首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
A full-length cDNA complementary to the rat pancreatic cholesterol esterase mRNA was isolated by screening a rat pancreatic cDNA expression library in lambda gt11 vector with antibodies against the porcine pancreatic cholesterol esterase. The isolated cholesterol esterase cDNA is 2050 bp in length and contains an open reading frame coding for a protein of 612 amino acids. A 20-amino acid hydrophobic leader sequence is predicted, based on the position of the first ATG initiation codon upstream from the sequenced amino terminus of the isolated cholesterol esterase. The cholesterol esterase cDNA was subcloned into a mammalian expression vector, pSVL, for transfection studies. Expression of the cDNA in COS cells resulted in the production of bile salt-stimulated cholesterol esterase. Comparison of the cholesterol esterase cDNA sequence with other proteins revealed that the pancreatic cholesterol esterase is identical to rat pancreatic lysophospholipase. The primary structure of cholesterol esterase displayed no significant homology with other lipases, although the putative lipid interfacial recognition site of G-X-S-X-G is present in the cholesterol esterase sequence. However, the cholesterol esterase sequence revealed a 63-amino-acid domain which is highly homologous to the active site domain of other serine esterases. These data suggest that cholesterol esterase may be a member of the serine esterase supergene family. Analysis of the cholesterol esterase structure also revealed a repetitive sequence enriched with Pro, Asp, Glu, Ser, and Thr residues at the C-terminal end of the protein. This sequence is reminiscent of the PEST-rich sequences in short-lived proteins, suggesting that cholesterol esterase may have a short half-life in vivo. Northern blot hybridization showed that the bile salt-stimulated cholesterol esterase mRNA is present in liver suggesting that this protein may also be synthesized by liver cells.  相似文献   

2.
Potential probes of protein cholesterol and fatty acid binding sites, namely, 12-[(5-iodo-4-azido-2-hydroxybenzoyl)amino]dodecanoate (IFA) and its coenzyme A (IFA:CoA) and cholesteryl (IFA:CEA) esters, were synthesized. These radioactive, photoreactive lipid analogues were recognized as substrates and inhibitors of acyl-CoA:cholesterol O-acyltransferase (ACAT) and cholesterol esterase, neutral lipid binding enzymes which are key elements in the regulation of cellular cholesterol metabolism. In the dark, IFA reversibly inhibited cholesteryl [14C]oleate hydrolysis by purified bovine pancreatic cholesterol esterase with an apparent Ki of 150 microM. Cholesterol esterase inhibition by IFA became irreversible after photolysis with UV light and oleic acid (1 mM) provided 50% protection against inactivation. Incubation of homogeneous bovine pancreatic cholesterol esterase with IFA:CEA resulted in its hydrolysis to IFA and cholesterol, indicating recognition of IFA:CEA as a substrate by cholesterol esterase. The coenzyme A ester, IFA:CoA, was a reversible inhibitor of microsomal ACAT activity under dark conditions (apparent Ki = 20 microM), and photolysis resulted in irreversible inhibition of enzyme activity with 87% efficiency. IFA:CoA was also recognized as a substrate by both liver and aortic microsomal ACATs, with resultant synthesis of 125IFA:CEA. IFA and its derivatives, IFA:CEA and IFA:CoA, are thus inhibitors and substrates for cholesterol esterase and ACAT. Biological recognition of these photoaffinity lipid analogues will facilitate the identification and structural analysis of hitherto uncharacterized protein lipid binding sites.  相似文献   

3.
The histidine residue essential for the catalytic activity of pancreatic cholesterol esterase (carboxylester lipase) has been identified in this study using sequence comparison and site-specific mutagenesis techniques. In the first approach, comparison of the primary structure of rat pancreatic cholesterol esterase with that of acetylcholinesterase and cholinesterase revealed two conserved histidine residues located at positions 420 and 435. The sequence in the region around histidine 420 is quite different between the three enzymes. However, histidine 435 is located in a 22-amino acid domain that is 47% homologous with other serine esterases. Based on this sequence homology, it was hypothesized that histidine 435 is the histidine residue essential for catalytic activity of cholesterol esterase. The role of His435 in the catalytic activity of pancreatic cholesterol esterase was then studied by the site-specific mutagenesis technique. Substitution of the histidine in position 435 with glutamine, arginine, alanine, serine, or aspartic acid abolished the ability of cholesterol esterase to hydrolyze p-nitrophenyl butyrate and cholesterol [14C]oleate. In contrast, mutagenesis of the histidine residue at position 420 to glutamine had no effect on cholesterol esterase enzyme activity. The results of this study strongly suggested that histidine 435 may be a component of the catalytic triad of pancreatic cholesterol esterase.  相似文献   

