首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of CD4 and chemokine receptors to the gp120 attachment glycoprotein of human immunodeficiency virus triggers refolding of the associated gp41 fusion glycoprotein into a trimer of hairpins with a 6-helix bundle (6HB) core. These events lead to membrane fusion and viral entry. Here, we examined the functions of the fusion peptide-proximal polar segment and membrane-proximal Trp-rich region (MPR), which are exterior to the 6HB. Alanine substitution of Trp(666), Trp(672), Phe(673), and Ile(675) in the MPR reduced entry by up to 120-fold without affecting gp120-gp41 association or cell-cell fusion. The L537A polar segment mutation led to the loss of gp120 from the gp120-gp41 complex, reduced entry by approximately 10-fold, but did not affect cell-cell fusion. Simultaneous Ala substitution of Leu(537) with Trp(666), Trp(672), Phe(673), or Ile(675) abolished entry with 50-80% reductions in cell-cell fusion. gp120-gp41 complexes of fusion-defective double mutants were resistant to soluble CD4-induced shedding of gp120, suggesting that their ability to undergo receptor-induced conformational changes was compromised. Consistent with this idea, a representative mutation, L537A/W666A, led to an approximately 80% reduction in lipophilic fluorescent dye transfer between gp120-gp41-expressing cells and receptor-expressing targets, indicating a block prior to the lipid-mixing phase. The L537A/W666A double mutation increased the chymotrypsin sensitivity of the polar segment in a trimer of hairpins model, comprising the 6HB core, the polar segment, and MPR linked N-terminally to maltose-binding protein. The data indicate that the polar segment and MPR of gp41 act synergistically in forming a fusion-competent gp120-gp41 complex and in stabilizing the membrane-interactive end of the trimer of hairpins.  相似文献   

2.
The SARS-CoV S glycoprotein: expression and functional characterization   总被引:36,自引:0,他引:36  
We have cloned, expressed, and characterized the full-length and various soluble fragments of the SARS-CoV (Tor2 isolate) S glycoprotein. Cells expressing S fused with receptor-expressing cells at neutral pH suggesting that the recombinant glycoprotein is functional, its membrane fusogenic activity does not require other viral proteins, and that low pH is not required for triggering membrane fusion; fusion was not observed at low receptor concentrations. S and its soluble ectodomain, S(e), were not cleaved to any significant degree. They ran at about 180-200kDa in SDS gels suggesting post-translational modifications as predicted by previous computer analysis and observed for other coronaviruses. Fragments containing the N-terminal amino acid residues 17-537 and 272-537 but not 17-276 bound specifically to Vero E6 cells and purified soluble receptor, ACE2, recently identified by M. Farzan and co-workers [Nature 426 (2003) 450-454]. Together with data for inhibition of binding by antibodies developed against peptides from S, these findings suggest that the receptor-binding domain is located between amino acid residues 303 and 537. These results also confirm that ACE2 is a functional receptor for the SARS virus and may help in the elucidation of the mechanisms of SARS-CoV entry and in the development of vaccine immunogens and entry inhibitors.  相似文献   

3.
The Newcastle disease virus (NDV) fusion protein (F) mediates fusion of viral and host cell membranes and is a major determinant of NDV pathogenicity. In the present study, we demonstrate the effects of functional properties of F cytoplasmic tail (CT) amino acids on virus replication and pathogenesis. Out of a series of C-terminal deletions in the CT, we were able to rescue mutant viruses lacking two or four residues (rΔ2 and rΔ4). We further rescued viral mutants with individual amino acid substitutions at each of these four terminal residues (rM553A, rK552A, rT551A, and rT550A). In addition, the NDV F CT has two conserved tyrosine residues (Y524 and Y527) and a dileucine motif (LL536-537). In other paramyxoviruses, these residues were shown to affect fusion activity and are central elements in basolateral targeting. The deletion of 2 and 4 CT amino acids and single tyrosine substitution resulted in hyperfusogenic phenotypes and increased viral replication and pathogenesis. We further found that in rY524A and rY527A viruses, disruption of the targeting signals did not reduce the expression on the apical or basolateral surface in polarized Madin-Darby canine kidney cells, whereas in double tyrosine mutant, it was reduced on both the apical and basolateral surfaces. Interestingly, in rL536A and rL537A mutants, the F protein expression was more on the apical than on the basolateral surface, and this effect was more pronounced in the rL537A mutant. We conclude that these wild-type residues in the NDV F CT have an effect on regulating F protein biological functions and thus modulating viral replication and pathogenesis.  相似文献   

