首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hydroponic trial was conducted to investigate effects of molybdenum (Mo) on ascorbate-glutathione cycle (AsA-GSH cycle) metabolism in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Mo was applied at four rates: 0, 0.01, 0.15 and 1.5 mg l−1. The concentrations of ascorbate, dehydroascorbate, reduced- and oxidized- glutathione, and activities of five key enzymes in the AsA-GSH cycle were studied. The results showed that appropriate Mo application increased the fresh weight of Chinese cabbage, but excess application of Mo (1.5 mg l−1 Mo) decreased the fresh weight. Total ascorbate and reduced ascorbate concentrations in the Chinese cabbage increased with Mo application rates. Although no significant differences existed in DHA concentration between the different Mo regimes, but it has an increase trend with the 0.01 mg l-1 Mo treatment, and then decreased with the Mo level increasing. No significant difference in GSH concentration was found between the different Mo treatments. Compared with the control, the GSSG concentration decreased significantly in the 0.01 mg l−1 Mo treatment. The activities of APX, MDHAR, DHAR and GR increased due to Mo application. But the activity of AAO decreased with increasing Mo application rates. It is hypothesized that Mo may promote the redox process and regeneration of ascorbic acid, and affect the ability of anti-oxidation in the Chinese cabbage. Responsible Editor: Jian Feng Ma.  相似文献   

2.
Eichhornia crassipes (Mart.) has strong ability to remove Cu2+ from copper-contaminated water. Physiological responses in E. crassipes exposed to known concentrations of Cu2+ were examined in this study, and demonstrated that E. crassipes could accumulate 314 mg kg−1 dry weight of Cu when exposed to 5 mg l−1 of Cu2+ for periods up to 14 d. However, there were marked changes in physiology of the plant commencing at Cu2+ concentrations of 1 mg l−1. Results of this study showed that E. crassipes could tolerate moderate concentrations (i.e. 0.5 mg l−1) of Cu2+, without significant changes in photosynthetic pigment concentrations, while high concentrations (i.e. 5 and 10 mg l−1) of Cu2+ resulted in substantial loss in pigment concentrations. Increases in malondiadehyde (MDA) content were also demonstrated in plant exposure to high Cu2+ concentrations. Soluble protein content increased to a level slightly higher than the control at <0.5 mg l−1 of Cu2+, but then decreased with exposure to >1 mg l−1 of Cu2+. Our results suggest that E. crassipes has a substantial capacity to accumulate copper when cultivated at moderate concentrations of Cu2+, without marked changes in its physiology. The findings indicate that E. crassipes is a promising possibility for phytoremediation of moderately Cu-contaminated water bodies. Handling editor: S. M. Thomaz  相似文献   

3.
This work examined the effects of exogenously applied abscisic acid (ABA) on the content of chlorophyll, carotenoids, α-tocopherol, squalene, phytosterols, Δ9-tetrahydrocannabinol (THC) concentration, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and 1-deoxy-d-xylulose 5-phosphate synthase (DXS) activity in Cannabis sativa L. at flowering stage. Treatment with 1 and 10 mg l−1 ABA significantly decreased the contents of chlorophyll, carotenoids, squalene, stigmasterol, sitosterol, and HMGR activity in female cannabis plants. ABA caused an increase in α-tocopherol content and DXS activity in leaves and THC concentration in leaves and flowers of female plants. Chlorophyll content decreased with 10 mg l−1 ABA in male plants. Treatment with 1 and 10 mg l−1 ABA showed a decrease in HMGR activity, squalene, stigmasterol, and sitosterol contents in leaves but an increase in THC content of leaves and flowers in male plants. The results suggest that ABA can induce biosynthesis of 2-methyl-d-erythritol-4-phosphate (MEP) pathway secondary metabolites accumulation (α-tocopherol and THC) and down regulated biosynthesis of terpenoid primary metabolites from MEP and mevalonate (MVA) pathways (chlorophyll, carotenoids, and phytosterols) in Cannabis sativa.  相似文献   

