首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytochrome cbb3 is an isoenzyme in the family of cytochrome c oxidases. This protein purified from Pseudomonas stutzeri displays a cyanide-sensitive nitric oxide reductase activity (Vmax=100+/-9 mol NO x mol cbb3(-1) x min(-1) and Km=12+/-2.5 microm), which is lost upon denaturation. This enzyme is only partially reduced by ascorbate, and readily re-oxidized by NO under anaerobic conditions at a rate consistent with the turnover number for NO consumption. As shown by transient spectroscopy experiments and singular value decomposition (SVD) analysis, these results suggest that the cbb3-type cytochromes, sharing structural features with bacterial nitric oxide reductases, are the enzymes retaining the highest NO reductase activity within the heme-copper oxidase superfamily.  相似文献   

2.
NN'-Dicyclohexylcarbodi-imide at low concentrations decreases the H+/2e ratio for rat liver mitochondria over the span succinate to oxygen from 5.9 +/- 0.3 (mean +/- S.E.M.) to 4.0 +/- 0.1 and for the cytochrome b-c1 complex from 3.8 +/- 0.2 to 1.9 +/- 0.1, but has little effect on the H+/2e ratio of cytochrome oxidase. The decrease in stoicheiometry is due, not to uncoupling or inhibition of electron transport, but to inhibition of proton translocation. NN'-Dicyclohexylcarbodi-imide thus 'decouples' proton translocation in the cytochrome b-c1 complex.  相似文献   

3.
The isolation and purification of cytochrome c550 from the methylamine-oxidizing electron-transport chain in Thiobacillus versutus is reported. The cytochrome is a single-heme-containing type I cytochrome c with a relative molecular mass of 16 +/- 1 kDa, an isoelectric point of 4.6 +/- 0.1, a midpoint potential of 272 +/- 3 mV at pH less than 4 and 255 +/- 5 mV at pH = 7.0, and an axial coordination of the Fe by a methionine and a histidine. The midpoint potential decreases with increasing pH due to the deprotonation of a group tentatively identified as a propionate (pKa = 6.5 +/- 0.1 and 6.7 +/- 0.1 in the oxidized and reduced protein, respectively) and a change in the Fe coordination at pH greater than 10. The electron-self-exchange rate appears to depend strongly on the ionic strength of the solution and is relatively insensitive to changes in pH. At 313 K and pH 5.2 the electron-exchange rate amounts to 0.7 x 10(2) M-1 s-1 and 5.3 x 10(2) M-1 s-1 at I = 40 mM and I = 200 mM, respectively. Amino acid composition and molar absorption coefficients at various wavelengths are reported. Resonances of heme protons and the epsilon H3 group of the ligand methionine of the Fe have been identified in the 1H-NMR spectrum of the reduced as well as the oxidized cytochrome.  相似文献   

4.
The interaction of trypsin-digested bovine cytochrome b(5) (cyt b(5)) with horse heart myoglobin (Mb) and the interprotein electron transfer (ET) between these redox partners have been studied to gain better understanding of ET processes between weakly bound protein partners. The bimolecular rate constant ( k(2)) for photo-induced ET between zinc-substituted Mb (ZnMb) and cyt b(5) decreases with increasing ionic strength, consistent with the predominantly electrostatic character of this complex. The formation of a protein-protein complex has been confirmed and the binding affinities of metMb and ZnMb for cyt b(5) have been measured by two techniques: (1)H NMR titrations at pH 6.0 give binding constants of K(a) approximately (1.0+/-0.1)x10(3) M(-1) for metMb and K(a) approximately (0.75+/-0.1)x10(3) M(-1) for ZnMb; isothermal calorimetry gives K(a) approximately (0.35+/-0.1)x10(3) M(-1) for ZnMb. Brownian dynamic (BD) simulations show that cyt b(5) binds over a broad surface of Mb that includes its heme edge. The experimental results are described in terms of a dynamic docking model which proposes that Mb binds cyt b(5) in a large ensemble of protein binding conformations, not one or a few dominant ones, but that only a small subset are ET reactive. Aided by the BD simulations, this model explains why k(2) decreases with increasing pH: increasing pH not only weakens the binding affinity but also reduces the number of binding conformations with high ET reactivity.  相似文献   

