首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial respiratory chain consists of about 36 nuclear-encoded subunits. We review the current knowledge of the 15 human complex I subunits cloned so far, and report the 598-bp cDNA sequence, the chromosomal localization and the tissue expression of an additional subunit, the B17 subunit. The cDNA open reading frame of B17 comprises 387 bp and encodes a protein of 128 amino acids (calculated M r 15.5 kDa). There is 82.7% and 78.1% homology, respectively, at the cDNA and amino acid level with the bovine counterpart. The gene of the B17 subunit has been mapped to chromosome 2. Multiple-tissue dot-blots showed ubiquitous expression of the mRNA with relatively higher expression in tissues known for their high energy demand. Of these, kidney showed the highest expression. Mutational analysis of the subunit revealed no mutations or polymorphisms in 20 patients with isolated enzymatic complex I deficiency in cultured skin fibroblasts. Received: 5 February 1998 / Accepted: 6 April 1998  相似文献   

2.
The rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) is the most intricate membrane-bound enzyme of the mitochondrial respiratory chain. Notably the bovine enzyme comprises up to 46 subunits, while 27 subunits could be considered as widely conserved among eukaryotic complex I. By combining proteomic and genomic approaches, we characterized the complex I composition from the unicellular green alga Chlamydomonas reinhardtii. After purification by blue-native polyacrylamide gel electrophoresis (BN-PAGE), constitutive subunits were analyzed by SDS-PAGE coupled to tandem mass spectrometry (MS) that allowed the identification of 30 proteins. We compared the known complex I components from higher plants, mammals, nematodes and fungi with this MS data set and the translated sequences from the algal genome project. This revealed that the Chlamydomonas complex I is likely composed of 42 proteins, for a total molecular mass of about 970 kDa. In addition to the 27 typical components, we have identified four new complex I subunit families (bovine ESSS, PFFD, B16.6, B12 homologues), extending the number of widely conserved eukaryote complex I components to 31. In parallel, our analysis showed that a variable number of subunits appears to be specific to each eukaryotic kingdom (animals, fungi or plants). Protein sequence divergence in these kingdom-specific sets is significant and currently we cannot exclude the possibility that homology between them exists, but has not yet been detected.  相似文献   

3.
Haloferax volcanii, an extreme halophile originally isolated from the Dead Sea, is used worldwide as a model organism for furthering our understanding of archaeal cell physiology. In this study, a combination of approaches was used to identify a total of 1296 proteins, representing 32% of the theoretical proteome of this haloarchaeon. This included separation of (phospho)proteins/peptides by 2-dimensional gel electrophoresis (2-D), immobilized metal affinity chromatography (IMAC), metal oxide affinity chromatography (MOAC), and Multidimensional Protein Identification Technology (MudPIT) including strong cation exchange (SCX) chromatography coupled with reversed phase (RP) HPLC. Proteins were identified by tandem mass spectrometry (MS/MS) using nanoelectrospray ionization hybrid quadrupole time-of-flight (QSTAR XL Hybrid LC/MS/MS System) and quadrupole ion trap (Thermo LCQ Deca). Results indicate that a SCX RP HPLC fractionation coupled with MS/MS provides the best high-throughput workflow for overall protein identification.  相似文献   