4.
The present study examined the effects of plant growth hormones, incubation period, biotic (Trametes versicolor, Mucor sp., Penicillium notatum, Rhizopus stolonifer, and Fusarium oxysporum) and abiotic (NaCl, MgSO4, FeSO4, ZnSO4, and FeCl3) elicitors on cell growth and α-tocopherol and pigment (red and yellow) productions in Carthamus tinctorius cell cultures. The cell growth and α-tocopherol and pigment contents improved significantly on Murashige and Skoog (MS) liquid medium containing 50.0 μM α-naphthalene acetic acid (NAA) and 2.5 μM 6-Benzyladenine (BA) at 28 days of incubation period. Incorporation of T. versicolor (50 mg l−1) significantly enhanced the production of α-tocopherol (12.7-fold) and red pigment (4.24-fold). Similarly, supplementation of 30 mg l−1 T. versicolor (7.54-fold) and 70 mg l−1 Mucor sp. (7.40-fold) significantly increased the production of yellow pigment. Among abiotic elicitors, NaCl (50–70 mg l−1) and MgSO4 (10–30 mg l−1) significantly improved production of α-tocopherol (1.24-fold) and red pigment (20-fold), whereas yellow pigment content increased considerably by all the abiotic elicitor treatments. Taken together, the present study reports improved productions of α-tocopherol and the pigment as a stress response of safflower cell cultures exposed to these elicitors.  相似文献   

5.
An effective in vitro protocol for rapid clonal propagation of Echinacea purpurea (L.) Moench through tissue culture was described. The in vitro propagation procedure consisted of four stages: 1) an initial stage - obtaining seedlings on Murashige and Skoog (MS) basal medium with 0.1 mg L−1 6-benzylaminopurine, 0.1 mg L−1 α-naphthalene acetic acid and 0.2 mg L−1 gibberellic acid; 2) a propagation stage — shoot formation on MS medium supplemented with 1 mg L−1 6-benzylaminopurine alone resulted in 9.8 shoots per explant and in combination with 0.1 mg L−1 α-naphthalene acetic acid resulted in 16.2 shoots per explant; 3) rooting stage — shoot rooting on half strength MS medium with 0.1 mg L−1 indole-3-butyric acid resulted in 90% rooted microplants; 4) ex vitro acclimatization of plants. The mix of peat and perlite was the most suitable planting substrate for hardening and ensured high survival frequency of propagated plants. Significant higher levels were observed regarding water-soluble and lipid-soluble antioxidant capacities (expressed as equivalents of ascorbate and α-tocopherol) and total pnenols content in extracts of Echinaceae flowers derived from in vitro propagated plants and adapted to field conditions in comparison with traditionally cultivated plants.  相似文献   

6.
Both α-lipoic acid (LA) and ascorbic acid (vitamin C) have been shown to improve endothelial dysfunction, a precursor of atherosclerosis. Since oxidant stress can cause endothelial dysfunction, we tested the interaction and efficacy of these antioxidants in preventing oxidant damage to lipids due to both intra- and extracellular oxidant stresses in EA.hy926 endothelial cells. LA spared intracellular ascorbate in culture and in response to an intracellular oxidant stress induced by the redox cycling agent menadione. Extracellular oxidant stress generated by incubating cells for 2 h in with 0.2 mg/ml LDL and 5 μM Cu2+ caused a time-dependent increase of the lipid peroxidation product malondialdehyde in both cells and LDL, preceded by rapid disappearance of` α-tocopherol in LDL. α-Lipoic acid at concentrations of 40–80 μM blunted these effects. Similarly, intracellular ascorbate concentrations of 1–2 mM also prevented Cu2+-induced lipid peroxidation in LDL and cells. Cu2+-dependent oxidation of LDL in the presence of ascorbate-loaded cells decreased intracellular ascorbate by 20%, but this decrease was not reversed by LA. Both LA and ascorbate protect endothelial cells and LDL from either intra- or extracellular oxidant stress, but that LA does not spare ascorbate in oxidatively stressed cells.  相似文献   

7.
Non-living (dried) biomass of five common filamentous algae belonging to Chlorophyta and Cyanophyta (Cyanobacteria) were screened for their metal ion sorption and removal efficiency in a batch system. A considerably higher magnitude of sorption of Pb2+ and Cu2+ by all the tested algae suggests the prevalence of Pb2+- and Cu2+-binding ligands in them. The Langmuir isotherm could more appropriately describe metal sorption by the test algae than the Freundlich isotherm. A 1 g l−1 biomass concentration of Pithophora odeogonia and Spirogyra neglecta, respectively removed 97 and 89% Pb2+in 30 min from a solution containing 5 mg l−1 initial concentration of Pb2+. Metal ion removal by the test algae decreased with increase in metal concentration in the solution. S. neglecta could remove >70% Pb2+ even from a solution containing 75 mg Pb2+ l−1. S. neglecta and P. oedogonia could remove more than 75% of Pb2+ and Cu2+ from a multi-metal solution, and therefore have tremendous potential for removing Pb2+and Cu2+ from wastewaters containing several metal ions simultaneously. Other test algae, namely, Hydrodictyon reticulatum, Cladophora calliceima and Aulosira fertilissima were relatively less efficient in removing metal ions from solution.  相似文献   

