首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With the objective to develop a practical method of screening potato for drought tolerance, shoot and root growth in plantlets raised in vitro (from nodal cuttings drawn from in vivo as well as in vitro grown plantlets) were studied in three genotypes with known root mass production under field conditions. Different levels of water stress were induced using five concentrations of agar in MS (Murashige and Skoog in Physiol Plant 15:473–497, 1962) medium. Water potential of various media ranged from −0.70 MPa to −0.98 MPa. Water stress in culture adversely affected plantlet growth, and the responses varied with genotype and explant source. Genotype IWA-1 was less affected than Konafubuki and Norin-1. In the experiment with explants from in vivo grown plants, the time to rooting was considerably delayed in Konafubuki and Norin-1 by an increase in agar concentration, but no such effect was observed in IWA-1. In all media, the mean number of roots and root length was greater in IWA-1 than Konafubuki and Norin-1, and the latter two genotypes were at par. At 10 gl−1 agar, IWA-1 had taller plantlets, heavier foliage dry weight, root volume, as well as root dry weight than Konafubuki and Norin-1, whereas the latter two genotypes were at par for all these characteristics. This pattern was similar to the reported pattern of these genotypes for root dry weight under field conditions. However, such similarity in the in vitro and field behavior of the tested genotypes was not observed when nodal cuttings drawn from in vitro plantlets were used as explants. It is concluded that in vitro screening of potato under specific and limited water stress conditions by raising plantlets from nodal cuttings drawn from in vivo grown plants may provide a system for effectively differentiating the genotypes for their expected root mass production under field conditions.  相似文献   

2.
In vitro microtuberization provides an adequate experimental model for the physiological and metabolic studies of tuberization and the preliminary screenings of potential potato genotypes. The effects of saline stress at 0–80 mmol concentration on in vitro tuberization of two potato cultivars were investigated in this study. With an increase in the salt concentration, the microtuberization of potato was either delayed by 5–10 days (20 and 40 mmol NaCl) or inhibited completely (80 mmol NaCl) in addition to the reduction in microtuber yields. The two potato genotypes studied showed different trends in total soluble sugars, sucrose and starch contents of microtubers under NaCl stress, while glucose and fructose levels remained unchanged. The vitamin C content in microtubers of two potato genotypes was reduced by salt stress. Salinity applied from 20 to 60 mmol progressively increased proline and malondialdehyde (MDA) levels in microtubers of both the potato cultivars. In genotype Zihuabai, NaCl at a low concentration (20 mmol) led to a significant increase in peroxidase (POD) and polyphenoloxiadase (PPO) activities, while in Jingshi-2, the PPO activity decreased progressively with an increase in NaCl concentrations. Genotype Zihuabai exhibited higher tolerance to salt stress than Jingshi-2 under in vitro conditions. These results could be used for preliminary selections of salt tolerance in potato breeding programmes.  相似文献   

3.
This study investigated the factors affecting in vitro flowering of Perilla frutescens. The shoots regenerated from cotyledonary and hypocotyl explants cultured on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) and indole-3-acetic acid, each at 0.5 mg l−1, were excised and transferred to MS medium containing 30 g l−1 of sucrose, 8.25 g l−1 of ammonium nitrate, and 1.0 mg l−1 of BA. After 40 d of culture, 86.2% of shoots flowered and most of which self-fertilized in vitro and produced mature fruits with viable seeds. These seeds were germinated and plants were grown to maturity and flowered in soil under greenhouse conditions. The in vitro flowering system reported in this study may facilitate rapid breeding of P. frutescens and offers a model system for studying the physiological mechanism of flowering.  相似文献   

4.
In vitro propagation of Rhododendron ponticum L. subsp. baeticum, an endangered species present in limited and vulnerable populations as a Tertiary relict in the southern Iberian Peninsula, was attained. Several cytokinin:IAA ratios and a range of zeatin concentrations were evaluated for their effect on shoot multiplication from apical shoots and nodal segments. The type of cytokinin and the origin of the explant were the most important factors affecting shoot multiplication. The highest shoot multiplication rate was obtained from single-nodal explants on medium supplemented with zeatin. Increasing zeatin concentration promotes shoot multiplication independently of explant type, although this effect tends to decrease with higher zeatin concentration. Shoot growth was higher in apical shoots and it was not stimulated by the presence of auxin. A number of experiments were conducted to identify suitable procedures for rooting of in vitro produced shoots. The best results in terms of in vitro rooting were obtained with Andersons modified medium with macrosalts reduced to one-half, regardless of the auxin or its concentration in the medium. Although rooting frequency rose to 97% by basal immersion of shoots in auxin concentrated solution followed by in vitro culture on an auxin-free medium, the survival of the plants after 6 months of acclimatization was poor (50%). Best results (100% rooting and survival) were observed for ex vitro rooting. The micropropagated plants from this study were successfully reintroduced into their natural habitat (87% of survival after 8 months).  相似文献   