5.
Y Wu  Y Wang  C Qian  J Lu  E Li  W Wang  J Lu  Y Xie  J Wang  D Zhu  Z Huang  W Tang 《European journal of biochemistry》2001,268(6):1620-1630
Using 1617 meaningful NOEs with 188 pseudocontact shifts, a family of 35 conformers of oxidized bovine microsomal cytochrome b5 mutant (E44/48/56A/D60A) has been obtained and is characterized by good resolution (rmsd to the mean structure are 0.047 +/- 0.007 nm and 0.095 +/- 0.008 nm for backbone and heavy atoms, respectively). The solution structure of the mutant, when compared with the X-ray structure of wild-type cytochrome b(5), has no significant changes in the whole folding and secondary structure. The binding between cytochrome b(5) and cytochrome c shows that the association constant of the mutant-cytochrome c complex is much lower than the one for wild-type complex (2.2 x 10(4) M(-1) vs. 5.1 x 10(3) M(-1)). The result suggests the four acidic residues have substantial effects on the formation of the complex between cytochrome b(5) and cytochrome c, and therefore it is concluded reasonably that the electrostatic interaction plays an important role in maintaining the stability and specificity of the complex formed. The competition between the ferricytochrome b(5) mutant and [Cr(oxalate)(3)](3-) for ferricytochrome c shows that site III of cytochrome c, which is a strong binding site to wild-type cytochrome b(5), still binds to the mutant with relatively weaker strength. Our results indicate that certain bonding geometries do occur in the interaction between the present mutant and cytochrome c and these geometries, which should be quite different from the ones of the Salemme and Northrup models.  相似文献   

6.
Cytochrome c6 is a soluble metalloprotein located in the periplasmic space and the thylakoid lumen of many cyanobacteria and is known to carry electrons from cytochrome b6f to photosystem I. The CuA domain of cytochrome c oxidase, the terminal enzyme which catalyzes the four-electron reduction of molecular oxygen in the respiratory chains of mitochondria and many bacteria, also has a periplasmic location. In order to test whether cytochrome c6 could also function as a donor for cytochrome c oxidase, we investigated the kinetics of the electron transfer between recombinant cytochrome c6 (produced in high yield in Escherichia coli by coexpressing the maturation proteins encoded by the ccmA-H gene cluster) and the recombinant soluble CuA domain (i.e., the donor binding and electron entry site) of subunit II of cytochrome c oxidase from Synechocystis PCC 6803. The forward and the reverse electron transfer reactions were studied by the stopped-flow technique and yielded apparent bimolecular rate constants of (3.3 +/- 0.3) x 10(5) M(-1) s(-1) and (3.9 +/- 0.1) x 10(6) M(-1) s(-1), respectively, in 5 mM potassium phosphate buffer, pH 7, containing 20 mM potassium chloride and 25 degrees C. This corresponds to an equilibrium constant Keq of 0.085 in the physiological direction (DeltarG'0 = 6.1 kJ/mol). The reduction of the CuA fragment by cytochrome c6 is almost independent on ionic strength, which is in contrast to the reaction of the CuA domain with horse heart cytochrome c, which decreases with increasing ionic strength. The findings are discussed with respect to the potential role of cytochrome c6 as mobile electron carrier in both cyanobacterial electron transport pathways.  相似文献   