4.
人尿激酶原乳腺定位转基因小鼠的建立   总被引:2,自引:0,他引:2  
应用大鼠β乳酪蛋白基因的上游调控序列和人尿激酶原cDNA构建成功了乳腺定位表达载体.用显微注射的手段导入到受精卵的雄前核,从注射的300枚受精卵中,140枚被移植到9只假孕的受体小鼠.结果从获得的子一代小鼠中,经PCR和Southernblot证实,有3只转基因阳性的小鼠.  相似文献   

5.
Effect of deglycosylation on the stability of Aspergillus niger catalase   总被引:4,自引:0,他引:4  
A sensitive, quantitative assay has been developed which measures the extent of liposome fusion by monitoring fluorescence resonance energy transfer between two lipid analogs originally in separate membranes. This transfer of photon energy from donor to acceptor molecules occurs only if both probes are in the same membrane. Energy transfer is measured as quenching of the donor probe's fluorescence emission. The extent of fusion was estimated by comparing the quenching due to the fusion protocol with the maximum quenching from “mock-fused” vesicles. This assay was used to investigate the effects of calcium ion concentration, calcium ion permeability, and lipid composition on fusion competence. The calcium concentration threshold and extent of fusion was a function of lipid composition. At a given molar percentage of phosphatidylserine, increasing the phosphatidylcholine content raised the threshold. The extent of fusion decreased when the molar percentage of phosphatidylserine was decreased. The inclusion of either cholesterol or phosphatidylethanolamine facilitated fusion competence, but the latter was more effective. Increasing the calcium ion permeability by adding the ionophore X-537a moderately enhanced the extent of fusion in most cases, although it never appreciably affected the threshold. X-537a did not enhance fusion in the presence of unsaturated phosphatidylethanolamine. Liposomes containing unsaturated phosphatidylethanolamine had an optimum calcium ion concentration for fusion in the mid-range of the divalent cation concentrations. We conclude that it is possible for large, unilamellar vesicles with near physiological molar percentages of phosphatidylserine and phosphatidylethanolamine to undergo divalent cation-induced fusion at calcium ion concentrations in the millimolar range. This finding provides a useful model system for investigating mechanisms of such phenomena as exocytosis and cell-cell fusion.  相似文献   

6.
The unparalleled peroxisome-to-mitochondrion mistargeting of alanine:glyoxylate aminotransferase (AGT) in the hereditary disease primary hyperoxaluria type 1 is caused by the combined presence of a common Pro11 --> Leu polymorphism and a disease-specific Gly170 --> Arg mutation. The Pro11 --> Leu replacement generates a functionally weak N-terminal mitochondrial targeting sequence (MTS), the efficiency of which is increased by the additional presence of the Gly170 --> Arg replacement. AGT dimerization is inhibited in the combined presence of both replacements but not when each is present separately. In this paper we have attempted to identify the structural determinants of AGT dimerization and mitochondrial mistargeting. Unlike most MTSs, the polymorphic MTS of AGT has little tendency to adopt an alpha-helical conformation in vitro. Nevertheless, it is able to target efficiently a monomeric green fluorescent (GFP) fusion protein, but not dimeric AGT, to mitochondria in transfected COS-1 cells. Increasing the propensity of this MTS to fold into an alpha-helix, by making a double Pro11 --> Leu + Pro10 --> Leu replacement, enabled it to target both GFP and AGT efficiently to mitochondria. The double Pro11 --> Leu + Pro10 --> Leu replacement retarded AGT dimerization in vitro as did the disease-causing double Pro11 --> Leu + Gly170 --> Arg replacement. These data suggest that N-terminal alpha-helix formation is more important for maintaining AGT in a conformation (i. e. monomeric) compatible with mitochondrial import than it is for the provision of mitochondrial targeting information. The parallel effects of the Pro10 --> Leu and Gly170 --> Arg replacements on the dimerization and intracellular targeting of polymorphic AGT (containing the Pro11 --> Leu replacement) raise the possibility that they might achieve their effects by the same mechanism.  相似文献   