5.
The small group of resurrection plants is a unique model which could help us in further understanding of abiotic stress tolerance. The most frequently used approach for investigations on gene functions in plant systems is genetic transformation. In this respect, the establishment of in vitro systems for regeneration and micro propagation is necessary. On the other hand, in vitro cultures of such rare plants could preserve their natural populations. Here, we present our procedure for in vitro regeneration and propagation of Haberlea rhodopensis – a resurrection plant species, endemic for the Balkan region.  相似文献   

6.
The present study investigated the effect of different levels of Ca[ext] (0.3, 3.0, 5.0, 7.0, 9.0 and 11.0 mM) on potato over minimal growth in vitro in relation to varying water stress levels and moisture vapour transmission regimes using 45Ca as an isotopic tracer. Ca nutrition was substantially limited when the microplants were grown at enhanced water stress level (MS + 40 g l-1 sucrose + 20 g l-1 mannitol) under minimal growth. Ca[ext] in excess of standard level (3.0 mM), however, resulted in a significant increase in Ca content in microplants. The differential Ca uptake in microplants in relation to water stress and moisture vapour transmission has been discussed in terms of transpiration stream and root pressure water flow under minimal growth. The study showed that poor microplant quality at standard Ca[ext] over prolonged storage under minimal growth was due to limiting Ca nutrition, and this could be improved by using Ca[ext]-enriched (5.0-7.0 mM) minimal growth medium for conservation of potato microplants. The role of high Ca[ext] in reducing the phenotypic abnormalities such as vitrification, flaccidity, hyperhydricity, etc. in potato microplants over extended storage under minimal growth has also been discussed.  相似文献   

7.
An in vitro regeneration system with a 100% efficiency rate was developed in peppermint [Mentha x piperita] using 5- to 7-mm-long second internode stem segments of 3-wk-old stock plants. Shoots developed at sites of excision on stem fragments either directly from the cells or via primary calluses. The optimal medium for maximum shoot initiation and regeneration contained Murashige and Skoog (MS) salts, B5 vitamins, thidiazuron (TDZ, 11.35 μM), ZT (4.54 μM), 10% coconut water (CW), 20 g l−1 sucrose, 0.75% agar, adjusted to pH 5.8. A frequency of 100% shoot initiation was achieved, with an average of 39 shoots per explant. This regeneration system is highly reproducible. The regenerated plants developed normally and were phenotypically similar to Black Mitcham parents.  相似文献   

8.
In vitro culture is an important aid for ex situ conservation of rare, endemic or threatened plants. In this work, we establish an efficient method for the seed germination, seedling development, and axillary shoot propagation of Centaurea zeybekii Wagenitz. The seeds, collected from a wild population, were surface sterilised and cultured on various in vitro germination media. The effects of photoperiod and temperature on seed germination were also investigated. Germinations were obtained after 6 weeks in culture and the radicle emergence was evaluated as a main indicator. A high frequency of germination was obtained on distilled water supplemented with vitamines and 1 mg/L GA3. Although the seed germination frequencies were not affected by photoperiod, the highest germination frequency was obtained at 24 ± 2°C. A high frequency of axillary shoot proliferation was produced on MS medium supplemented with 1 mg/L BA. Then, the axillary shoots were separated and transferred to MS medium with or without plant growth regulators for rooting. Rhizogenezis was promoted after 6 weeks only in MS and 1/2 MS media containing 0.5 mg/L IBA. The rooting process was very slow and the percentage of shoot rooting was also very low (15%). The present study not only enables reinforcement of wild plant populations using ex situ growth of individuals, but it also helps to large number of aseptic seedling to use it in clonaly micropropagation studies.  相似文献   