7.
We have measured the transition temperatures, T(M), and van't Hoff enthalpies, DeltaH(M), of the thermally induced native-to-unfolded (N-to-U) and molten globule-to-unfolded (MG-to-U) transitions of cytochrome c at pressures between 50 and 2200 bar. We have used the pressure dependence of T(M) to evaluate the changes in volume, Delta(v), accompanying each protein transition event as a function of temperature and pressure. From analysis of the temperature and pressure dependences of Delta(v), we have additionally calculated the changes in expansibility, Delta(e), and isothermal compressibility, Delta(k)(T), associated with the thermally induced conformational transitions of cytochrome c. Specifically, if extrapolated to 25 degrees C, the native-to-unfolded (N-to-U) transition is accompanied by changes in volume, Delta(v), expansibility, Delta(e), and isothermal compressibility, Delta(k)(T), of -(5 +/- 3) x 10(-3) cm(3) g(-1), (1.8 +/- 0.3) x 10(-4) cm(3) g(-1) K(-1), and approximately 0 cm(3) g(-1) bar(-1), respectively. The molten globule-to-unfolded (MG-to-U) transition is accompanied by changes in volume, Delta(v), and isothermal compressibility, Delta(k)(T), of -(2.9 +/- 0.3) x 10(-3) cm(3) g(-1) at 40 degrees C and -(1.9 +/- 0.3) x 10(-6) cm(3) g(-1) bar(-1) at 35 degrees C, respectively. By comparing the volumetric properties of the N-to-U and N-to-MG transitions of cytochrome c, we have estimated the properties of the native-to-molten globule (N-to-MG) transition. For the latter transition, the changes in volume, Delta(v), and isothermal compressibility, Delta(k)(T), are approximately 0 cm(3) g(-1) at 40 degrees C and 1.9 cm(3) g(-1) bar(-1) at 35 degrees C, respectively. Our estimate for the change in expansibility, Delta(e), upon the N-to-MG is negative and equal to -(5 +/- 3) x 10(-4) cm(3) g(-1) K(-1). This finding contrasts with the results of previous studies all of which report positive changes in expansibility associated with protein denaturation. In general, our volumetric data permit us to assess the combined effect of temperature and pressure on the stability of various conformational states of cytochrome c.  相似文献   

8.
Andrew CR  George SJ  Lawson DM  Eady RR 《Biochemistry》2002,41(7):2353-2360
The 5-coordinate ferrous heme of Alcaligenes xylosoxidans cytochrome c' reacts with NO to form a 6-coordinate nitrosyl intermediate (lambdaSoret at 415 nm) which subsequently converts to a 5-coordinate nitrosyl end product (lambdaSoret at 395 nm) in a rate-determining step. Stopped-flow measurements at pH 8.9, 25 degrees C, yield a rate constant for the formation of the 6-coordinate nitrosyl adduct, k(on) = (4.4 +/- 0.5) x 10(4) M(-1) x s(-1), which is 3-4 orders of magnitude lower than the values for other pentacoordinate ferrous hemes and is consistent with NO binding within the sterically crowded distal heme pocket. Resonance Raman measurements of the freeze-trapped 6-coordinate nitrosyl intermediate reveal an unusually high Fe-NO stretching frequency of 579 cm(-1), suggesting a distorted Fe-N-O coordination geometry. The rate of 6- to 5-coordinate heme nitrosyl conversion is also dependent upon NO concentration, with a rate constant, k(6-5) = (8.1 +/- 0.7) x 10(3) M(-1) x s(-1), implying that an additional molecule of NO is required to form the 5c-NO adduct. Since crystallographic studies have shown that the 5-coordinate nitrosyl complex of cytochrome c' binds NO to the proximal (rather than distal) face of the heme, the NO dependence of the 6- to 5-coordinate NO conversion supports a mechanism in which the weakened His ligand, as well as the distally bound NO, is displaced by a second NO molecule which attacks and is retained in the proximal coordination position. The fact that a dependent 6- to 5-coordinate nitrosyl conversion has been previously reported for soluble guanylate cyclase suggests that the mechanism of Fe-His bond cleavage may be similar to that of cytochrome c' and strengthens the recent proposal that both proteins exhibit proximal NO binding in their 5-coordinate nitrosyl adducts.  相似文献   

9.
Complex formation between cytochrome c peroxidase and ferricytochrome c perturbs the optical absorption spectrum in the Soret band by about 2%. This perturbation can be utilized as a measure of the complex formed in solution and permits the determination of the stoichiometry and the equilibrium association constant for this reaction. At pH 6, in cacodylate/KNO3 buffers, only a 1:1 complex between cytochrome c peroxidase and ferricytochrome c is detected. The equilibrium association constant for the complex has been determined as a function of ionic strength and varies between (6.0 +/- 3.6) x 10(6) M-1 and (2.2 +/- 1.9) x 10(6) M-1 over the ionic strength range 0.01 M to 0.20 M.  相似文献   

