首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The consumption of fructans as a low caloric food ingredient or dietary fibre is rapidly increasing due to health benefits. Presently, the most important fructan source is chicory, but these fructans have a simple linear structure and are prone to degradation. Additional sources of high-quality tailor-made fructans would provide novel opportunities for their use as food ingredients. Sugar beet is a highly productive crop that does not normally synthesize fructans. We have introduced specific onion fructosyltransferases into sugar beet. This resulted in an efficient conversion of sucrose into complex, onion-type fructans, without the loss of storage carbohydrate content.  相似文献   

2.
In this study, we have attempted to determine the effects of dietary fructose polymers (fructan), high molecular-weight β-(2,6)-linked levan, and low-molecular-weight β-(2,1)-linked inulin, on two intestinal enzymes (β-glucuronidase and β-glucosidase). As a preliminary experiment, when intestinal microflora were cultured in anaerobic media harboring levan or its oligosaccharides, bacterial cell growth was observed in the levanoligosaccharide-supplemented media, but not in the levan-supplemented media, indicating that levan’s size is important for the utilization by intestinal bacteria of levan as an energy source. In our animal study, the intake of a levan-rich diet was determined to significantly attenuate the activity of the harmful enzyme β-glucuronidase, but did not affect the activity of β-glucosidase.  相似文献   

3.
Fructosyltransferases (FTs) are key enzymes in plants and bacteria to synthesize fructans. To gain insight on the specificity of the hexose subsites in the active site of FTs, ethylene glycol fructoside (EGF) and glycerol fructoside (GF), containing fructose in the furanose configuration, were synthesized in vitro and used as substrates to study the effect on the activity of bacterial levansucrase (BsLS), chicory root sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan:fructan 1-fructosyltransferase (1-FFT). The results demonstrated that EGF and GF, at physiologically relevant concentrations, were efficient acceptor substrates for BsLS and 1-FFT, but not for 1-SST. EGF and GF cannot be used as donor substrates for BsLS, 1-SST and 1-FFT. A model is proposed to explain the subsite specificity differences between the three FTs involved in this study.  相似文献   

4.
Fructans are water-soluble fructose oligomers and polymers thatare based on sucrose, and have been implicated in protectingplants against water stress. Rice (Oryza sativa L.) is highlysensitive to chilling temperatures, and is not able to synthesizefructans. Two wheat fructan-synthesizing enzymes, sucrose:sucrose1-fructosyltransferase, encoded by wft2, or sucrose:fructan6-fructosyltransferase, encoded by wft1, were introduced intorice plants, and rice transformants that accumulate fructanswere successfully obtained. The mature leaf blades of transgenicrice lines with wft2 or wft1 accumulated 16.2 mg g–1 FWof oligo- and polysaccharides mainly composed of inulin oligomersof more than DP7, and 3.7 mg g–1 FW of oligo- and polysaccharides,mainly composed of phlein oligomers of more than DP15, respectively.The transgenic rice seedlings with wft2 accumulated significantlyhigher concentrations of oligo- and polysaccharides than non-transgenicrice seedlings, and exhibited enhanced chilling tolerance. Theoligo- and polysaccharide concentrations of seedlings expressingwft1 were obviously lower than those of lines expressing wft2,and no correlation between oligo- and polysaccharide concentrationsand chilling tolerance was detected in wft1-expressing ricelines. The results suggest that transgenic rice lines expressingwheat-derived fructosyltransferase genes accumulated large amountsof fructans in mature leaf blades and exhibited enhanced chillingtolerance at the seedling stage. This is the first report owingthat fructan accumulation enhanced tolerance to non-freezinglow temperatures. Key words: Chilling tolerance, fructan, fructosyltransferase, Oryza sativa, transgenic plant  相似文献   

5.
6.
7.
8.
菊糖作为益生元和膳食纤维,具有许多重要的生理功能,广泛应用于食品、医药等领域.微生物菊糖蔗糖酶可以以蔗糖为底物合成较植物菊糖具有更高分子量的菊糖.文中通过基因数据库筛选获得一段拟表达菊糖蔗糖酶的基因.通过N-端和C-端截断的方式,保留中间催化域,构建重组质粒.将重组质粒在大肠杆菌表达系统中表达,粗酶液经Ni2+亲和层析...  相似文献   

