple of decades. Hence the required approach has to be multidisciplinary, based on established scientific concepts and sound engineering principles. The environmental impacts of oil refineries are assessed using the technique of life cycle assessment (LCA). In this paper, only the material production phase of the bitumen LCA is considered. To improve the quality of the LCA, a regionalized life cycle inventory (LCI) database for the Oil refineries and commercial LCI databases are used to validate and model unit processes with an LCA software.  相似文献   

12.
Production-related petroleum microbiology: progress and prospects   总被引:1,自引:0,他引:1  
Microbial activity in oil reservoirs is common. Methanogenic consortia hydrolyze low molecular weight components to methane and CO2, transforming light oil to heavy oil to bitumen. The presence of sulfate in injection water causes sulfate-reducing bacteria to produce sulfide. This souring can be reversed by nitrate, stimulating nitrate-reducing bacteria. Removing biogenic sulfide is important, because it contributes to pitting corrosion and resulting pipeline failures. Increased water production eventually makes oil production uneconomic. Microbial fermentation products can lower oil viscosity or interfacial tension and produced biomass can block undesired flow paths to produce more oil. These biotechnologies benefit from increased understanding of reservoir microbial ecology through new sequence technologies and help to decrease the environmental impact of oil production.  相似文献   

13.
《Process Biochemistry》2010,45(7):1103-1114
The increased consciousness for environmental issues and the depletion of mineral oil reserves led to the search for alternative energy sources but also for alternative biochemical processes. One of these chemicals that is identified to have great economical potential in a biobased economy is succinic acid. This chemical is a precursor for various high value-added derivatives which have application in the detergent/surfactant market, the ion chelator market, the food market and the pharmaceutical market.This review investigates the goals and preconditions to have an economical viable biosuccinic acid process. The different production hosts for biosuccinic acid are examined and the metabolic engineering strategies and possibilities are discussed. Finally, the state of the art of biosuccinic acid production processes is critically evaluated in function of the production host, media, fermentation strategy, titers and yields.  相似文献   