10.
M R Mauk  L S Reid  A G Mauk 《Biochemistry》1982,21(8):1843-1846
The interaction between cytochrome c and the tryptic fragment of cytochrome b5 has been found to produce a difference spectrum in the Soret region with a maximum absorbance at 416 nm. The intensity of this difference has been used to determine the stoichiometry of complex formation and the stability of the complex formed. At pH 7.0 [25 degrees C (phosphate), mu = 0.01 M], the two proteins were found to form a 1:1 complex with an association constant, KA, of 8(3) x 10(4) M-1. The stability of the complex was found to be strongly dependent on ionic strength with KA increasing to 4(3) x 10(6) M-1 at mu = 0.001 M [25 degrees C, pH 7.0 (phosphate)]. Analysis of the dependence of KA on pH from pH 6.5 to 8 demonstrated that this complex is maximally stable between pH 7 and 8 or about midway between the isoelectric points of the two proteins. Analysis of the temperature dependence of KA revealed that formation of the complex between the two proteins is largely entropic in origin with delta Ho = 1 +/- 3 kcal/mol and delta So = 33 +/- 11 eu [pH 7.0 (phosphate), mu = 0.001 M]. This result may be explained either by the model of Clothia and Janin [Clothia, C., & Janin, J. (1975) Nature (London) 256, 705] in terms of extensive solvent reorganization upon complexation or by the model of Ross and Subramanian [Ross, P. D., & Subramanian, S. (1981) Biochemistry 20, 3096] in which the negative enthalpic and entropic contributions of short-range protein-protein interactions are offset by proton release.  相似文献   

11.
Cytochrome bd is a bacterial respiratory oxidase carrying three hemes but no copper. We show that nitric oxide (NO) reacts with the intermediate F of cytochrome bd from Azotobacter vinelandii: (i) with a 1:1 stoichiometry, (ii) rapidly (k=1.2 +/- 0.1 x 10(5)M(-1)s(-1) at 20 degrees C), and (iii) yielding the oxidized enzyme with nitrite bound to heme d at the active site. Unexpectedly, the NO reaction mechanism of this catalytic intermediate in the Cu(B)-lacking cytochrome bd appears similar to that of beef heart cytochrome c oxidase, where Cu(B) was proposed to play a key role.  相似文献   

12.
Bacterial cytochrome cbb3 oxidases are members of the haeme-copper oxidase superfamily that are important for energy conservation by a variety of proteobacteria under oxygen-limiting conditions. The opportunistic pathogen Pseudomonas aeruginosa is unusual in possessing two operons that each potentially encode a cbb3 oxidase (cbb3-1 or cbb3-2). Our results demonstrate that, unlike typical enzymes of this class, the cbb3-1 oxidase has an important metabolic function at high oxygen tensions. In highly aerated cultures, cbb3-1 abundance and expression were greater than that of cbb3-2, and only loss of cbb3-1 influenced growth. Also, the activity of cbb3-1, not cbb3-2, inhibited expression of the alternative oxidase CioAB and thus influenced a signal transduction pathway much like that found in the alpha-proteobacterium Rhodobacter sphaeroides. Cbb3-2 appeared to play a more significant role under oxygen limitation by nature of its increased abundance and expression compared to highly aerated cultures, and the regulation of the cbb3-2 operon by the putative iron-sulphur protein Anr. These results indicate that each of the two P. aeruginosa cbb3 isoforms have assumed specialized energetic and regulatory roles.  相似文献   