9.
* Fructan:fructan 6G-fructosyltransferase (6G-FFT) catalyses a transfructosylation from fructooligosaccharides to C6 of the glucose residue of sucrose or fructooligosacchrides. In asparagus (Asparagus officinalis), 6G-FFT is important for the synthesis of inulin neoseries fructan. Here, we report the isolation and functional analysis of the gene encoding asparagus 6G-FFT. * A cDNA clone was isolated from asparagus cDNA library. Recombinant protein was produced by expression system of Pichia pastoris. To measure enzymatic activity, recombinant protein was incubated with sucrose, 1-kestose, 1-kestose and sucrose, or neokestose. The reaction products were detected by high performance anion-exchange chromatography. * The deduced amino acid sequence of isolated cDNA was similar to that of fructosyltransferases and vacuolar type invertases from plants. Recombinant protein mainly produced inulin neoseries fructan, such as 1F, 6G-di-beta-D-fructofuranosylsucrose and neokestose. * Recombinant protein demonstrates 6G-FFT activity, and slight fructan:fructan 1-fructosyltransferase (1-FFT) activity. The ratio of 6G-FFT activity to 1-FFT activity was calculated to be 13. The characteristics of the recombinant protein closely resemble those of the 6G-FFT from asparagus roots, except for a difference in accompanying 1-FFT activity.  相似文献   

10.
A cell-associated fructosyltransferase was extracted from a novel source, a strain of Leuconostoc citreum isolated from Pozol, a Mexican traditional fermented corn beverage, where lactic microflora are partially responsible for the transformation process. The enzyme is associated with the cell wall. It was characterized both in its cell-associated insoluble form and after separation by urea treatment. The fructosyltransferase has a molecular mass of 170 kDa, the highest reported for this type of enzyme, and in its insoluble form is highly specific for polymer synthesis, with low fructose transferred to maltose and lactose added to the reaction medium (acceptor reactions). The synthesized polymer has an inulin-like structure with β2-1 glycosidic linkages, as demonstrated by 13C nuclear magnetic resonance (NMR). Bacterial inulosucrases have only been reported in Streptococcus mutans. Journal of Industrial Microbiology & Biotechnology (2002) 28, 112–117 DOI: 10.1038/sj/jim/7000224 Received 25 September 2000/ Accepted in revised form 30 October 2001  相似文献   

11.
12.
The three-dimensional (3D) structure of fructan biosynthetic enzymes is still unknown. Here, we have explored folding similarities between reported microbial and plant enzymes that catalyze transfructosylation reactions. A sequence-structure compatibility search using TOPITS, SDP, 3D-PSSM, and SAM-T98 programs identified a beta-propeller fold with scores above the confidence threshold that indicate a structurally conserved catalytic domain in fructosyltransferases (FTFs) of diverse origin and substrate specificity. The predicted fold appeared related to that of neuraminidase and sialidase, of glycoside hydrolase families 33 and 34, respectively. The most reliable structural model was obtained using the crystal structure of neuraminidase (Protein Data Bank file: 5nn9) as template, and it is consistent with the location of previously identified functional residues of bacterial levansucrases (Batista et al., 1999; Song & Jacques, 1999). The sequence-sequence analysis presented here reinforces the recent inclusion of fungal and plant FTFs into glycoside hydrolase family 32, and suggests a modified sequence pattern H-x (2)-[PTV]-x (4)-[LIVMA]-[NSCAYG]-[DE]-P-[NDSC][GA]3 for this family.  相似文献   

13.
The characteristics of levan formation by different preparations of levansucrase (free and immobilized enzyme and toluene-permeabilized whole cells), derived from recombinant levansucrase from Zymomonas mobilis expressed in Escherichia coli, were investigated. The maximal yield of levan by the three preparations were similar and were about 70–80% on a fructose-released basis with sucrose as nutrient at 100 g l–1. Immobilized enzyme and toluene-permeabilized whole cells produced low molecular weight levan (2–3 × 106), as determined by HPLC while high molecular weight levan (>6 × 106) was the major product with the free levansucrase. The size of levan can thus be controlled by immobilized levansucrase and toluene-permeabilized whole cells in high yield.  相似文献   

14.
We have recently cloned a cDNA encoding sucrose:fructan 6-fructosyltransferase (6-SFT), a key enzyme of fructan synthesis forming the β-2,6 linkages typical of the grass fructans, graminans and phleins [Sprenger et al. (1995) Proc. Natl. Acad. Sci. USA 92, 11652–11656]. Here we report functional expression of 6-SFT from barley in transgenic tobacco and chicory. Transformants of tobacco, a plant naturally unable to form fructans, synthesized the trisaccharide kestose and a series of unbranched fructans of the phlein type (β-2,6 linkages). Transformants of chicory, a plant naturally producing only unbranched fructans of the inulin type (β-2,1 linkages), synthesized in addition branched fructans of the graminan type, particularly the tetrasaccharide bifurcose which is also a main fructan in barley leaves.  相似文献   