4.
The ability of cholesterol esterase to catalyze the synthesis of cholesterol esters has been considered to be of limited physiological significance because of its bile salt requirements for activity, though detailed kinetic studies have not been reported. This study was performed to determine the taurocholate, pH, and substrate requirements for optimal cholesterol ester synthesis catalyzed by various pancreatic lipolytic enzymes, including the bovine 67- and 72-kDa cholesterol esterases, human 100-kDa cholesterol esterase, and human 52-kDa triglyceride lipase. In contrast to current beliefs, cholesterol esterase exhibits a bile salt independent as well as a bile salt dependent synthetic pathway. For the bovine pancreatic 67- and 72-kDa cholesterol esterases, the bile salt independent pathway is optimal at pH 6.0-6.5 and is stimulated by micromolar concentrations of taurocholate. For the bile salt dependent synthetic reaction for the 67-kDa enzyme, increasing the taurocholate concentration from 0 to 1.0 mM results in a progressive shift in the pH optimum from pH 6.0-6.5 to pH 4.5 or lower. In contrast, cholesterol ester hydrolysis by the 67-, 72-, and 100-kDa enzymes was characterized by pH optima from 5.5 to 6.5 at all taurocholate concentrations. Optimum hydrolytic activity for these three enzyme forms occurred with 10 mM taurocholate. Since hydrolysis is minimal at low taurocholate concentrations, the rate of synthesis actually exceeds hydrolysis when the taurocholate concentration is less than 1.0 mM. The 52-kDa enzyme exhibits very low cholesterol ester synthetic and hydrolytic activities, and for this enzyme both activities are bile salt independent. Thus, our data show that cholesterol esterase has both bile salt independent and bile salt dependent cholesterol ester synthetic activities and that it may catalyze the net synthesis of cholesterol esters under physiological conditions.  相似文献   

5.
5 alpha-Cholest-8(14)-en-3 beta-yl-15-one oleate (15-ketosteryl oleate), the oleate ester of a compound with the capacity to lower serum cholesterol, was effectively hydrolyzed by partially purified porcine pancreatic cholesterol esterase with an apparent Km of 0.28 +/- 0.01 mM and a Vmax of 0.62 +/- 0.01 mumol/min per mg protein compared to an apparent Km of 0.19 +/- 0.02 mM and a Vmax of 0.37 +/- 0.02 mumol/min per mg protein for cholesteryl oleate. The 15-ketosteryl oleate was also hydrolyzed by highly purified rat pancreatic cholesterol esterase with an apparent Km of 0.20 +/- 0.01 mM and a Vmax of 86.7 +/- 3.0 mumol/min per mg protein compared to an apparent Km of 0.43 +/- 0.01 mM and a Vmax of 119.8 +/- 2.6 mumol/min per mg protein for cholesteryl oleate. 15-Ketosteryl oleate is, therefore, a good substrate for pancreatic cholesterol esterase from either source. The 15-ketosterol is a weak competitive inhibitor of partially purified porcine pancreatic cholesterol esterase when cholesteryl oleate is the substrate.  相似文献   

6.
In 20 healthy patients the cholesterol esterase activity in duodenal content was examined. The cholesterol ether of o-coumaric acid was used as a substrate. Increase of the cholesterol esterase activity was noted after stimulation of pancreozymin and secretin. The cholesterol esterase concentration in duodenal content changes in more wide range than the index of the output. The cholesterol esterase output is the most significant informative index. There is not any cholesterol esterase activity in bile, gastric juice and saliva. The results obtained have shown that the main part of the estimated cholesterol esterase activity has a pancreatic base. The investigation of the cholesterol esterase activity in duodenal content may be used in the study of the exocrine function of pancreas.  相似文献   