13.
The focus of the present study is to better understand the complex factors influencing intermolecular electron transfer (ET) in biological molecules using a model system involving free-base coproporphyrin (COP) complexed with horse heart cytochrome c (Cc). Coproporphyrin exhibits bathochromic shifts in both the Soret and visible absorption bands in the presence of Cc and an absorption difference titration reveals a 1:1 complex with an association constant of 2.63 +/- 0.05 x 10(5) M(-1). At 20 degrees C, analysis of time-resolved fluorescence data reveals two lifetime components consisting of a discrete lifetime at 15.0 ns (free COP) and a Gaussian distribution of lifetimes centered at 2.8 ns (representing (1)COP --> Cc ET). Temperature-dependent, time-resolved fluorescence data demonstrate a shift in singlet lifetime as well as changes in the distribution width (associated with the complex). By fitting these data to semiclassical Marcus theory, the reorganizational energy (lambda) of the singlet state electron transfer was calculated to be 0.89 eV, consistent with values for other porphyrin/Cc intermolecular ET reactions. Using nanosecond transient absorption spectroscopy the temperature dependences of the forward and thermal back ET originating from triplet state were examined ((3)COP --> Cc ET). Fits of the temperature dependence of the rate constants to semiclassical Marcus theory gave lambda of 0.39 eV and 0.11 eV for the forward and back triplet ET, respectively (k(f) = (7.6 +/- 0.3) x 10(6) s(-1), k(b) = (2.4 +/- 0.3) x 10(5) s(-1)). The differing values of lambda for the forward and back triplet ET demonstrate that these ET reactions do not occur within a static complex. Comparing these results with previous studies of the uroporphyrin:Cc and tetrakis (4-carboxyphenyl)porphyrin:Cc complexes suggests that side-chain flexibility gives rise to the conformational distributions in the (1)COP --> Cc ET whereas differences in overall porphyrin charge regulates gating of the back ET reaction (reduced Cc --> COP(+)).  相似文献   

14.
The dynamic behavior of various types of cytochromes c in the redox reaction with iron hexacyanides was studied using a temperature-jump method in order to elucidate the molecular mechanism of the redox reaction of cytochromes with their oxidoreductants. Transmittance after the temperature jump changed through a single exponential decay for all cytochromes investigated. Under a constant concentration of anion, the redox reaction of various types of cytochrome c with iron hexacyanides was analyzed according to the scheme: (see formula in text) where C(III) and C(II) are ferric and ferrous cytochromes, respectively, Fe(III) and Fe(II) are ferri- and ferrocyanides, respectively, C(III) . Fe(II) is the ferricytochrome-ferrocyanide complex and C(II) . Fe(III) is the ferrocytochrome-ferricyanide complex. When step B is slower than the other two steps A and C, tau-1 can be represented approximately as (see formula in text) where the bar over the variables denotes the equilibrium value. In a large excess of ferrocyanide against cytochrome, we can estimate kappa 2, kappa-2, K1 and K3 independently. In the case of horse cytochrome c at 18 degrees C in 0.1 M phosphate buffer at pH 7 with 0.3 M KNO3, the estimated parameters are kappa 2 = 100 +/- 50 S-1, kappa-2 = (3.5 +/- 1.0) . 10(3) S-1, K1 = 15 +/- 7 M-1 and K3 = (8.5 +/- 1.5). 10(-4) M. From the same experiments for seven cytochromes (cytochrome c from horse, tuna, Candida krusei, Saccharomyces oviformis, Rhodospirillum rubrum cytochrome c2, Spirulina platensis cytochrome c-554 and Thermus thermophilus cytochrome c-552), the following results can be deduced. (1) Each parameter defined in the scheme above (kappa 2, kappa-2, K1, K3) diverged beyond the error range. Above all, kappa 2 values of cytochromes c-554 and c-552 are as large as 1 . 10(4) S-1 and much larger than those for the other cytochromes (to 50 approx. 700 S-1). (2) The variance of kappa 2K1 and kappa-2/K3 are relatively less than the variances of individual parameters (kappa 2, kappa-2, K1 and K3), which suggests that the values of kappa 2K1 and kappa-2/K3 have been conserved during the course of evolution.  相似文献   