4.
Iron homeostasis is tightly regulated, as cells work to conserve this essential but potentially toxic metal. The translation of many iron proteins is controlled by the binding of two cytoplasmic proteins, iron regulatory protein 1 and 2 (IRP1 and IRP2) to stem loop structures, known as iron-responsive elements (IREs), found in the untranslated regions of their mRNAs. In short, when iron is depleted, IRP1 or IRP2 bind IREs; this decreases the synthesis of proteins involved in iron storage and mitochondrial metabolism (e.g. ferritin and mitochondrial aconitase) and increases the synthesis of those involved in iron uptake (e.g. transferrin receptor). It is likely that more iron-containing proteins have IREs and that other IRPs may exist. One obvious place to search is in Complex I of the mitochondrial respiratory chain, which contains at least 6 iron-sulfur (Fe-S) subunits. Interestingly, in idiopathic Parkinson's disease, iron homeostasis is altered, and Complex I activity is diminished. These findings led us to investigate whether iron status affects the Fe-S subunits of Complex I. We found that the protein levels of the 75-kDa subunit of Complex I were modulated by levels of iron in the cell, whereas mRNA levels were minimally changed. Isolation of a clone of the 75-kDa Fe-S subunit with a more complete 5'-untranslated region sequence revealed a novel IRE-like stem loop sequence. RNA-protein gel shift assays demonstrated that a specific cytoplasmic protein bound the novel IRE and that the binding of the protein was affected by iron status. Western blot analysis and supershift assays showed that this cytosolic protein is neither IRP1 nor IRP2. In addition, ferritin IRE was able to compete for binding with this putative IRP. These results suggest that the 75-kDa Fe-S subunit of mitochondrial Complex I may be regulated by a novel IRE-IRP system.  相似文献   

5.
Here we present a first assessment of the subunit inventory of mitochondrial complex I from the obligate aerobic yeast Yarrowia lipolytica. A total of 37 subunits were identified. In addition to the seven central, nuclear coded, and the seven mitochondrially coded subunits, 23 accessory subunits were found based on 2D electrophoretic and mass spectroscopic analysis in combination with sequence information from the Y. lipolytica genome. Nineteen of the 23 accessory subunits are clearly conserved between Y. lipolytica and mammals. The remaining four accessory subunits include NUWM, which has no apparent homologue in any other organism and is predicted to contain a single transmembrane domain bounded by highly charged extramembraneous domains. This structural organization is shared among a group of 7 subunits in the Y. lipolytica and 14 subunits in the mammalian enzyme. Because only five of these subunits display significant evolutionary conservation, their as yet unknown function is proposed to be structure- rather than sequence-specific. The NUWM subunit could be assigned to a hydrophobic subcomplex obtained by fragmentation and sucrose gradient centrifugation. Its position within the membrane arm was determined by electron microscopic single particle analysis of Y. lipolytica complex I decorated with a NUWM-specific monoclonal antibody.  相似文献   

6.
Complex I purified from bovine heart mitochondria is a multisubunit membrane-bound assembly. In the past, seven of its subunits were shown to be products of the mitochondrial genome, and 35 nuclear encoded subunits were identified. The complex is L-shaped with one arm in the plane of the membrane and the other lying orthogonal to it in the mitochondrial matrix. With mildly chaotropic detergents, the intact complex has been resolved into various subcomplexes. Subcomplex Ilambda represents the extrinsic arm, subcomplex Ialpha consists of subcomplex Ilambda plus part of the membrane arm, and subcomplex Ibeta is another substantial part of the membrane arm. The intact complex and these three subcomplexes have been subjected to extensive reanalysis. Their subunits have been separated by three independent methods (one-dimensional SDS-PAGE, two-dimensional isoelectric focusing/SDS-PAGE, and reverse phase high pressure liquid chromatography (HPLC)) and analyzed by tryptic peptide mass fingerprinting and tandem mass spectrometry. The masses of many of the intact subunits have also been measured by electrospray ionization mass spectrometry and have provided valuable information about post-translational modifications. The presence of the known 35 nuclear encoded subunits in complex I has been confirmed, and four additional nuclear encoded subunits have been detected. Subunits B16.6, B14.7, and ESSS were discovered in the SDS-PAGE analysis of subcomplex Ilambda, in the two-dimensional gel analysis of the intact complex, and in the HPLC analysis of subcomplex Ibeta, respectively. Despite many attempts, no sequence information has been obtained yet on a fourth new subunit (mass 10,566+/-2 Da) also detected in the HPLC analysis of subcomplex Ibeta. It is unlikely that any more subunits of the bovine complex remain undiscovered. Therefore, the intact enzyme is a complex of 46 subunits, and, assuming there is one copy of each subunit in the complex, its mass is 980 kDa.  相似文献   

