首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatic fibrosis represents a process of healing and scarring in response to chronic liver injury. Interleukin-10 (IL-10) is a cytokine that downregulates the proinflammatory response and has a modulatory effect on hepatic fibrogenesis. The aim of this study was to investigate whether IL-10 gene therapy possesses anti-hepatic fibrogenesis in mice. Liver fibrosis was induced by long-term thioacetamide administration in mice. Human IL-10 expression plasmid was delivered via electroporation after liver fibrosis established. IL-10 gene therapy reversed hepatic fibrosis and prevented cell apoptosis in a thioacetamide-treated liver. RT-PCR revealed IL-10 gene therapy to reduce liver transforming growth factor-beta1, tumor necrosis factor-alpha, collagen alpha1, cell adhesion molecule, and tissue inhibitors of metalloproteinase mRNA upregulation. Following gene transfer, the activation of alpha-smooth muscle actin and cyclooxygenase-2 was significantly attenuated. In brief, IL-10 gene therapy might be an effective therapeutic reagent for liver fibrosis with potential future clinical applications.  相似文献   

2.
Redox-regulated processes are important elements in various cellular functions. Reducing agents, such as N-acetyl-l-cysteine (NAC), are known to regulate signal transduction and cell growth through their radical scavenging action. However, recent studies have shown that reactive oxygen species are not always involved in ligand-stimulated intracellular signaling. Here, we report a novel mechanism by which NAC blocks platelet-derived growth factor (PDGF)-induced signaling pathways in hepatic stellate cells, a fibrogenic player in the liver. Unlike in vascular smooth muscle cells, we found that reducing agents, including NAC, triggered extracellular proteolysis of PDGF receptor-beta, leading to desensitization of hepatic stellate cells toward PDGF-BB. This effect was mediated by secreted mature cathepsin B. In addition, type II transforming growth factor-beta receptor was also down-regulated. Furthermore, these events seemed to cause a dramatic improvement of rat liver fibrosis. These results indicated that redox processes impact the cell's response to growth factors by regulating the turnover of growth factor receptors and that "redox therapy" is promising for fibrosis-related disease.  相似文献   

3.
Skin fibrosis is classically seen as the consequence of chronic inflammation and altered healing response that is characterized by the differentiation of fibroblasts into secretory myofibroblasts and accumulation of connective tissue. Although fibrosis severely affects organ function and causes esthetic defects, no effective therapy is currently available to attenuate the fibrogenic process probably because the fibrogenic process is more complex than previously thought. Indeed, it might involve several interacting and mutually dependent cell types (fibroblasts, keratinocytes, endothelial cells, inflammatory cells), numerous paracrine factors, bio-active molecules and micro-environmental stimuli (growth factors, vasoactive peptides, balance between pro- and anti-inflammatory cytokines, coagulation system, reactive oxygen species, extracellular matrix...). In this perspective, the traditional approach that model individual cell response in simple cell culture system is probably inadequate and too simplistic. This article reviews the new models used to study skin fibrosis in vitro, in organotypic culture systems and in vivo and examines how these different models might be used to identify new molecular pathways involved in fibrogenesis. The monolayer cultures allow the study of fibrogenic signals induced by a single factor on a single cell type. Isolation of cells from fibrotic tissue allows to define the fibrogenic differentiation acquired in vivo. The organotypic models allow cell to cell and cell to matrix interaction and the experimental models in pigs and mice allowed studies in integrated physiological systems. These various and complementary models would also provide new tools to develop and test new drugs and treatments.  相似文献   

4.
The mechanisms that initiate and perpetuate the fibrogenic response, during liver injury, are unclear. Animal studies, however, strongly support a role for the autonomic nervous system (ANS) in wound healing. Therefore, the ANS may also mediate the development of cirrhosis. Hepatic stellate cells (HSC), the liver's major matrix-producing cells, are activated by injury to become proliferative, fibrogenic myofibroblasts. HSC respond to sympathetic neurotransmitters by changing phenotype, suggesting that HSC may be the cellular effectors of ANS signals that modulate hepatic fibrogenesis during recovery from liver damage. We show here that the parasympathetic neurotransmitter acetylcholine markedly stimulates the proliferation of myofibroblastic HSC and induces HSC collagen gene expression in these cells. By extending evidence that HSC are direct targets of the ANS, these results support the proposed neuroglial role of HSC in the liver and suggest that interrupting ANS signalling may be useful in constraining the fibrogenic response to liver injury.  相似文献   