7.
The highly conserved motif +(534)DPPR of Saccharomyces cerevisiae H(+)-ATPase, located in the putative ATP binding site, has been mutagenized and the resulting 23 mutant genes conditionally expressed in secretory vesicles. Fourteen mutant ATPases (D534A, D534V, D534L, D534N, D534G, D534T, P535A, P535V, P535L, P535G, P535T, P535E, P535K and R537T) failed to reach the secretory vesicles. Of these mutants, nine (D534N, D534T, P535A, P535V, P535L, P535G, P535T, P535E and P535K) were not detected in total cellular membranes, and five (D534A, D534V, D534G, D534L and R537T) were retained at the endoplasmic reticulum and exhibited a dominant lethal phenotype. The remaining mutants (D534E, R537A, R537V, R537L, R537N, R537G, R537E, R537K and R537H) reached the secretory vesicles at levels similar to that of the wild type. Of these, six (R537A, R537V, R537L, R537N, R537G, and R537E) showed severely decreased ATPase activity compared to the wild type enzyme, and three (D534E, R537K and R537H) rendered an enzyme with an altered K(m) for ATP.  相似文献   

8.
Hydroxyproline (Hyp)-rich glycoproteins (HRGPs) participate in all aspects of plant growth and development. HRGPs are generally highly O-glycosylated through the Hyp residues, which means carbohydrates help define the interactive molecular surface and, hence, HRGP function. The Hyp contiguity hypothesis predicts that contiguous Hyp residues are sites of HRGP arabinosylation, whereas clustered noncontiguous Hyp residues are sites of galactosylation, giving rise to the arabinogalactan heteropolysaccharides that characterize the arabinogalactan-proteins. Early tests of the hypothesis using synthetic genes encoding only clustered noncontiguous Hyp in the sequence (serine [Ser]-Hyp-Ser-Hyp)(n) or contiguous Hyp in the series (Ser-Hyp-Hyp)(n) and (Ser-Hyp-Hyp-Hyp-Hyp)(n) confirmed that arabinogalactan polysaccharide was added only to noncontiguous Hyp, whereas arabinosylation occurred on contiguous Hyp. Here, we extended our tests of the codes that direct arabinogalactan polysaccharide addition to Hyp by building genes encoding the repetitive sequences (alanine [Ala]-proline [Pro]-Ala-Pro)(n), (threonine [Thr]-Pro-Thr-Pro)(n), and (valine [Val]-Pro-Val-Pro)(n), and expressing them in tobacco (Nicotiana tabacum) Bright-Yellow 2 cells as fusion proteins with green fluorescent protein. All of the Pro residues in the (Ala-Pro-Ala-Pro)(n) fusion protein were hydroxylated and consistent with the hypothesis that every Hyp residue was glycosylated with arabinogalactan polysaccharide. In contrast, 20% to 30% of Pro residues remained non-hydroxylated in the (Thr-Pro-Thr-Pro)(n), and (Val-Pro-Val-Pro)(n) fusion proteins. Furthermore, although 50% to 60% of the Hyp residues were glycosylated with arabinogalactan polysaccharide, some remained non-glycosylated or were arabinosylated. These results suggest that the amino acid side chains of flanking residues influence the extent of Pro hydroxylation and Hyp glycosylation and may explain why isolated noncontiguous Hyp in extensins do not acquire an arabinogalactan polysaccharide but are arabinosylated or remain non-glycosylated.  相似文献   