7.
(1) Parenchymal and non-parenchymal cells were isolated from rat liver. The characteristics of acid lipase activity with 4-methylumbelliferyl oleate as substrate and acid cholesteryl esterase activity with cholesteryl[1-14C]oleate as substrate were investigated. The substrates were incorporated in egg yolk lecithin vesicles and assays for total cell homogenates were developed, which were linear with the amount of protein and time. With 4-methylumbelliferyl oleate as substrate, both parenchymal and non-parechymal cells show maximal activities at acid pH and the maximal activity for non-parenchymal cells is 2.5 times higher than for parenchymal cells. It is concluded that 4-methylumbelliferyl oleate hydrolysis is catalyzed by similar enzyme(s) in both cell types. (2) With cholesteryl[1-14C]oleate as substrate both parenchymal and non-parenchymal cells show maximal activities at acid pH and the maximal activity for non-parenchymal cells is 11.4 times higher than for parenchymal cells. It is further shown that the cholesteryl ester hydrolysis in both cell types show different properties. (3) The high activity and high affinity of acid cholesteryl esterase from non-parenchymal cells for cholesterol oleate hydrolysis as compared to parenchymal cells indicate a relative specialization of non-parenchymal cells in cholesterol ester hydrolysis. It is concluded that non-parenchymal liver cells in cholesterol ester hydrolysis. It is concluded that non-parenchymal liver cells possess the enzymic equipment to hydrolyze very efficiently internalized cholesterol esters, which supports the suggestion that these cell types are an important site for lipoprotein catabolism in liver.  相似文献   

8.
Previously, it was demonstrated that pancreatic cholesterol esterase is selectively inhibited by 6-chloro-2-pyrones with cyclic aliphatic substituents in the 3-position. Inhibition is reversible and is competitive with substrate. Pancreatic cholesterol esterase is a potential target for treatment of hypercholesterolemia. In the present study, yeast cholesterol esterase from Candida cylindracea (also called C. rugosa CRL3) was compared to porcine pancreatic cholesterol esterase for inhibition by a series of 3-alkyl- or 5-alkyl-6-chloro-2-pyrones. In addition, CRL3 was compared with the related yeast lipase CRL1. Inhibition of CRL3 by substituted 6-chloro-2-pyrones was competitive with binding of the substrate p-nitrophenyl butyrate. Inhibition constants ranged from 0.2 microM to >90 microM. Small changes in the alkyl group had profound effects on binding. The pattern of inhibition of CRL3 is quite distinct from that observed with porcine cholesterol esterase. Molecular modeling studies suggest that the orientation of binding of these inhibitors at the active site of CRL3 can vary but that the pyrone ring consistently occupies a position close to the active site serine. CRL1 is highly homologous to CRL3. Nevertheless, patterns of inhibition of CRL1 by substituted 6-chloro-2-pyrones differ markedly from patterns observed with CRL3. The substituted 6-chloro-2-pyrones are slowly hydrolyzed in the presence of CRL1 and are pseudosubstrates of CRL3, but are simple reversible inhibitors of pancreatic cholesterol esterase  相似文献   

9.
Chemical modification and site-specific mutagenesis approaches were used in this study to identify the active site serine residue of pancreatic cholesterol esterase. In the first approach, purified porcine pancreatic cholesterol esterase was covalently modified by incubation with [3H]diisopropylfluorophosphate (DFP). The radiolabeled cholesterol esterase was digested with CNBr, and the peptides were separated by high performance liquid chromatography. A single 3H-containing peptide was obtained for sequence determination. The results revealed the binding of DFP to a serine residue within the serine esterase homologous domain of the protein. Furthermore, the DFP-labeled serine was shown to correspond to serine residue 194 of rat cholesterol esterase (Kissel, J. A., Fontaine, R. N., Turck, C. W., Brockman, H. L., and Hui, D. Y. (1989) Biochim. Biophys. Acta 1006, 227-236). The codon for serine 194 in rat cholesterol esterase cDNA was then mutagenized to ACT or GCT to yield mutagenized cholesterol esterase with either threonine or alanine, instead of serine, at position 194. Expression of the mutagenized cDNA in COS-1 cells demonstrated that substitution of serine 194 with threonine or alanine abolished enzyme activity in hydrolyzing the water-soluble substrate, p-nitrophenyl butyrate, and the lipid substrates cholesteryl [14C]oleate and [14C] lysophosphatidylcholine. These studies definitively identified serine 194 in the catalytic site of pancreatic cholesterol esterase.  相似文献   