5.
Corticosteroid administration may prevent chronic lung disease in premature newborns, perhaps by modulating the synthesis of various cytokines, including those involved in fibrogenic processes. This study analyses the levels of three fibrogenic cytokines, namely vascular endothelial growth factor, transforming growth factor-beta 1 and basic fibroblast growth factor in tracheobronchial aspirate fluids collected from 20 premature newborns randomly assigned to the early dexamethasone group or to the control group. Furthermore, pulmonary function tests were performed on days 0 and 2 following the start of therapy. The results show that early corticosteroid administration reduces transforming growth factor-beta 1 and basic fibroblast growth factor levels, and abolishes the spontaneous vascular endothelial growth factor increase observed in untreated patients, concomitantly with significant improvement of dynamic lung compliance and shorter duration of the intubation period in the treated group of patients. Significant correlations were observed between the levels of transforming growth factor-beta 1 and vascular endothelial growth factor, indicating that the production of both these cytokines is coordinated. Finally, transforming growth factor-beta 1 ratios (day 2/day 0), representing early variations of the cytokine levels, were significantly different between treated and untreated subjects and correlated with the dynamic lung compliance ratios and the extubation day, suggesting that the downmodulation of some fibrogenic mediators may be involved in the mode of action of dexamethasone.  相似文献   

6.
Latent transforming growth factor-beta binding proteins are a family of extracellular matrix proteins comprising four isoforms (LTBP-1, -2, -3, -4) with different structures, tissue expression patterns and affinity for TGF-beta. So far, respective knockout models have highlighted some essential functions for LTBP-2, LTBP-3 and LTBP-4, while the physiological significance of LTBP-1 is only superficially known. Here we report for the first time the generation and characterization of a mouse model lacking both the long and short LTBP-1 isoform. Surprisingly, respective mice are viable and fertile. However, detailed X-ray analysis of the skull revealed a modified facial profile. In addition, the gene disruption induces a reduced biological activity of TGF-beta that became evident in an experimental model of hepatic fibrogenesis in which the LTBP-1 knockout animals were less prone to hepatic fibrogenesis. Furthermore, comparative cDNA microarray gene expression profiling of cultured hepatic stellate cells confirmed that respective nulls were less receptive to cellular activation and transdifferentiation into myofibroblasts. Therefore, we conclude that LTBP-1 has essential functions in the control of TGF-beta activation.  相似文献   

7.
The evolution of signalling pathways in animal development   总被引:1,自引:0,他引:1  
Despite the bewildering number of cell types and patterns found in the animal kingdom, only a few signalling pathways are required to generate them. Most cell-cell interactions during embryonic development involve the Hedgehog, Wnt, transforming growth factor-beta, receptor tyrosine kinase, Notch, JAK/STAT and nuclear hormone pathways. Looking at how these pathways evolved might provide insights into how a few signalling pathways can generate so much cellular and morphological diversity during the development of individual organisms and the evolution of animal body plans.  相似文献   

8.
In an attempt to elucidate further the immunopathological pathways that underlie fibrogenesis induced by Schistosoma mansoni, we have studied the distribution of basement membrane compounds, heparan sulphate proteoglycans (HSPG) and the fibrogenic cytokine transforming growth factor (TGF)-β in two models of experimental schistosomiasis mansoni (experimental murine infection and synchronous granulomas induced by injection of egg-antigen-coupled beads into the caecal vein). Deposition of the basement membrane proteins type IV collagen, laminin and entactin in schistosomal granulomas was seen 3 days after the implantation of egg-antigen-coupled beads in the liver and persisted over time (32 days). Up-regulation of the membrane-bound HSPG syndecan-1 was observed in the schistosomal granuloma. These syndecan-1-immunoreactive cells represented a distinct subpopulation of granuloma cells; they were different from both mature, unstimulated B-cells (CD40-positive) and endothelial cells (CD105-positive). Deposition of the matrix HSPG perlecan within the granuloma was most prominent 8–16 days after injection. TGF-β expression was observed in acute (8 weeks) and chronically (13 weeks) infected mice, mainly at the periphery of the schistosomal granuloma and on Kupffer cells in the liver parenchyma. From these observations, we infer that schistosomal fibrosis is composed of various groups of matrix components and that TGF-β, which is secreted by granuloma cells, is one of the fibrogenic mediators in schistosomal fibrogenesis.  相似文献   

9.
Metabolism of the extracellular matrix (ECM) is a complex process that becomes disregulated in disease states characterized by chronic inflammation of joints, as is seen in rheumatoid arthritis or fibrosis of the lung. The participation of certain cytokines in this process is generally accepted (transforming growth factor-beta induces fibrosis), while the roles of other cytokines are less clear. Oncostatin M (OSM) is a member of the interleukin-6/leukaemia inhibitory factor (or gp130) cytokine family, and its participation in inflammation and the regulation of ECM metabolism is supported by a number of activities identified in vitro, including regulation of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinases-1. Local overexpression of transforming growth factor-beta has been shown to be fibrogenic in mouse lung, whereas local OSM overexpression via intra-articular administration has been shown to induce a pannus-like inflammatory response in the synovium of mouse knee joints. Here we examine the effects of OSM in the context of those of transforming growth factor-beta using an established adenovirus vector that expresses mOSM (AdmOSM). We administered the virus intra-nasally into Balb/C mice to achieve high expression of OSM in the lung, and examined the effects at various time points. AdmOSM resulted in a vigorous inflammatory response by day 7 which was characterized by an elevation of neutrophil and mononuclear cell numbers and a marked increase in collagen deposition. These data support the use of such systems to study the ECM in vivo, and indicate a potential role for OSM in inflammatory responses that can modulate steady-state ECM deposition in Balb/C mice.  相似文献   