7.
The subunit composition of the mitochondrial oligomycin-insensitive ATPase   总被引:6,自引:0,他引:6  
Senior AE  Brooks JC 《FEBS letters》1971,17(2):327-329
  相似文献   

8.
The rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) is the most intricate membrane-bound enzyme of the mitochondrial respiratory chain. Notably the bovine enzyme comprises up to 46 subunits, while 27 subunits could be considered as widely conserved among eukaryotic complex I. By combining proteomic and genomic approaches, we characterized the complex I composition from the unicellular green alga Chlamydomonas reinhardtii. After purification by blue-native polyacrylamide gel electrophoresis (BN-PAGE), constitutive subunits were analyzed by SDS-PAGE coupled to tandem mass spectrometry (MS) that allowed the identification of 30 proteins. We compared the known complex I components from higher plants, mammals, nematodes and fungi with this MS data set and the translated sequences from the algal genome project. This revealed that the Chlamydomonas complex I is likely composed of 42 proteins, for a total molecular mass of about 970 kDa. In addition to the 27 typical components, we have identified four new complex I subunit families (bovine ESSS, PFFD, B16.6, B12 homologues), extending the number of widely conserved eukaryote complex I components to 31. In parallel, our analysis showed that a variable number of subunits appears to be specific to each eukaryotic kingdom (animals, fungi or plants). Protein sequence divergence in these kingdom-specific sets is significant and currently we cannot exclude the possibility that homology between them exists, but has not yet been detected.  相似文献   

9.
10.
We have analyzed a series of eleven mutations in the 49-kDa protein of mitochondrial complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica to identify functionally important domains in this central subunit. The mutations were selected based on sequence homology with the large subunit of [NiFe] hydrogenases. None of the mutations affected assembly of complex I, all decreased or abolished ubiquinone reductase activity. Several mutants exhibited decreased sensitivities toward ubiquinone-analogous inhibitors. Unexpectedly, seven mutations affected the properties of iron-sulfur cluster N2, a prosthetic group not located in the 49-kDa subunit. In three of these mutants cluster N2 was not detectable by electron-paramagnetic resonance spectroscopy. The fact that the small subunit of hydrogenase is homologous to the PSST subunit of complex I proposed to host cluster N2 offers a straightforward explanation for the observed, unforeseen effects on this iron-sulfur cluster. We propose that the fold around the hydrogen reactive site of [NiFe] hydrogenase is conserved in the 49-kDa subunit of complex I and has become part of the inhibitor and ubiquinone binding region. We discuss that the fourth ligand of iron-sulfur cluster N2 missing in the PSST subunit may be provided by the 49-kDa subunit.  相似文献   

11.
We developed a conditional complex I assembly system in a Chinese hamster fibroblast mutant line, CCL16-B2, that does not express the NDUFA1 gene (encoding the MWFE protein). In this mutant, a hemagglutinin (HA) epitope-tagged MWFE protein was expressed from a doxycycline-inducible promoter. The expression of the protein was absolutely dependent on the presence of doxycycline, and the gene could be turned off completely by removal of doxycycline. These experiments demonstrated a key role of MWFE in the pathway of complex I assembly. Upon induction the MWFE.HA protein reached steady-state levels within 24 h, but the appearance of fully active complex I was delayed by another approximately 24 h. The MWFE appeared in a precomplex that probably includes one or more subunits encoded by mtDNA. The fate of MWFE and the stability of complex I were themselves very tightly linked to the activity of mitochondrial protein synthesis and to the assembly of subunits encoded by mtDNA (ND1-6 and ND4L). This novel conditional system can shed light not only on the mechanism of complex I assembly but emphasizes the role of subunits previously thought of as "accessory." It promises to have broader applications in the study of cellular energy metabolism and production of reactive oxygen species and related processes.  相似文献   