10.
To study the specificity of gastric lipases on carotenoid mono- and diesters, an enzymatic assay was applied. Digestions were carried out in phosphate buffer at pH 7.4 and 37 °C. As substrates we employed oleoresins from marigold (Tagetes erecta L.; lutein diesters), red paprika (Capsicum annuum L., mainly capsanthin diesters), papaya (Carica papaya L.; β-cryptoxanthin esters), and loquat (Eriobotrya japonica Lindl.; β-cryptoxanthin esters) as well as retinyl palmitate. These were reacted with porcine pancreatic lipase, porcine pancreatin, porcine cholesterol esterase, and human pancreatic lipase. As reference enzyme a yeast lipase from Candida rugosa was applied. A high turnover could be observed with porcine pancreatic lipase and porcine cholesterol esterase, indicating cholesterol esterase to be a plausible candidate for generation of free carotenoids in the gut. Human pancreatic lipase accepted only retinyl palmitate as substrate, carotenoid mono- and diesters were not hydrolyzed. The assay permits an approach for calculation of enzymatic activities towards carotenoid esters as substrates for the first time, which is based on the amount of enzyme formulation, present in the assay (U/mg solid). Furthermore, these studies provide deeper insight into carotenoid ester bioaccessibility.  相似文献   

11.
p-Nitrophenyl and cholesteryl-N-alkyl carbamates are good inhibitors of porcine pancreatic cholesterol esterase-catalyzed hydrolysis of p-nitrophenyl butyrate. p-Nitrophenyl-N-butyl and N-octyl carbamates (compounds 1 and 2, respectively) are potent active site-directed irreversible inhibitors of this enzyme. The inhibition of cholesterol esterase by compound 1 or 2 shows saturation kinetics with increasing inhibitor concentration. The activity of cholesterol esterase in the presence of compound 1 or 2 can be protected by the competitive inhibitor, phenylboronic acid. First-order decreases in cholesterol esterase activity effected by compound 1 or 2 are also observed in the presence of taurocholate/phosphatidylcholine micelles. Dilution of the inhibited enzyme results in a gradual return of activity, the rate of which is increased in the presence of the nucleophile hydroxylamine. Hence, inhibition of cholesterol esterase-catalyzed hydrolysis of p-nitrophenyl butyrate by compound 1 or 2 in the aqueous or micellar phase occurs via a carbamyl-cholesterol esterase mechanism. The turnover of the butyl carbamylenzyme is increased in the presence of micelles, which indicates that the micelles have a direct effect on the catalytic activity of the enzyme. However, this effect is dependent on the structure of the substrate as the turnover of the octyl carbamylenzyme is unaffected in the presence of micelles. A comparison of the second-order rate constants for the inhibition of cholesterol esterase by compound 1 or 2 indicates that the octyl derivative is the more potent inhibitor. Cholesteryl-N-alkyl carbamates do not carbamylate cholesterol esterase but instead act as reversible inhibitors. This is due to the stability of cholesteryl carbamates relative to p-nitrophenyl carbamates.  相似文献   

12.
A cDNA clone encoding the entire coding sequence of rat pancreatic cholesterol esterase (bile salt-stimulated lipase) was subcloned into the Baculovirus transfer vector pVL1392 and used to co-transfect Spodoptera frugiperda (Sf9) insect cells with wild-type Autographa californica nuclear polyhedrosis virus (AcNPV) DNA. Two recombinant proteins (M(r) 74 kDa and 64 kDa) reactive with anti-cholesterol esterase IgG were produced and secreted by the infected Sf9 cells in large quantities in a time-dependent manner. The 74-kDa protein was detectable in the cultured medium at the second day post-infection and increased progressively, reaching a level of 50 micrograms/ml of culture medium after 8 days. Amino-terminal sequencing of this recombinant protein showed that the signal peptide of cholesterol esterase was correctly cleaved, resulting in the production of mature protein. The 64-kDa recombinant protein was not detected in the medium until Day 5 post-infection and accumulated to a level of 25 micrograms/ml at Day 8. Both the 74- and the 64-kDa cholesterol esterases were biologically active and hydrolyzed the artificial substrate p-nitrophenyl butyrate. Results of this study demonstrated that Baculovirus-infected Sf9 cells can be used for high-level expression of pancreatic cholesterol esterase. The recombinant enzyme will be useful for further characterization of this protein.  相似文献   