10.
Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC) from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl(4)) twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2 × 10(6)) were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively). Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl(4) treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl(4) administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl(4) demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl(4) treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl(4) alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl(4) treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established hepatic fibrosis that justifies further investigation of this potential cell-based therapy for advanced hepatic fibrosis.  相似文献   

11.
Hepatic fibrosis, the common response associated with chronic liver diseases, ultimately leads to cirrhosis, a major public health problem worldwide. We recently showed that activation of hepatic cannabinoid CB2 receptors limits progression of experimental liver fibrosis. We also found that during the course of chronic hepatitis C, daily cannabis use is an independent predictor of fibrosis progression. Overall, these results suggest that endocannabinoids may drive both CB2-mediated antifibrogenic effects and CB2-independent profibrogenic effects. Here we investigated whether activation of cannabinoid CB1 receptors (encoded by Cnr1) promotes progression of fibrosis. CB1 receptors were highly induced in human cirrhotic samples and in liver fibrogenic cells. Treatment with the CB1 receptor antagonist SR141716A decreased the wound-healing response to acute liver injury and inhibited progression of fibrosis in three models of chronic liver injury. We saw similar changes in Cnr1-/- mice as compared to wild-type mice. Genetic or pharmacological inactivation of CB1 receptors decreased fibrogenesis by lowering hepatic transforming growth factor (TGF)-beta1 and reducing accumulation of fibrogenic cells in the liver after apoptosis and growth inhibition of hepatic myofibroblasts. In conclusion, our study shows that CB1 receptor antagonists hold promise for the treatment of liver fibrosis.  相似文献   

12.
Transforming growth factor-beta, a peptide growth factor, is known to be a multifunctional regulator of cellular activity. The effect of this growth factor on extracellular matrix formation is well established, but its effects on elastin, a critical component of lung, skin, and blood vessels are unknown. In the present study, by use of an Enzyme-Linked Immunoassay method, we found that transforming growth factor-beta strongly increased elastin production in cultured porcine aortic smooth muscle cells. In a dosage-dependent study, 1.0-10.0 ng/ml transforming growth factor-beta promoted elastin production 2-3 fold. In a time-dependent study, at least an 8 h pre-treatment with 10.0 ng/ml transforming growth factor-beta was required for sustained increases in elastin production. The effects of transforming growth factor-beta on cultured aortic smooth muscle cells suggest that this cytokine may be an important mediator of elastin formation during atherosclerosis and hypertension.  相似文献   

13.
14.
Autocrine release of TGF-beta by portal fibroblasts regulates cell growth   总被引:2,自引:0,他引:2  
Wells RG  Kruglov E  Dranoff JA 《FEBS letters》2004,559(1-3):107-110
Portal fibroblasts (PF) are a newly isolated population of fibrogenic cells in the liver postulated to play a significant role in early biliary fibrosis. Because transforming growth factor-beta (TGF)-beta is a key growth factor in fibrosis, we characterized the response of PF to TGF-beta. We demonstrate that PF produce significant amounts of TGF-beta2 and, unlike activated hepatic stellate cells (HSC), express all three TGF-beta receptors and are growth inhibited by TGF-beta1 and TGF-beta2. Fibroblast growth factor (FGF)-2, but not platelet derived growth factor (PDGF), causes PF proliferation. These data suggest a mechanism whereby HSC eclipse PF as the dominant myofibroblast population in biliary fibrosis.  相似文献   

15.
Unilateral ureteral obstruction (UUO) induces activation of the renin-angiotensin system and upregulation of transforming growth factor-beta1 (TGF-beta1; a cytokine modulating cellular adhesion and fibrogenesis) and clusterin (a glycoprotein produced in response to cellular injury). This study was designed to examine the regulation of renal TGF-beta1 and clusterin by ANG II in the neonatal rat. Animals were subjected to UUO in the first 2 days of life, and renal TGF-beta1 and clusterin mRNA were measured 3 days later. Rats were divided into treatment groups receiving saline vehicle, ANG, losartan (AT(1) receptor inhibitor), or PD-123319 (AT(2) receptor inhibitor). ANG stimulated renal TGF-beta1 expression via AT(1) receptors, a response similar to that in the adult. In contrast, clusterin expression was stimulated via AT(2) receptors, a response differing from that in the adult, in which ANG inhibits clusterin expression via AT(1) receptors. We speculate that the unique response of the neonatal hydronephrotic kidney to ANG II is due to the preponderance of AT(2) receptors in the developing kidney.  相似文献   