14.
Natural asphalt (or bitumen) deposits, oil seepage and liquid oil shows are widespread in the Middle East, especially in the Zagros mountains of Iran. Ancient people from northern Iraq, south-west Iran and the Dead Sea area extensively used this ubiquitous natural resource until the Neolithic period (7000 to 6000 BC). Evidence of earlier use has been recently documented in the Syrian desert near El Kown, where bitumen-coated flint implements, dated to 40,000 BC (Mousterian period), have been unearthed. This discovery at least proves that bitumen was used by Neanderthal populations as hafting material to fix handles to their flint tools. Numerous testimonies, proving the importance of this petroleum-based material in Ancient civilizations, were brought to light by the excavations conducted in the Near East as of the beginning of the century. Bitumen remains show a wide range of uses that can be classified under several headings. First of all, bitumen was largely used in Mesopotamia and Elam as mortar in the construction of palaces (e.g. the Darius Palace in Susa), temples, ziggurats (e.g. the so-called ''Tower of Babel'' in Babylon), terraces (e.g. the famous ''Hanging Gardens of Babylon'') and exceptionally for roadway coating (e.g. the processional way of Babylon). Since the Neolithic, bitumen served to waterproof containers (baskets, earthenware jars, storage pits), wooden posts, palace grounds (e.g. in Mari and Haradum), reserves of lustral waters, bathrooms, palm roofs, etc. Mats, sarcophagi, coffins and jars, used for funeral practices, were often covered and sealed with bitumen. Reed and wood boats were also caulked with bitumen. Abundant lumps of bituminous mixtures used for that particular purpose have been found in storage rooms of houses at Ra''s al-Junayz in Oman. Bitumen was also a widespread adhesive in antiquity and served to repair broken ceramics, fix eyes and horns on statues (e.g. at Tell al-Ubaid around 2500 BC). Beautiful decorations with stones, shells, mother of pearl, on palm trees, cups, ostrich eggs, musical instruments (e.g. the Queen''s lyre) and other items, such as rings, jewellery and games, have been excavated from the Royal tombs in Ur. They are on view in the British Museum. With a special enigmatic material, commonly referred to as ''bitumen mastic'', the inhabitants of Susa sculpted masterpieces of art which are today exhibited in the Louvre Museum in Paris. This unique collection is presented in a book by Connan and Deschesne (1996). Last, bitumen was also considered as a powerful remedy in medical practice, especially as a disinfectant and insecticide, and was used by the ancient Egyptians to prepare mixtures to embalm the corpses of their dead. Modern analytical techniques, currently applied in the field of petroleum geochemistry, have been adapted to the study of numerous archaeological bituminous mixtures found in excavations. More than 700 bituminous samples have been analysed during the last decade, using gas chromatography alone and gas chromatography coupled with mass spectrometry and isotopic chemistry (carbon and hydrogen mainly). These powerful tools, focused on the detailed analysis of biomarkers in hydrocarbon fractions, were calibrated on various well-known natural sources of bitumen in Iraq, Syria, Iran, Bahrain and Kuwait. These reference studies have made it possible to establish the origins of bitumen from numerous archaeological sites and to document the bitumen trade routes in the Middle East and the Arabo-Persian Gulf. Using a well-documented case history, Tell el ''Oueili (5800 to 3500 BC) in South Mesopotamia, we will illustrate in this paper how these new molecular and isotopic tools can help us to recognize different sources of bitumen and to trace the ancient trade routes through time. These import routes were found to vary with major cultural and political changes in the area under study. A second example, referring to the prehistoric period, describes bitumen traces on flint implements, dated from Mousterian times. This discovery, from the Umm El Tlel excavations near El Kown in Syria, was reported in 1996 in Boëda et al. At that time, the origin of the bitumen had not been elucidated due to contamination problems. Last year, a ball of natural oil-stained sands, unearthed from the same archaeological layer, allowed us to determine the source of the bitumen used. This source is regional and located in the Jebel Bichri, nearly 40 km from the archaeological site. The last case history was selected to illustrate another aspect of the investigations carried out. Recent geochemical studies on more than 20 balms from Egyptian mummies from the Intermediate, Ptolemaic and Roman periods have revealed that these balms are composed of various mixtures of bitumen, conifer resins, grease and beeswax. Bitumen occurs with the other ingredients and the balms studied show a great variety of molecular compositions. Bitumen from the Dead Sea area is the most common source but some other sources (Hit in Iraq?) are also revealed by different molecular patterns. The absolute amount of bitumen in balms varies from almost zero to 30% per weight.  相似文献   

15.
The ecology and biotechnology of sulphate-reducing bacteria   总被引:8,自引:0,他引:8  
Sulphate-reducing bacteria (SRB) are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds. They are ubiquitous in anoxic habitats, where they have an important role in both the sulphur and carbon cycles. SRB can cause a serious problem for industries, such as the offshore oil industry, because of the production of sulphide, which is highly reactive, corrosive and toxic. However, these organisms can also be beneficial by removing sulphate and heavy metals from waste streams. Although SRB have been studied for more than a century, it is only with the recent emergence of new molecular biological and genomic techniques that we have begun to obtain detailed information on their way of life.  相似文献   

16.
A chemo-biochemical process using Thiobacillus ferrooxidans for desulphurization of gaseous fuels and emissions containing hydrogen sulphide (H2S) has been developed. In the first stage, H2S present in fuel gas and emissions is selectively oxidized to elemental sulphur using ferric sulphate. The ferrous sulphate produced in the first stage of the process is oxidized to ferric sulphate using Thiobacillus ferrooxidans for recycle and reuse in the process. The effects of process variables, temperature, pH, total dissolved solids (TDS), elemental sulphur, ferric and magnesium ions on bio-oxidation of ferrous ions to ferric ions were investigated using flask culture experiments. The bio-oxidation of ferrous ions to ferric ions could be achieved efficiently in the temperature range of 20(+/-1)-44(+/-1) degrees C. A pH range of 1.8(+/-0.02)-2.2(+/-0.02) was optimum for the growth of culture and effective bio-oxidation of ferrous ions to ferric ions. The effect of TDS on bio-oxidation of ferrous ions indicated that a preacclimatized culture in a growth medium containing high dissolved solid was required to achieve effective bio-oxidation of ferrous ions. Elemental sulphur ranging from 1000 to 100,000 mg/l did not have any effect on efficiency of ferrous ion oxidation. The efficiency of bio-oxidation of ferrous ions to ferric ions was not affected in the presence of ferric ions up to a concentration of 500 mg/l while 3 mg/l of magnesium ion was optimal for achieving effective bio-oxidation.  相似文献   