8.
Summary This study provides first-hand information on the salinity and copper-induced oxidative damage and its protection in Anabaena doliolum by the antioxidant defence system. Oxidative damage measured in terms of lipid peroxidation, electrolyte leakage and H2O2 production was induced by different concentrations of NaCl and Cu2+. A greater electrolyte leakage by NaCl than Cu2+ supported the hypothesis of salinity being more injurious than copper. To explore the survival strategies of A. doliolum under NaCl and Cu stress, enzymatic antioxidant activities e.g. superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) and nonenzymatic antioxidant contents such as glutathione reduced (GSH), ascorbate, α-tocopherol, and carotenoid were measured. A general induction in SOD and APX activities as well as ascorbate and α-tocopherol contents was found under NaCl and Cu2+ stress. In contrast to this, an appreciable decline in GR activity, GSH pool and carotenoid content under Cu2+ and an increase under NaCl stress were observed. CAT activity was completely inhibited at high doses of NaCl but stimulated following Cu2+ treatment. The above results suggest the involvement of APX and CAT in the scavenging of H2O2 under Cu2+ stress. In contrast to this, only APX was involved in H2O2 scavenging under salt stress. Our postulate of Cu2+-mediated antagonism of salt stress can be explained by a conceivable reversion of Na+-induced disturbance of cellular homeostasis by redox active Cu2+.  相似文献   

9.
The mechanism of lead (Pb2+)-induced neurotoxicity has not yet been fully elucidated. The purpose of this study was to examine the effects of Pb2+ on several protein kinase C (PKC) isoforms and the nuclear factor-κB (NF-κB)–I-κB kinase-alpha (IKK-α) axis in cultured neuronal cells. Neurons were isolated from rat fetal brain at the 18th day of gestation of pregnant Sprague Dawley rats and cultured for 10 days before use. Neurons were exposed to Pb2+ at concentrations of 10−10, 10−9, 10−8, and 10−7 mol/L for 14 h and antigens of typical PKC-α,β,γ; novel PKC (ε, δ), atypical PKC (λ), NF-κB (p50), and IKK-α were enriched by immunoprecipitation and determined by western blotting. Total, calcium-dependent and independent PKC activities were also determined by counting the transferred γ-32 P in the substrate-histone. The results indicated that inorganic Pb2+ significantly reduced all PKC isoforms (α,β,γ, ε, λ) except δ, inhibiting the total, calcium-dependent and calcium-independent PKC activities in a dose-dependent manner. Additionally, Pb2+ gradually reduced NF-κB (p50) and IKK-α protein levels. This suggests that Pb2+ exhibits varying preference for individual PKC isoforms but reduces the NF-κB–IKK-α axis to a similar extent.  相似文献   

10.
The effects of silicate and glucose on growth and eicosapentaenoic acid (EPA) production by the diatom Nitzschia laevis were studied. By alternately altering the concentrations of silicate (2.7–64 mg l−1) and glucose (1–40 g l−1) in the medium, the highest cell dry weight (ca. 5.5 g l−1) was obtained at 20 g l−1 glucose and 32 mg l−1 silicate, while the highest specific growth rate (ca. 0.65 day−1) was obtained at a relatively low glucose concentration (5 g l−1) and high silicate concentrations (32–64 mg l−1). At glucose levels of 5 and 20 g l−1, EPA content was higher with lower silicate concentrations (2.7 and 16 mg l−1 silicate, respectively), while at a silicate level of 16 mg l−1, higher glucose concentrations (20–40 g l−1) facilitated EPA formation. The highest EPA yield (131 mg l−1) was obtained at 20 g l−1 glucose and 32 mg l−1 silicate, while the highest EPA productivity (15.1 mg l−1 day−1) was obtained at 20 g l−1 glucose and 64 mg l−1 silicate. Journal of Industrial Microbiology & Biotechnology (2000) 25, 218–224. Received 08 May 2000/ Accepted in revised form 21 July 2000  相似文献   