15.
The cbb(3)-type cytochrome c oxidases (cbb(3)-Cox) constitute the second most abundant cytochrome c oxidase (Cox) group after the mitochondrial-like aa(3)-type Cox. They are present in bacteria only, and are considered to represent a primordial innovation in the domain of Eubacteria due to their phylogenetic distribution and their similarity to nitric oxide (NO) reductases. They are crucial for the onset of many anaerobic biological processes, such as anoxygenic photosynthesis or nitrogen fixation. In addition, they are prevalent in many pathogenic bacteria, and important for colonizing low oxygen tissues. Studies related to cbb(3)-Cox provide a fascinating paradigm for the biogenesis of sophisticated oligomeric membrane proteins. Complex subunit maturation and assembly machineries, producing the c-type cytochromes and the binuclear heme b(3)-Cu(B) center, have to be coordinated precisely both temporally and spatially to yield a functional cbb(3)-Cox enzyme. In this review we summarize our current knowledge on the structure, regulation and assembly of cbb(3)-Cox, and provide a highly tentative model for cbb(3)-Cox assembly and formation of its heme b(3)-Cu(B) binuclear center. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

16.
Carbon monoxide binding with both cholesterol-free (low-spin) and cholesterol-bound (high-spin) reduced forms of purified cytochrome P-450scc has been investigated by rapid-scan and stopped-flow spectrometry. CO binding occurs within 150 ms at 25 degrees C for both forms of P-450scc, with a typical absorption maximum at 450 nm. Isosbestic points occur at the following wavelengths: between reduced-CO and reduced cholesterol-free P-450scc at 434 and 471 nm; between reduced-CO and reduced cholesterol-bound P-450scc at 433 and 469 nm. Both the 'on' (k1) and 'off' rate constants (k-1) are found to be independent of pH between pH 5 and 9. The mean values of k1 for cholesterol-free (1.8 +/- 0.2) X 10(5) M-1 X s-1) and cholesterol-bound [1.9 +/- 0.1) X 10(5) M-1 X s-1) P-450scc are almost identical, while the mean value of k-1 for the former [2.3 +/- 0.3) X 10 s-1) is about double that of the latter [1.2 +/- 0.1) X 10 s-1). This suggests the instability of the reduced-CO complex in the absence of cholesterol.  相似文献   

17.
Cytochrome oxidases are perfect model substrates for analyzing the assembly of multisubunit complexes because the need for cofactor incorporation adds an additional level of complexity to their assembly. cbb(3)-type cytochrome c oxidases (cbb(3)-Cox) consist of the catalytic subunit CcoN, the membrane-bound c-type cytochrome subunits CcoO and CcoP, and the CcoQ subunit, which is required for cbb(3)-Cox stability. Biogenesis of cbb(3)-Cox proceeds via CcoQP and CcoNO subcomplexes, which assemble into the active cbb(3)-Cox. Most bacteria expressing cbb(3)-Cox also contain the ccoGHIS genes, which encode putative cbb(3)-Cox assembly factors. Their exact function, however, has remained unknown. Here we analyzed the role of CcoH in cbb(3)-Cox assembly and showed that CcoH is a single spanning-membrane protein with an N-terminus-out-C-terminus-in (N(out)-C(in)) topology. In its absence, neither the fully assembled cbb(3)-Cox nor the CcoQP or CcoNO subcomplex was detectable. By chemical cross-linking, we demonstrated that CcoH binds primarily via its transmembrane domain to the CcoP subunit of cbb(3)-Cox. A second hydrophobic stretch, which is located at the C terminus of CcoH, appears not to be required for contacting CcoP, but deleting it prevents the formation of the active cbb(3)-Cox. This suggests that the second hydrophobic domain is required for merging the CcoNO and CcoPQ subcomplexes into the active cbb(3)-Cox. Surprisingly, CcoH does not seem to interact only transiently with the cbb(3)-Cox but appears to stay tightly associated with the active, fully assembled complex. Thus, CcoH behaves more like a bona fide subunit of the cbb(3)-Cox than an assembly factor per se.  相似文献   