12.
The NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial respiratory chain is by far the largest and most complicated of the proton-translocating enzymes involved in the oxidative phosphorylation. Many clues regarding the electron pathways from matrix NADH to membrane ubiquinone and the links of this process with the translocation of protons are highly controversial. Different types of inhibitors become valuable tools to dissect the electron and proton pathways of this complex enzyme. Therefore, further knowledge of the mode of action of complex I inhibitors is needed to understand the underlying mechanism of energy conservation. This study presents for the first time a detailed exploration of the inhibitory action of the Annonaceous acetogenins, the most powerful inhibitors of the mammalian enzyme, taking as the head-series rolliniastatin-1, rolliniastatin-2, and corossolin. Despite their close chemical resemblance, each of them inhibits the complex I with different kinetic features reflecting differential binding to the enzyme.  相似文献   

13.
Koji Sekiguchi 《BBA》2009,1787(9):1106-7891
125I-labeled (trifluoromethyl)phenyldiazirinyl acetogenin, [125I]TDA, a photoaffinity labeling probe of acetogenin, photo-cross-links to the ND1 subunit of bovine heart mitochondrial NADH-ubiquinone oxidoreductase (complex I) with high specificity [M. Murai, A. Ishihara, T. Nishioka, T. Yagi, and H. Miyoshi, (2007) The ND1 subunit constructs the inhibitor binding domain in bovine heart mitochondrial complex I, Biochemistry 46 6409-6416.]. To identify the binding site of [125I]TDA in the ND1 subunit, we carried out limited proteolysis of the subunit cross-linked by [125I]TDA using various proteases and carefully analyzed the fragmentation patterns. Our results revealed that the cross-linked residue is located within the region of the 4th to 5th transmembrane helices (Val144-Glu192) of the subunit. It is worth noting that an excess amount of short-chain ubiquinones such as ubiquinone-2 (Q2) and 2-azido-Q2 suppressed the cross-linking by [125I]TDA in a concentration-dependent way. Although the question of whether the binding sites for ubiquinone and different inhibitors in complex I are identical remains to be answered, the present study provided, for the first time, direct evidence that an inhibitor (acetogenin) and ubiquinone competitively bind to the enzyme. Considering the present results along with earlier photoaffinity labeling studies, we propose that not all inhibitors acting at the terminal electron transfer step of complex I necessarily bind to the ubiquinone binding site itself.  相似文献   

14.
15.
The first component of the mitochondrial electron-transport chain is especially complex, consisting of 19 nuclear and seven mitochondrion-encoded subunits. Accordingly, a wide range of clinical manifestations are produced by the various mutations occurring in human populations. In this study, we analyze the subunit structure of complex I in fibroblasts from two patients who have distinct clinical phenotypes associated with complex I deficiency. The first patient died in the second week of life from overwhelming lactic acidosis. Severe complex I deficiency was evident in her fibroblasts, since alanine oxidation was markedly reduced whereas succinate oxidation was normal. Absence of a 20-kDa subunit was demonstrable when newly synthesized proteins were immunoprecipitated from pulse-labeled fibroblasts by anti-complex I antibody. Disordered assembly or decreased stability of the complex was suggested by deficiency of multiple subunits on Western immunoblots. The second patient exhibited a milder clinical phenotype, characterized by moderate lactic acidosis and developmental delay in childhood and by onset of seizures at 8 years of age. Oxidation studies demonstrated expression of the complex I deficiency in fibroblasts, but no subunit abnormalities were detected by immunoprecipitation or Western immunoblotting. This report demonstrates the utility of cultured fibroblasts in studying mutations affecting synthesis and assembly of complex I.  相似文献   