9.
Summary In vitro propagation of Pelecyphora aselliformis, a Mexican cactus which is considered rare and is highly valued in the commercial market, was initiated using seeds as explants. The longitudinal explants from seedlings germinated in vitro were cultivated on Murashige and Skoog medium containing 8.8 μM benzyladenine (BA) or 4.6 μM kinetin at pH 7.0. After 120 d, each explant gave rise to five shoots and this number of shoots increased 20–25% after subculture. The hyperhydricity was similar in both media, but callus formation was lower on the medium with BA. The shoot development, in terms of epicotyl length, and fresh and dry weight after 6 wk, was also recorded. The epicotyl length was similar on shoot-forming media but the quality of shoots was better on media containing BA. In about 1 yr, 500–600 well-defined shoots were obtained. The rooting of shoots was very slow and a vigorous radical system was observed after 1 yr of culture.  相似文献   

10.
The species Solanum surattense Burm.f. has importance in ayurvedic medicine and also as vegetable. Streptomycin-resistant plantlets were induced showing chloroplast encoded mutants in S. surattense from mutagenised (ethyl methane sulphonate and gamma-rays) cotyledon explants. Chloroplast encoded – streptomycin resistant – shoots were developed from green (unbleached) sectors of the cotyledons. The streptomycin-resistant plants were similar to parental plants in morphology and ploidy level (2n=2x=24). Reciprocal crosses between streptomycin-resistant and the original streptomycin sensitive plants have shown the non-Mendelian transmission under the control of chloroplast – DNA. These antibiotic resistant plants are useful in designing biochemical selection schemes aimed at somatic hybrid/cybrid recovery in S. surattense.  相似文献   

11.
Summary Plantlets of Capsicum annuum L. ev. Sweet Banana regenerated via somatic embryogenesis from immature zygotic embryos were capable of producing flower, fruit, and seed when cultured in small tissue culture containers. In vitro floral buds were first formed on plantlets that grew on plantlet development medium [agar-gelled Murashige and Skoog (MS) basal medium containing 1 mgl−1 (5.3 μM) α-naphthaleneacetic acid (NAA)] in a growth room at 22°C and continuous illumination. However, floral buds rarely developed further into mature flowers. This problem was overcome using the vented autoclavable plant tissue culture containers. In vitro fruit formation and ripening was observed when liquid half-strength MS basal medium supplemented with 5 μg ml−1 silver thiosulfate, 1 mg l−1 (5.3 μM) NAA, and 3% sucrose was added to the surface of the plantlet development medium. Hand-pollination improved fruit set. Further research in needed to determine why the pepper seeds formed in vitro failed to germinate.  相似文献   

12.
The organogenic competence of leaf explants of eleven Carthamus species including C. tinctorius on Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) + α-naphthaleneacetic acid (NAA) and 6-benzyladenine (BA) + NAA was investigated. Highly prolific adventitious shoot regeneration was observed in C. tinctorius and C. arborescens on both growth regulator combinations and the shoot regeneration frequency was higher on medium supplemented with TDZ + NAA. Nodal culture of nine Carthamus species on media supplemented with BA and kinetin (KIN) individually revealed the superiority of media supplemented with BA over that of KIN in facilitating a higher shoot proliferation index. Proliferating shoots from axillary buds and leaf explants were transferred to medium supplemented with 1.0 mg dm−3 KIN or 0.5 mg dm−3 BA for shoot elongation. Elongated shoots were rooted on half-strength MS medium supplemented with 1.0 mg dm−3 each of indole-butyric acid (IBA) and phloroglucinol. The plantlets thus obtained were hardened and transferred to soil.  相似文献   

13.
Filipendula ulmaria (L.) Maxim (meadowsweet) is a medicinal plant that is claimed to have several biological activities, including anti-tumor, anti-carcinogenic, anti-oxidant, anti-coagulant, anti-ulcerogenic, anti-microbial, anti-arthritic, and immunomodulatory properties. This report describes, for the first time, an efficient plant regeneration system for F. ulmaria via adventitious shoot development from leaf, petiole, and root explants cultured on Murashige and Skoog’s minimal organics medium containing different concentrations of thidiazuron (TDZ), benzyladenine, and kinetin either alone or in combination with different auxins. Relatively extensive/prolific shoot regeneration was observed in all three explant types with TDZ in combination with indole-3-acetic acid (IAA). Gibberellic acid (GA3), TDZ, and IAA combinations were also tested. The best shoot proliferation was observed among root explants cultured on media supplemented with 0.45 μM TDZ + 2.85 μM IAA + 1.44 μM GA3. Regenerated shoots were transferred to rooting media containing different concentrations of either IAA, indole-3-butyric acid (IBA), naphthalene acetic acid, or 2,4-dichlorophenoxyacetic acid. Most shoots developed roots on medium with 2.46 μM IBA. Rooted explants were transferred to vermiculite in Magenta containers for a 2-wk acclimatization period and then finally to plastic pots containing potting soil. The plantlets in soil were kept in growth chambers for 2 wk before transferring to greenhouse conditions.  相似文献   