18.
Studies on horse heart cytochrome c polymers were carried out by stopped-flow and photolysis techniques, to investigate the properties of the CO complex and the kinetics of electron transfer, mainly of the dimeric and tetrameric forms. CO binding, which does not occur with native monomers, proceeds at both pH7.0 and pH9.6, and appears to follow complex kinetics: an initial phase is observed, which is CO-concentration-dependent, followed by a very slow monomolecular phase (k~2x10(-3)s(-1) at pH7) before establishment of equilibrium. Photodissociation of the CO complex has a very low quantum yield, probably less than 0.1. Static titration data of the dimer gave an ;n' value of 0.4. These data strongly suggest heterogeneity of the population of binding sites, and have been interpreted in terms of the existence of different structures, probably owing to the non-unique type of binding of monomers during polymerization. Polymers of cytochrome c carboxymethylated on the methionine residue normally ligated to iron show simple CO recombination kinetics after photolytic removal (k(on)=1.5x10(6)m(-1).s(-1) at pH6). We therefore suggest that, for native cytochrome c, polymerization has an effect on the lability of the haem crevice, rendering the iron available for binding ligands, without, however, forming the structure of a truly open crevice. Electron transfer is, on the other hand, a simple process, and no gross differences are observed between monomer and polymers. A simple model, taking into account all these data, is suggested.  相似文献   

19.
We have recently established that the facultative phototrophic bacterium Rhodobacter sphaeroides, like the closely related Rhodobacter capsulatus species, contains both the previously characterized mobile electron carrier cytochrome c2 (cyt c2) and the more recently discovered membrane-anchored cyt cy. However, R. sphaeroides cyt cy, unlike that of R. capsulatus, is unable to function as an efficient electron carrier between the photochemical reaction center and the cyt bc1 complex during photosynthetic growth. Nonetheless, R. sphaeroides cyt cy can act at least in R. capsulatus as an electron carrier between the cyt bc1 complex and the cbb3-type cyt c oxidase (cbb3-Cox) to support respiratory growth. Since R. sphaeroides harbors both a cbb3-Cox and an aa3-type cyt c oxidase (aa3-Cox), we examined whether R. sphaeroides cyt cy can act as an electron carrier to either or both of these respiratory terminal oxidases. R. sphaeroides mutants which lacked either cyt c2 or cyt cy and either the aa3-Cox or the cbb3-Cox were obtained. These double mutants contained linear respiratory electron transport pathways between the cyt bc1 complex and the cyt c oxidases. They were characterized with respect to growth phenotypes, contents of a-, b-, and c-type cytochromes, cyt c oxidase activities, and kinetics of electron transfer mediated by cyt c2 or cyt cy. The findings demonstrated that both cyt c2 and cyt cy are able to carry electrons efficiently from the cyt bc1 complex to either the cbb3-Cox or the aa3-Cox. Thus, no dedicated electron carrier for either of the cyt c oxidases is present in R. sphaeroides. However, under semiaerobic growth conditions, a larger portion of the electron flow out of the cyt bc1 complex appears to be mediated via the cyt c2-to-cbb3-Cox and cyt cy-to-cbb3-Cox subbranches. The presence of multiple electron carriers and cyt c oxidases with different properties that can operate concurrently reveals that the respiratory electron transport pathways of R. sphaeroides are more complex than those of R. capsulatus.  相似文献   

20.
The de novo design and synthesis of ruthenium-labeled cytochrome b5 that is optimized for the measurement of intracomplex electron transfer to cytochrome c are described. A single cysteine was substituted for Thr-65 of rat liver cytochrome b5 by recombinant DNA techniques [Stayton, P. S., Fisher, M. T., & Sligar, S. G. (1988) J. Biol. Chem. 263, 13544-13548]. The single sulfhydryl group on T65C cytochrome b5 was then labeled with [4-(bromomethyl)-4'-methylbipyridine] (bisbipyridine)ruthenium2+ to form Ru-65-cyt b5. The ruthenium group at Cys-65 is only 12 A from the heme group of cytochrome b5 but is not located at the binding site for cytochrome c. Laser excitation of the complex between Ru-65-cyt b5 and cytochrome c results in electron transfer from the excited state Ru(II*) to the heme group of Ru-65-cyt b5 with a rate constant greater than 10(6) s-1. Subsequent electron transfer from the heme group of Ru-65-cyt b5 to the heme group of cytochrome c is biphasic, with a fast-phase rate constant of (4 +/- 1) x 10(5) s-1 and a slow-phase rate constant of (3 +/- 1) x 10(4) s-1. This suggests that the complex can assume two different conformations with different electron-transfer properties. The reaction becomes monophasic and the rate constant decreases as the ionic strength is increased, indicating dissociation of the complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号