9.
Transient outward K+ currents are particularly important for the regulation of membrane excitability of neurons and repolarization of action potentials in cardiac myocytes. These currents are modulated by PKC (protein kinase C) activation, and the K+- channel subunit Kv4.2 is a major contributor to these currents. Furthermore, the current recorded from Kv4.2 channels expressed in oocytes is reduced by PKC activation. The mechanism underlying PKC regulation of Kv4.2 currents is unknown. In the present study, we determined that PKC directly phosphorylates the Kv4.2 channel protein. In vitro phosphorylation of the intracellular N- and C-termini of Kv4.2 GST (glutathione transferase) tagged fusion protein revealed that the C-terminal of Kv4.2 was phosphorylated by PKC, whereas the N-terminal was not. Amino acid mapping and site-directed mutagenesis revealed that the phosphorylated residues on the Kv4.2 C-terminal were Ser447 and Ser537. A phospho-site-specific antibody showed that phosphorylation at the Ser537 site was increased in the hippocampus in response to PKC activation. Surface biotinylation experiments revealed that mutation to alanine of both Ser447 and Ser537 in order to block phosphorylation at both of the PKC sites increased surface expression compared with wild-type Kv4.2. Electrophysiological recordings of the wild-type and both the alanine and aspartate mutant Kv4.2 channels expressed with KChIP3 (Kv4 channel-interacting protein 3) revealed no significant difference in the half-activation or half-inactivation voltage of the channel. Interestingly, Ser537 lies within a possible ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) recognition (docking) domain in the Kv4.2 C-terminal sequence. We found that phosphorylation of Kv4.2 by PKC enhanced ERK phosphorylation of the channel in vitro. These findings suggest the possibility that Kv4.2 is a locus for PKC and ERK cross-talk.  相似文献   

10.
The effects of the ionophores A-23187 and X-537 A on glucose metabolism, ATP content and sucrose permeability in pancreatic islets microdissected from obese-hyperglycemic mice were studied. The formation of 14CO2 from 10 mM D-[U-14C] GLUCOSE WAS INHIBITED BY OMISSION OF Ca2+ from the medium. A-23187 (10 muM) induced a further decrease of 14CO2 formation whereas X-537 A (10 muM) had no effect. At 20 mM glucose both A-23187 (48 muM) and X-537 A (43 muM) decreased the 14CO2 formation in the absence of Ca2+ whereas only X-537 A inhibited in the presence of Ca2+. X-537 A (43 muM) also decreased the formation of 3H2O from 20 mM D-[5-3H] glucose. The islet content of ATP was not changed after incubation in media deficient in either Mg2+ or Ca2+. However, omission of both Mg2+ and Ca2+ resulted in about 50% decrease of the ATP content. A-23187 and X-537 A induced dose-dependent decreases of the islet ATP content. X-537 A was much more potent than A-23187. Both ionophores induced stronger depression of the ATP content when Ca2+ was omitted. X-537 A (43 muM) but not A-23187 (48 muM) increased the beta-cell membrane permeability as indicated by an increased sucrose space in relation to the urea space of islets. Such an effect was not obtained with X-537 A at 1 muM or by omission of Ca2+. It is suggested that the marked metabolic effects of the ionophores reflect an impaired mitochondrial metabolism. These metabolic changes should be considered in interpretations of ionophore action on insulin secretion.  相似文献   

11.
The peptide-induced fusion of neutral and acidic liposomes was studied in relation to the amphiphilicities evaluated by alpha-helical contents of peptides by means of a carboxyfluorescein leakage assay, light scattering, a membrane intermixing assay and electron microscopy. An amphipathic mother peptide, Ac-(Leu-Ala-Arg-Leu)3-NHCH3 (4(3], and its derivatives, [Pro6]4(3) (1), [Pro2,6]4(3) (2), and [Pro2,6,10]4(3) (3), which have very similar hydrophobic moments, caused a leakage of contents from small unilamellar vesicles composed of egg yolk phosphatidylcholine and egg yolk phosphatidic acid (3:1). The abilities of the peptides to induce the fusion of the acidic liposomes increased with increasing alpha-helical content: in acidic liposomes the helical contents were in the order of 4(3) greater than 1 greater than 2 greater than 3 (Lee et al. (1989) Chem. Lett., 599-602). Electron microscopic data showed that 1 caused a transformation of the small unilamellar vesicles (20-50 nm in diameter) to large ones (100-300 nm). Based on the fact that these peptides have very similar hydrophobic moments despite of decreasing in the mean residue hydrophobicities to some extent, it was concluded that the abilities of the peptides to induce the fusion of liposomes depend on the extent of amphiphilic conformation evaluated by alpha-helical contents of the peptides in the presence of liposomes. For neutral liposomes of egg yolk phosphatidylcholine, all the proline-containing peptides showed no fusogenic ability but weak leakage abilities, suggesting that the charge interaction between the basic peptides and acidic phospholipid is an important factor to induce the perturbation and fusion of the bilayer.  相似文献   