14.
In vitro propagation protocol for Haemaria discolor (Ker) Lindl. var. dawsoniana by artificial cross-pollination and asymbiotic germination of seeds has been developed. Fruit set (100 %) was obtained when the pollinia and ovules of various aged flowers were used for pollination. In vitro germination of seeds obtained from capsules of various ages was achieved on half-strength Murashige and Skoog’s (MS) medium supplemented with 3 % sucrose and 0.85 % agar. The germinated seedlings were cultured on half-strength MS medium with 0.2 % activated charcoal, 8 % banana homogenate, 0.1 mg dm−3 1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea (TDZ) and 1 mg dm−3 α-naphthaleneacetic acid (NAA). Ninety-six percent of plantlets survived after hardening in greenhouse.This research was supported by grant (91AS-3.1.1-CI-C3) from the Council of Agriculture, Executive Yuan of Taiwan and grants (NSC-89-2317-B055-002 and NSC-91-2317-B324-001) from the National Science Council of Taiwan. This paper is Agricultural Research Institute Contribution No. 2158.  相似文献   

15.
The role of three carboxylic acids with increasing alkyl-chain length, viz., formic, acetic and propionic acids in microtuberization was investigated in three potato (Solanum tuberosum L.) genotypes in vitro. Different concentrations of these carboxylic acids (0.0, 1.5, 3.0, 4.5 and 6.0 mM) were supplemented in microtuber induction medium, which was based on MS medium containing 8% sucrose, and their efficacy for induction, development and quality of microtubers was studied using single-node explants under continuous darkness at 20 °C. The carboxylic acids exhibited a strong stolon- and root-inhibiting effect on single-node explants with their increasing concentrations as well as alkyl-chain length (i.e., formic < acetic < propionic acids), and their mode of action was synonymous with antigibberellin substances. However, they did not have any significant inductive effect on microtuberization as compared to that under 8% sucrose medium. Rather they did show a detrimental effect on microtuber development in terms of average microtuber fresh weight with increasing concentrations as well as alkyl-chain length; both acetic and propionic acids at 6.0 mM induced the smallest microtubers in vitro. The carboxylic acids could, however, significantly increase the harvest indices suggesting their possible role in the regulation of source-sink co-ordination during microtuberization from single-node explants. But the most favourable effect of carboxylic acids on microtubers was apparent in terms of dry matter concomitant with higher starch synthesis and enhanced accumulation of reducing and total sugars. Acetic acid was the most effective in increasing the percentage of microtuber dry matter. The higher percentage of dry matter with higher carbohydrate reserves in microtubers induced by the carboxylic acids could be assumed to affect the quality of microtubers for subsequent storage, dormancy release and sprout growth.  相似文献   

16.
Arachis correntina (Burkart) Krapov. & W.C. Gregory is a herbaceous perennial leguminous plant growing in the Northeast of the Province Corrientes, Argentina. It is important as forage. The development of new A. correntina cultivars with improved traits could be facilitated through the application of biotechnological strategies. The purpose of this study was to investigate the plant regeneration potential of mature leaves of A. correntina in tissue culture. Buds were induced from both petiole and laminae on 0.7% agar-solidified medium containing 3% sucrose, salts and vitamins from Murashige and Skoog (MS) supplemented with 0.5–25 M thidiazuron (TDZ). Shoot induction was achieved by transference of calli with buds to MS supplemented with 5 M TDZ. Fifty-four percent of the regenerated shoot rooted on MS + 5 M naphthaleneacetic acid. Histological studies revealed that shoots regenerated via organogenesis.  相似文献   