17.
Sulphur is a key constituent in a wide variety of biologically important compounds, ranging from amino acids and coenzymes to antibiotics and pesticides. In analogy with the more widely studied metabolism of aromatic or aliphatic hydrocarbons and amines, the intial step in metabolism of sulphur compounds is commonly oxygenation on sulphur. While sulphur oxygenation in vivo has been known for many years, it is only within the past decade that many of the enzymes responsible have been identified, and molecularlevel details have become available. This review focuses on the molecular aspects of enzymatic sulphur oxygenation, and considers mono and dioxygenases active on inorganic sulphur, organic thiols, thioethers, thioesters and thiones. Information from very diverse areas of the literature is brought together, and the implications of sulphur oxygenation reactions to drug design, as well as to environmental and toxicological areas, are mentioned.  相似文献   

18.
Despite the survival value of high energy reserves during winter, animals often face energy deficits when entering winter. Compensatory growth in energy reserves during the winter period to buffer such deficits may increase winter survival and alleviate the need for costly compensatory mechanisms before or after winter when predation risk is much higher. However, such compensatory responses in energy reserves during winter have not been demonstrated under field conditions. We explored if Lestes eurinus damselfly larvae can compensate for suboptimal energy reserves during winter at 4°C when their ponds are covered with ice. In a field enclosure experiment, we demonstrated compensatory growth in terms of body mass and energy reserves in larvae whose energy status was previously manipulated in the laboratory. These results were supported by patterns in body mass and energy reserves over winter in two natural unmanipulated populations. Winter survival was high overall and not affected by compensatory growth. We hypothesize that the observed compensatory growth in energy reserves during winter may shape life history decisions in autumn and spring, and may make resource availability during winter as or more important than energy reserves before winter.  相似文献   

19.
Soil heavy metal pollution has become a worldwide environmental issue that has attracted considerable public attention, largely from the increasing concern for the security of agricultural products. Heavy metals refer to some metals and metalloids possessing biological toxicity, such as cadmium, mercury, arsenic, lead, and chromium. These elements enter the soil agro-ecosystem through natural processes derived from parent materials, and through anthropogenic activities. Heavy metal pollution poses a great threat to the health and well-being of organisms and human beings due to potential accumulation risk through the food chain. Remediation using chemical, physical, and biological methods has been adopted to solve the problem. Phytoremediation has proven to be a promising alternative to conventional approaches as it is cost effective, environmentally friendly, and aesthetically pleasing. To date, based on the natural ability of extraction, approximately 500 taxa have been identified as hyperaccumulators of one or more metals. In addition, further research integrating biotechnological approaches with comprehensive multidisciplinary research is needed to improve plant tolerance and reduce the accumulation of toxic metals in soils. This review discusses harmful effects, sources of heavy metals, and the remediation technologies for soil contaminated by heavy metals.  相似文献   

20.
Most of the oil in low temperature, non-uplifted reservoirs is biodegraded due to millions of years of microbial activity, including via methanogenesis from crude oil. To evaluate stimulating additional methanogenesis in already heavily biodegraded oil reservoirs, oil sands samples were amended with nutrients and electron acceptors, but oil sands bitumen was the only organic substrate. Methane production was monitored for over 3000 days. Methanogenesis was observed in duplicate microcosms that were unamended, amended with sulfate or that were initially oxic, however methanogenesis was not observed in nitrate-amended controls. The highest rate of methane production was 0.15 μmol CH4 g−1 oil d−1, orders of magnitude lower than other reports of methanogenesis from lighter crude oils. Methanogenic Archaea and several potential syntrophic bacterial partners were detected following the incubations. GC–MS and FTICR–MS revealed no significant bitumen alteration for any specific compound or compound class, suggesting that the very slow methanogenesis observed was coupled to bitumen biodegradation in an unspecific manner. After 3000 days, methanogenic communities were amended with benzoate resulting in methanogenesis rates that were 110-fold greater. This suggests that oil-to-methane conversion is limited by the recalcitrant nature of oil sands bitumen, not the microbial communities resident in heavy oil reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号