16.
Mammalian mitochondrial small subunit ribosomal proteins were separated by two-dimensional polyacrylamide gel electrophoresis. The proteins in six individual spots were subjected to in-gel tryptic digestion. Peptides were separated by capillary liquid chromatography, and the sequences of selected peptides were obtained by electrospray tandem mass spectrometry. The peptide sequences obtained were used to screen human expressed sequence tag data bases, and complete consensus cDNAs were assembled. Mammalian mitochondrial small subunit ribosomal proteins from six different classes of ribosomal proteins were identified. Only two of these proteins have significant sequence similarities to ribosomal proteins from prokaryotes. These proteins correspond to Escherichia coli S10 and S14. Homologs of two human mitochondrial proteins not found in prokaryotes were observed in the genomes of Drosophila melanogaster and Caenorhabditis elegans. A homolog of one of these proteins was observed in D. melanogaster but not in C. elegans, while a homolog of the other was present in C. elegans but not in D. melanogaster. A homolog of one of the ribosomal proteins not found in prokaryotes was tentatively identified in the yeast genome. This latter protein is the first reported example of a ribosomal protein that is shared by mitochondrial ribosomes from lower and higher eukaryotes that does not have a homolog in prokaryotes.  相似文献   

17.
Murai M  Ishihara A  Nishioka T  Yagi T  Miyoshi H 《Biochemistry》2007,46(21):6409-6416
The inhibitor binding domain in bovine complex I is believed to be constructed by multisubunits, but it remains to be learned how the binding positions of chemically diverse inhibitors relate to each other. To get insight into the inhibitor binding domain in complex I, we synthesized a photoreactive acetogenin [[125I](trifluoromethyl)phenyldiazirinylacetogenin, [125I]TDA], in which an aryldiazirine group serves as both a photoreactive group and a substitute for the gamma-lactone ring that is a common toxophore of numerous natural acetogenins, and carried out photoaffinity labeling to identify the labeled subunit using bovine heart submitochondrial particles (SMP). When SMP were UV-irradiated in the presence of [125I]TDA, radioactivity was predominantly incorporated into an approximately 30 kDa band on a SDS gel. Blue native gel electrophoresis of the [125I]TDA-labeled SMP revealed that the majority of radioactivity was observed in complex I. Analysis of complex I on a SDS gel showed a predominant peak of radioactivity at approximately 30 kDa. Immnoprecipitation of the [125I]TDA-labeled complex I with anti-bovine ND1 antibody indicated that the labeled protein is the ND1 subunit. A variety of complex I inhibitors such as piericidin A and rotenone efficiently suppressed the specific binding of [125I]TDA to ND1, indicating that they share a common binding domain. However, the suppression efficiency of Deltalac-acetogenin, a new type of complex I inhibitor synthesized in our laboratory, was much lower than that of the traditional inhibitors. Our results unequivocally reveal that the ND1 subunit constructs the inhibitor binding domain, though the contribution of this subunit has been challenged. Further, the present study corroborates our previous proposition that the inhibition site of Deltalac-acetogenins differs from that of traditional inhibitors.  相似文献   

18.
19.
We have studied the ubiquinone-reducing catalytic core of NADH:ubiquinone oxidoreductase (complex I) from Yarrowia lipolytica by a series of point mutations replacing conserved histidines and arginines in the 49-kDa subunit. Our results show that histidine 226 and arginine 141 probably do not ligate iron-sulfur cluster N2 but that exchanging these residues specifically influences the properties of this redox center. Histidines 91 and 95 were found to be essential for ubiquinone reductase activity of complex I. Mutations at the C-terminal arginine 466 affected ubiquinone affinity and inhibitor sensitivity but also destabilized complex I. These results provide further support for a high degree of structural conservation between the 49-kDa subunit of complex I and its ancestor, the large subunit of water-soluble [NiFe] hydrogenases. In several mutations of histidine 226, arginine 141, and arginine 466 the characteristic EPR signatures of iron-sulfur cluster N2 became undetectable, but specific, inhibitor-sensitive ubiquinone reductase activity was only moderately reduced. As we could not find spectroscopic indications for a modified cluster N2, we concluded that these complex I mutants were lacking most of this redox center but were still capable of catalyzing inhibitor-resistant ubiquinone reduction at near normal rates. We discuss that this at first surprising scenario may be explained by electron transfer theory; after removal of a single redox center in a chain, electron transfer rates are predicted to be still much faster than steady-state turnover of complex I. Our results question some of the central mechanistic functions that have been put forward for iron-sulfur cluster N2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号