17.
Summary We describe an in vitro propagation protocol for Zingiber petiolatum (Holttum), I. Theilade, a rare species from the southern part of Thailand. Fruits were surface-sterilized and seeds germinated on Murashige and Skoog medium (MS) medium supplemented with 3% sucrose. Three-month-old seedlings were used as initial plant material for in vitro propagation. Terminal buds of the plants were inoculated on MS medium containing 6-benzylaminopurine (BA; 2.2–35.5 μM) alone or in combination with 1-naphthaleneacetic acid (0.5 μM). Eight weeks after inoculation, the cultures were transferred to MS medium without plant growth regulators for 4wk. The cultures transferred from MS medium with 17.8 μM BA revealed the highest shoot induction rate of 6.1±0.7 shoots per explant. Rooting was spontaneously achieved in MS medium without plant growth regulators. Rooted plants were successfully transplanted to soil.  相似文献   

18.
Summary Coconut (Cocos nucifera L.) plantlets grown in vitro often grow slowly when transferred to the field possibly, due to a limited photosynthetic capacity of in vitro-cultured plantlets, apparently caused by the sucrose added to growth medium causing negative feedback for photosynthesis. In this paper, we tested the hypothesis that high exogenous sucrose will decrease ribulose 1,5-bisphosphate carboxylase (Rubisco) activity and photosynthesis resulting in limited ex vitro growth. Plantlets grown with high exogenous sucrose (90 gl−1) had reduced photosynthetic activity that resulted in a poor photosynthetic response to high levels of light and CO2. These plantlets also had low amounts of Rubisco protein, low Rubisco activity, and reduced growth despite showing high survival when transferred to the field. Decreasing the medium’s sucrose concentration from 90 to 22.5 gl−1 or 0 gl−1 resulted in increased photosynthetic response to light and CO2 along with increased Rubisco and phosphoenolpyruvate carboxylase (PEPC) activities and proteins. However, plantlets grown in vitro without exogenous sucrose died when transferred ex vitro, whereas those grown with intermediate exogenous sucrose showed intermediate photosynthetic response, high survival, fast growth, and ex vitro photosynthesis. Thus, exogenous sucrose at moderate concentration decreased photosynthesis but increased survival, suggesting that both in vitro photosynthesis and exogenous sucrose reserves contribute to field establisment and growth of coconut plantlets cultured in vitro.  相似文献   

19.
The role of cytokinins in the promotion of flowering in the endangered species Kniphofia leucocephala Baijnath. was investigated using shoots maintained in culture for 3 years. The highest percentage flowering (65%) was obtained on media containing 20 μM benzyladenine (BA). The inclusion of isopentenyladenine and zeatin in the media also resulted in flowering, but these treatments were less effective than BA in inducing flowering. The effect of cytokinins on flowering was dose-dependent, with high concentrations of BA inhibiting flower formation. Treatments that resulted in rooting of explants produced no flowers. The resulting inflorescences in all treatments did not mature and senesced prematurely, even when gibberellic acid (GA3) was applied post-flower-emergence.  相似文献   

20.
Summary Shoot tips, of four potato cultivars (Désirée, Genet, Tigoni, and Tomensa), 3–4 mm in size, were precultured for 2 d on Murashige and Skoog (MS) solid medium, then encapsulated in calcium alginate to produce hollow bead synthetic seed capsules averaging 0.78 cm in diameter. Regeneration and ‘regrowth’ were tested on MS solid medium and on soil in the greenhouse, respectively. The encapsulated shoot tips were stored at 4 and 10°C for up to 390 d. For all cultivars, the encapsulated shoot tips stored at both temperatures for 180 d and at 4°C,for 270 d, 100% regeneration on MS solid medium was recorded. After 360 d in storage at 4°C, 70.8% (Tigoni), 66.7% (Genet), 58.3% (Désirée), and 51.5% (Tomensa) regeneration was recorded on MS medium, reducing to 15% (Tigoni), 25% (Genet), 10% (Désirée), and 0% (Tomensa) regeneration after 390 d in storage. ‘Regrowth’ of 93–100% was recorded for non-stored encapsulated shoot tips, directly transferred on soil in the greenhouse after a 2 wk preculture on MS solid medium with an added fungicide (carbendazim) in the encapsulating gel. The ‘regrown’ shoot tips produced plants showing normal development. The results presented here demonstrate that hollow bead synthetic seed capsules are an alternative propagating method for potato seed production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号