13.
The activities of pancreatic cholesterol esterase from calf and cow pancreas were examined in detail. A 1300-fold enhancement of enzymatic activity was found after maturation, even though cholesterol esterase activity levels in other organs did not change from the juvenile to the adult species. Radioimmunoassays also showed that the calf pancreas contained at least 100-fold less cholesterol esterase protein. Decreased amounts of protein were not due to enhanced proteolysis, since cytosol from cow pancreas degrades exogenously added cholesterol esterase faster than that from calf pancreas. Rather, enhancement of pancreatic cholesterol esterase activity associated with bovine maturation was the result of specific, increased synthesis of a 72-kDa enzyme. This labile 72-kDa cholesterol esterase species was purified to homogeneity by a two-step process in 75% yield and is the major form of bovine pancreatic cholesterol esterase (99%). A much less abundant 67-kDa species, accounting for less than 1% of total pancreatic cholesterol esterase activity, was also purified to homogeneity in a similar two-step process. These results demonstrate that a specific form of pancreatic cholesterol esterase is induced during maturation, and they bear importantly on understanding juvenile cholesterol metabolism as related to dietary absorption of this sterol.  相似文献   

14.
(1) In lymphoid cell lines established by Epstein-Barr virus transformation of B-lymphocytes from normal subjects there exist two lipases hydrolysing triolein (the first one with acid optimum pH and the other one with alkaline optimum pH) and one cholesterol esterase (with acidic optimum pH). The acid triolein lipase (optimum pH 3.75-4.0) and the acid cholesterol esterase are activated by taurocholate (optimal concentration between 1 and 2.5 g/l) whereas alkaline triolein-lipase is inhibited by crude taurocholate. (2) Acid lipase deficiency is demonstrated in lymphoid cell lines from a Wolman's patient, using natural substrates, triolein and cholesteryl oleate (residual activity 5 and 8%, respectively). Thus, this similar deficiency demonstrates that, in lymphoid cell lines, triolein and cholesteryl esters are hydrolysed (under the conditions used here) by a single enzyme, i.e., lysosomal acid lipase muted in Wolman's disease. (3) pH profiles of synthetic substrate hydrolysis show marked differences between methylumbelliferyl oleate and methylumbelliferyl palmitate, and are greatly dependent on the assay conditions used. In the presence of optimal concentrations of taurocholate (1-2.5 g/l), nonspecific carboxylesterases are inhibited and acid lipase is activated: in this case, methylumbelliferyl oleate can be used to demonstrate the acid lipase deficiency in Wolman's lines (15-20% of residual activity). Methylumbelliferyl palmitate hydrolysis is less dependent on assay conditions and thus can be more accurately used for the diagnosis of Wolman's disease, with lower residual activity (10-15%) than using methylumbelliferyl oleate. Thus, Epstein-Barr virus-transformed lymphoid cell lines represent an accurate model system in culture for experimental studies of Wolman's disease.  相似文献   

15.
Properties and partial purification of the bovine adrenal cholesterol esterase from the 100000 X g supernatant fraction were investigated. Variations of the enzyme activity with time-dependent (enzymatic) and time-dependent (non enzymatic) effects have been demonstrated. Mg2 has been proved to inhibit the enzyme activity by a non-enzymatic effect in 50mM Tris/HCl buffer, pH 7.4. A time-dependent inactivation of the cholesterol esterase has been observed in the same buffer. The enzyme could be protected from this enzymatic inactivation by its substrate, cholesterol oleate. cAMP, ATP and Mg2 cuase a time-dependent stimulation of the enzyme in 50mM Tris/HCl buffer, pH 7.4. This result suggests that corticotropin activates the soluble cholesterol esterase from bovine adrenals via cAMP-dependent protein kinase. This view is strengthened by the incorporation of 32P radioactivity from [gamma-32P] ATP into the protein fraction of the 100,000 X g supernatant. The protein-bound 32P radioactivity could be co-purified with the enzyme activity during the partial purification of the soluble cholesterol esterase.  相似文献   