16.
Previous work indicated that transforming growth factor-beta elicits proliferation-inhibitory and differentiation-like effects in the human colon carcinoma cell line MOSER. We report for the first time that the proto-oncogene c-myc is repressed in response to transforming growth factor-beta in a human colon carcinoma cell line. We also describe a subline of these cells which are relatively resistant to the transforming growth factor-beta-induced effects on proliferation in monolayer and in soft agarose, but which retain the ability to specifically bind transforming growth factor-beta. Analysis of molecular and cellular alterations in this subline may aid in elucidating the mechanism of action of transforming growth factor-beta.  相似文献   

17.
Fibroblasts are extracellular matrix-producing cells in the lung. Fibroblast activation by transforming growth factor-beta leads to myofibroblast-differentiation and increased extracellular matrix deposition, a hallmark of pulmonary fibrosis. While fibroblast function with respect to migration, invasion, and extracellular matrix deposition has been well-explored, little is known about the surface proteome of lung fibroblasts in general and its specific response to fibrogenic growth factors, in particular transforming growth factor-beta.We thus performed a cell-surface proteome analysis of primary human lung fibroblasts in presence/absence of transforming growth factor-beta, followed by characterization of our findings using FACS analysis, Western blot, and siRNA-mediated knockdown experiments.We identified 213 surface proteins significantly regulated by transforming growth factor-beta, platelet derived growth factor receptor-alpha being one of the top down-regulated proteins. Transforming growth factor beta-induced downregulation of platelet derived growth factor receptor-alpha induced upregulation of platelet derived growth factor receptor-beta expression and phosphorylation of Akt, a downstream target of platelet derived growth factor signaling. Importantly, collagen type V expression and secretion was strongly increased after forced knockdown of platelet derived growth factor receptor-alpha, an effect that was potentiated by transforming growth factor-beta. We therefore show previously underappreciated cross-talk of transforming growth factor-beta and platelet derived growth factor signaling in human lung fibroblasts, resulting in increased extracellular matrix deposition in a platelet derived growth factor receptor-alpha dependent manner. These findings are of particular importance for the treatment of lung fibrosis patients with high pulmonary transforming growth factor-beta activity.  相似文献   

18.
Hepatic stellate cells are the primary cell type responsible for matrix deposition in liver fibrosis, undergoing a process of transdifferentiation into fibrogenic myofibroblasts. These cells, which undergo a similar transdifferentiation process when cultured in vitro, are a major target of the profibrogenic agent transforming growth factor-beta (TGF-beta). We have studied activation of the TGF-beta downstream signaling molecules Smads 2, 3, and 4 in hepatic stellate cells (HSC) cultured in vitro for 1, 4, and 7 days, with quiescent, intermediate, and fully transdifferentiated phenotypes, respectively. Total levels of Smad4, common to multiple TGF-beta superfamily signaling pathways, do not change as HSC transdifferentiate, and the protein is found in both nucleus and cytoplasm, independent of treatment with TGF-beta or the nuclear export inhibitor leptomycin B. TGF-beta mediates activation of Smad2 primarily in early cultured cells and that of Smad3 primarily in transdifferentiated cells. The linker protein SARA, which is required for Smad2 signaling, disappears with transdifferentiation. Additionally, day 7 cells demonstrate constitutive phosphorylation and nuclear localization of Smad 2, which is not affected by pretreatment with TGF-beta-neutralizing antibodies, a type I TGF-beta receptor kinase inhibitor, or activin-neutralizing antibodies. These results demonstrate essential differences between TGF-beta-mediated signaling pathways in quiescent and in vitro transdifferentiated hepatic stellate cells.  相似文献   

19.
20.
Transforming growth factor-beta(1) (TGFbeta(1)) is recognized as both a fibrogenic and inflammatory cytokine and plays a critical role in the kidney pathophysiology. The dysregulation of TGFbeta(1) has been linked with the development of diabetic nephropathy. Connective tissue growth factor (CTGF) is a fibrogenic cytokine and is recognized as a downstream mediator of TGFbeta(1) in kidney fibrosis. TGFbeta(1) is involved in immunomodulation and fibrosis in the kidney. However, CTGF plays a more specific role in the fibrogenic pathways in the kidney proximal tubule cells. Moreover, CTGF facilitates TGFbeta(1) signaling and promotes renal fibrosis. This suggests CTGF could be a potential target for kidney fibrosis. Long-term inhibition and targeting TGFbeta(1) directly is problematic, therefore, a more fruitful direction targeting diabetic nephropathy may involve the development of therapeutic strategies specifically targeting CTGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号