12.
13.
Zhong L  Skafar DF 《Biochemistry》2002,41(13):4209-4217
Mutation of tyrosine 537 (Y537) of the human estrogen receptor-alpha (hERalpha) produces receptors having a range of constitutive activity, which suggests that this residue modulates the conformational changes of the receptor. We investigated the effect of several mutations at this position, to phenylalanine (Y537F), to serine (Y537S), and to glutamic acid (Y537E), on the hormone-binding properties of the receptor. The affinities of the wt, the Y537F mutant, and the Y537S mutant for estradiol were similar: K(a) = 2.2 +/- 0.2, 3.9 +/- 0.5, and 2.8 +/- 0.4 nM(-1), respectively. By contrast, the affinity of the Y537E mutant for estradiol was reduced 10-fold, K(a) = 0.2 +/- 0.1 nM(-1). All proteins bound [(3)H]estradiol with a positive cooperative mechanism (n(H) = 1.7-1.9), indicating they can form dimers. The wt receptor and the Y537S and Y537E mutants exhibited biphasic dissociation kinetics, which is also indicative of dimerization. Surprisingly, the half-lives of the slow component of the wt and the Y537E mutant were indistinguishable, 118 +/- 3.4 and 122 +/- 4.5 min, respectively, even though the affinity of the Y537E mutant for hormone was reduced 10-fold. The half-life of the slow component of the Y537S mutant was reduced to 96.5 +/- 3.8 min. Molecular models were constructed and compared to identify changes in the structure that correlate with the observed effects on hormone binding. Local alterations in hydrogen bonding, the position of side chains, and the position of the peptide backbone were observed. Taken together, these results show that mutations at Y537 selectively alter the affinity and kinetics of hormone binding to the receptor, and are consistent with the idea that the estradiol-estrogen receptor interaction can follow more than one pathway.  相似文献   

14.
In this study, we initiated experiments to address the structure-function relationship of Rin1. A total of ten substitute mutations were created, and their effects on Rin1 function were examined. Of the ten mutants, four of them (P541A, E574A, Y577F, T580A) were defective in Rab5 binding, while two other Rin1 mutants (D537A, Y561F) partially interacted with Rab5. Mutations in several other residues (Y506F, Y523F, T572A, Y578F) resulted in partial loss of Rab5 function. Biochemical studies showed that six of them (D537A, P541A, Y561F, E574A, Y577F, T580A) were unable to activate Rab5 in an in vitro assay.In addition, Rin1: D537A and Rin1: Y561F mutants showed dominant inhibition of Rab5 function. Consistent with the biochemical studies, we observed that these two Rin1 mutants have lost their ability to stimulate the endocytosis of EGF, form enlarged Rab5-positive endosomes, or support in vitro endosome fusion. Based on these data, our results showed that mutations in the Vps9 domain of Rin1 lead to a loss-of-function phenotype, indicating a specific structure-function relationship between Rab5 and Rin1.  相似文献   

15.
In renal epithelial cells endocytosis of Na(+),K(+)-ATPase molecules is initiated by phosphorylation of its alpha(1)-subunit, leading to activation of phosphoinositide 3-kinase and adaptor protein-2 (AP-2)/clathrin recruitment. The present study was performed to establish the identity of the AP-2 recognition domain(s) within the Na(+),K(+)-ATPase alpha(1)-subunit. We identified a conserved sequence (Y(537)LEL) within the alpha(1)-subunit that represents an AP-2 binding site. Binding of AP-2 to the Na(+),K(+)-ATPase alpha(1)-subunit in response to dopamine (DA) was increased in OK cells stably expressing the wild type rodent alpha-subunit (OK-WT), but not in cells expressing the Y537A mutant (OK-Y537A). DA treatment was associated with increased alpha(1)-subunit abundance in clathrin vesicles from OK-WT but not from OK-Y537A cells. In addition, this mutation also impaired the ability of DA to inhibit Na(+),K(+)-ATPase activity. Because phorbol esters increase Na(+),K(+)-ATPase activity in OK cells, and this effect was not affected by the Y537A mutation, the present results suggest that the identified motif is specifically required for DA-induced AP-2 binding and Na(+),K(+)-ATPase endocytosis.  相似文献   