16.
An improved assay for cholesterol esterase based on the use of fatty acid radiolabelled cholesterol esters has been developed. The method was used to demonstrate the effects of delta 1-tetrahydrocannabinol on a crude Leydig cell esterase preparation and on crystalline pancreatic esterase. Both enzymes were inhibited and the Km values determined (6.6 mumol/1 for the Leydig cell esterase and 6.25 mumol/1 for the pancreatic enzyme). While the former exhibited a mixed type of inhibition, the latter clearly was competitive.  相似文献   

17.
A neutral cholesterol esterase has been purified to homogeneity from the cytosolic fraction of rat liver. The 105,000 x g supernatant fraction of rat liver was applied to a DEAE-cellulose column to isolate a partially purified fraction of hepatic cholesterol esterase. Immunoblot analysis of the partially purified liver fraction with the anti-porcine pancreatic cholesterol esterase IgG demonstrated a single band with a molecular weight of 67,000. The hepatic protein was then isolated by immunoaffinity chromatography technique using a column constructed with antibodies prepared against the pancreatic cholesterol esterase. Characterization of the hepatic cholesterol esterase revealed that the hepatic enzyme shared antigenic epitopes with the pancreatic cholesterol esterase and was similarly activated by addition of bile salt such as taurocholate. Moreover, amino-terminal sequencing analysis of the hepatic cholesterol esterase showed an identical sequence with the pancreatic enzyme. Taken together, these results showed that the cholesterol esterases in the liver and the pancreas are very similar and possibly identical proteins.  相似文献   

18.
We confirmed that cholesterol esterase accelerated the incorporation of unesterified cholesterol solubilized in bile salt micelles into differentiated Caco-2 cells under various experimental conditions. Rat pancreatic juice and bovine cholesterol esterase increased the incorporation of micellar cholesterol into rat intestinal brush border membranes. The incorporation of micellar cholesterol was not changed in the brush border membranes enriched in and depleted of cholesterol esterase. The results suggest that the accelerated incorporation of micellar cholesterol by cholesterol esterase into absorptive cells is not mediated by the enzyme bound to the brush border membranes.  相似文献   

19.
W W Ward  S H Bokman 《Biochemistry》1982,21(19):4535-4540
The green-fluorescent protein (GFP) that functions as a bioluminescence energy transfer acceptor in the jellyfish Aequorea has been renatured with up to 90% yield following acid, base, or guanidine denaturation. Renaturation, following pH neutralization or simple dilution of guanidine, proceeds with a half-recovery time of less than 5 min as measured by the return of visible fluorescence. Residual unrenatured protein has been quantitatively removed by chromatography on Sephadex G-75. The chromatographed, renatured GFP has corrected fluorescence excitation and emission spectra identical with those of the native protein at pH 7.0 (excitation lambda max = 398 nm; emission lambda max = 508 nm) and also at pH 12.2 (excitation lambda max = 476 nm; emission lambda max = 505 nm). With its peak position red-shifted 78 nm at pH 12.2, the Aequorea GFP excitation spectrum more closely resembles the excitation spectra of Renilla (sea pansy) and Phialidium (hydromedusan) GFPs at neutral pH. Visible absorption spectra of the native and renatured Aequorea green-fluorescent proteins at pH 7.0 are also identical, suggesting that the chromophore binding site has returned to its native state. Small differences in far-UV absorption and circular dichroism spectra, however, indicate that the renatured protein has not fully regained its native secondary structure.  相似文献   

20.
1. A search for a long chain fatty acyl sterol-ester hydrolase in microorganisms led to the isolation from soil of five strains belonging to Fusarium sp. which produced strong activity in the culture medium. 2. The cholesterol esterase from Fusarium oxysporum IGH-2 was purified about 270-fold by means of CaCl2 precipitation and Sephadex G-75 column chromatography. 3. The cholesterol esterase was activated by adekatol and Triton X-100. It was inhibited by lecithin and lysolecithin, and completely inactivated by heat treatment (60 degrees C for 30 min, at pH 7.0). 4. The optimum pH of the enzyme was found to be around 7.0. 5. Among various cholesterol esters tested, cholesterol linoleate was the most suitable substrate. 6. Cholesterol esters in serum were also hydrolyzed by this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号