15.
Molecular genetics of fructan metabolism in perennial ryegrass   总被引:1,自引:0,他引:1  
Fructans are the main storage carbohydrates of temperate grasses, sustaining regrowth immediately after defoliation, as well as contributing to the nutritive value of feed. Fructan metabolism is based on the substrate sucrose and involves fructosyltransferases (FTs) for biosynthesis and fructan exohydrolases (FEHs) for degradation. Sucrose is also utilized by invertases (INVs), which hydrolyse it into its constituent monosaccharides for use in metabolism. The isolation, molecular characterization, functional analysis, and phylogenetic relationships of genes encoding FTs, FEHs, and INVs from temperate grasses are reviewed, with an emphasis on perennial ryegrass (Lolium perenne L.). The roles these enzymes play in fructan accumulation and remobilization, and future biotechnological applications in molecular plant breeding are discussed.  相似文献   

16.
The production of levansucrase (LS) by thermophilic Geobacillus stearothermophilus was investigated. LS production was more effective in the presence of sucrose (1%, w/v) than fructose, glucose, glycerol or raffinose. The results (Top 57°C; stable for 6 h at 47°C) indicate the high stability of the transfructosylation activity of G. stearothermophilus LS as compared with LSs from other microbial sources. Contrary to temperature, the pH had a significant effect on the selectivity of G. stearothermophilus LS‐catalyzed reaction, favoring the transfructosylation reaction in the pH range of 6.0–6.5. The kinetic parameter study revealed that the catalytic efficiency of transfructosylation activity was higher as compared with the hydrolytic one. In addition to levan, G. stearothermophilus LS synthesized fructooligosaccharides in the presence of sucrose as the sole substrate. The results also demonstrated the wide acceptor specificity of G. stearothermophilus LS with maltose being the best fructosyl acceptor. This study is the first on the catalytic properties and the acceptor specificity of LS from G. stearothermophilus. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1405–1415, 2013  相似文献   

17.
Crested wheatgrass is an important cool-season grass that has become naturalized in many semiarid regions of the western U.S. It provides ground cover and reduces soil erosion caused by water and wind. Additionally, crested wheatgrass produces important forage for livestock and wildlife on 6 to 8 million hectars of western rangeland. It is well adapted to semiarid cold desert regions because of its cool temperature growth and drought tolerance. Understanding the biosynthesis of fructans in crested wheatgrass is important because of their likely role in both cool temperature growth and drought tolerance. Recent research described a major gene (6-SFT) in crested wheatgrass that is involved in fructan biosynthesis. 1-kestotriose, the major DP3 fructan in crested wheatgrass, serves as the substrate for the two major DP4 fructans, 1&6-kestotetraose and 1,1-kestotetraose. The three major DP5 fructans are 1&6,1-kestopentaose, 1,1&6-kestopentaose and 1,1,1-kestopentaose. The major DP6 fructan is 1&6, 1&6-kestohexaose. We postulate that 1&6,1&6-kestohexaose is synthesized from the addition of a fructose to 1&6, 1-kestopentaose. This paper provides structures of the various DP 3, 4, 5 and 6 fructan types produced by crested wheatgrass and provides suggested biosynthetic pathways for all major fructan linkage types present.  相似文献   

18.
Two types of sterilized skim milk were prepared; one was HTS–1 milk which was heated at 130°C flashly and the other was HTS–2 milk which was heated at 130~135°C for 75 sec. The changes of casein complex during storage of HTS–1 and HTS–2 milks were examined and compared with those of AUT milk which was heated at 120°C for 15 min. The results obtained are summarized as follows.

(1) Visible sediment was formed in HTS–1 and HTS–2 milks after 8 and 14 months of storage, respectively, while no sediment was observed in AUT miik throughout 15 months of storage. (2) The amount of calcium in the ultracentrifugal wheys of HTS–1 and HTS–2 milks decreased gradually with prolonged storage, while that in the ultracentrifugal whey of AUT milk was kept constant after 1 month of storage. (3) Almost no differences among the three samples were observed in the increments of Ca/N ratio of ultracentrifuged casein complex during storage. (4) The amount of soluble casein increased in AUT milk during storage, but decreased in HTS–1 and HTS–2 milks.

On the basis of the above results, the destabilization of casein complex during storage was discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号