16.
The effect of X537A on acetylcholine (ACh) release was examined in vitro in superfused slices of rat cerebrum and striatum. The ionophore (30 μM) induced a transient release of ACh which was not dependent on calcium in the medium. Also in contrast to K+-stimulated release, X537A-induced release was not sustained by 10?5M choline in the superfusion medium and not inhibited by 5 × 10?4M pentobarbital. The ionophore did not transport ACh or choline from an aqueous to an organic phase. Both K+ and X537A inhibited 1 μM (3H) choline uptake into striatal synaptosomes but this effect of X537A was more extensive and less reversible than that caused by K+. X537A did not inhibit choline acetyltransferase activity.  相似文献   

17.
cDNAs encoding human interleukin 6 (hIL-6) and its variants lacking the N-terminal Pro and Pro-Val-Pro-Pro, respectively, were expressed in Bacillus brevis by using the signal peptide fusion approach. The presence of Pro at the N-terminus of the mature protein hindered the action of the Bacillus brevis signal peptidase. hIL-6 lacking the N-terminal Pro-Val-Pro-Pro was most efficiently secreted in a biologically active form and accumulated in the culture medium to a level of 200 mg per liter, which is the highest level reported for the bacterial secretion of hIL-6.  相似文献   

18.
The present study reports the effects of the lipophylic ionophore X537A on lipolysis and accumulation of cAMP in isolated hamster epidiymal adipocytes. X537A inhibited lipolysis activated with norepinephrine, isoproterenol, dibutyryl cAMP or theophylline but failed to influence basal lipolysis. The minimum effective concentration of X537A required to inhibit lipolysis was between 1 and 3 micrograms/ml; at a concentration of 10 micrograms/ml, X537A inhibited lipolysis by approximately 50%. The antilipolytic effect of X537A does not result from decreased formation of cAMP because the accumulation of cAMP in response to isoproterenol or theophylline was significantly potentiated in the presence of the ionophore. Most of the additional cAMP that accumulated in the presence of X537A was found to be intracellelular, the distribution of cAMP between cells and incubation medium not being influenced by X537A. Neither the basal activity of cAMP dependent protein kinase nor the activity in the presence of isoproterenol or theophylline was influenced by X537A. The effects of X537A on lipolysis and on accumulation of cAMP were found to persist in the absence of extracellular calcium, but adipocytes that were preincubated in a calcium free media containing 4.0 mM EGTA failed to respond to X537A with an increase in cAMP levels. It is concluded that X537A inhibits lipolysis by uncoupling cAMP accumulation from activation of triglyceride lipase by a mechanism unrelated to activation of protein kinase.  相似文献   

19.
When Pisaster, Asterias, or Thyone sperm are treated with the ionophore A23187 or X537A, an acrosomal reaction similar but not identical to a normal acrosomal reaction is induced in all the sperm. Based upon the response of the sperm, the acrosomal reaction consists of a series of temporally related steps. These include the fusion of the acrosomal vacuole with the cell surface, the polymerization of the actin, the alignment of the actin filaments, an increase in volume, an increase in the limiting membrane, and changes in the shape of the nucleus. In this report, we have concentrated on the first two steps in this sequence. Although fusion of the acrosomal vacuole with the cell surface requires Ca++, we found that the polymerization of actin instead appears to be dependent upon an increase in intracellular pH. This conclusion was reached by applying to sperm A23187, X537A, or nigericin, ionophores which all carry H+ at high affinity, yet vary in their affinity for other cations. When sperm are suspended in isotonic NaCl, isotonic KCl, calcium-free seawater, or seawater, all at pH 8.0, and the ionophore is added, the actin polymerizes explosively and an efflux of H+ from the cell occurs. However, if the pH, of the external medium is maintained at 6.5, the presumed intracellular pH, no effect is observed. And, finally, if egg jelly is added to sperm (the natural stimulus for the acrosomal reaction) at pH 8.0, H+ is also released. On the basis of these observations and those presented in earlier papers in this series, we conclude that a rise in intracellular pH induces the actin to disassociate from its binding proteins. Now it can polymerize.  相似文献   

20.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号