11.
Summary Sodium chloride-tolerant plantlets of Dendrocalamus strictus were regenerated successfully from NaCl-tolerant embryogenic callus via somatic embryogenesis. The selection of embryogenic callus tolerant to 100 mM NaCl was made by exposing the callus to increasing (0–200 mM) concentrations of NaCl in Murashige and Skoog medium having 3% (w/v) sucrose, 0.8% (w/v) agar, 3.0 mg l−1 (13.6 μM) 2,4-dichlorophenoxyacetic acid (2,4-D), and 0.5mg l−1 (2.3μM) kinetin (callus initiation medium). The tolerance of the selected embryogenic callus to 100 mM NaCl was stable through three successive transfers on NaCl-free callus initiation medium. The tolerant embryogenic callus had high levels of Na+, sugar, free amino acids, and proline but a slight decline was recorded in K+ level. The stable 100 mM NaCl-tolerant embryogenic callus differentiated somatic embryos on maintenance medium [MS medium +3% sucrose +0.8% agar +2.0 mg l−1 (9.0 μM) 2,4-D+0.5 mg l−1 (2.3 μM) kinetin] supplemented with different (0–200 mM) concentrations of NaCl. About 39% of mature somatic embryos tolerant to 100 mM NaCl germinated and converted into plantlets in germination medium [half-strength MS+2% sucrose+0.02 mg l−1 (0.1 μM) α-naphthaleneacetic acid +0.1 mg l−1 (0.49 μM) indole-3-butyric acid] containing 100 mM NaCl. Of these plantlets about 31% established well on transplantation into a garden soil and sand (1:1) mixture containing 0.2% (w/w) NaCl.  相似文献   

12.
Although suckers and seedlings can be used for the propagation of bromeliads, the low number of propagules and cross-variation limit their uniformity and mass cultivation. In this study, high-efficiency shoot organogenesis and plant regeneration were achieved on callus derived from petal and ovary explants of Aechmea fasciata (Bromeliaceae). Calluses were induced on half-strength Murashige and Skoog inorganic salts (1/2MS) supplemented with 1.0–1.5 mg l−1 2,4-dichlorophenoxyacetic acid in combination with 1.0 or 0.5 mg l−1 α-naphthaleneacetic acid (NAA), and shoots regenerated after transfer to 1/2MS basal medium containing the combination of 1.0 mg l−1 NAA + 0.5 mg l−1 1-phenyl-3-(1,2,3-thiadiazol-5-yl) urea. Those plantlets grown under a middle light intensity (50 μmol m−2 s−1) showed a dramatic increase in survival percentage (up to 95%) and the maximum number of newly developing roots. The plantlets that were transplanted onto pots were successfully grown in the greenhouse.  相似文献   

13.
In wild species of almond (Prunus spp.), the activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), as well as the levels of ascorbate/glutathione pools and H2O2 were subjected to water deficit and shade conditions. After 60 days of water shortage, the species were subjected to a rewatering treatment. During water recovery, leaves exposed to sunlight and leaves under shade conditions of about 20–35% of environmental irradiance were sampled. After 70 days without irrigation, mean predawn leaf water potential of all the species fell from −0.32 to −2.30 MPa and marked decreases in CO2 uptake and transpiration occurred. The activities of APX, MDHAR, DHAR, and GR increased in relation to the severity of drought stress in all the wild species studied. Generally, APX, MDHAR, DHAR, and GR were down-regulated during the rewatering phase and their activities decreased faster in shaded leaves than in sun-exposed leaves. The levels in total ascorbate, glutathione, and H2O2 were directly related to the increase in drought stress and subsequently decreased during rewatering. The antioxidant response of wild almond species to drought stress limits cellular damage caused by reactive oxygen species during periods of water deficit and may be of key importance for the selection of drought-resistant rootstocks for cultivated almond.  相似文献   

14.
The effects of antibiotics commonly used in Agrobacterium-mediated transformation were studied on Pinus pinaster tissues. Embryogenic tissue growth from three embryogenic lines and adventitious bud induction from cotyledons from three open-pollinated seed families were analysed. Cefotaxizme, carbenicillin and timentin commonly used for Agrobacterium elimination, at concentrations of 200–400 mg l −1 did not inhibit the embryogenic tissue growth on filter paper nor as clumps. Adventitious bud induction and bud number were significantly reduced for one of the tested families when using 400 mg l−1 cefotaxime or timentin. The selection agent kanamycin significantly inhibited growth of embryogenic tissue on filter paper in all the embryogenic lines␣and concentrations tested (20–50 mg l−1). Kanamycin also inhibited growth of embryogenic clumps after two subcultures at 5–50 mg l−1. In␣cotyledons, kanamycin inhibited adventitious bud␣formation in the three seed families used, regardless of the concentrations tested (5–25 mg l−1). There was a significant effect of the seed family on the bud induction and the number of adventitious buds produced. From the results obtained, we propose the use of timentin to eliminate Agrobacterium in transformation experiments, at concentrations of 400 mg l−1 for embryogenic tissues and of 300 mg l−1 for cotyledons. For selection of transformed tissues carrying the kanamycin resistance gene, kanamycin should be used at 20 mg l−1 for embryogenic tissues on filter paper, at 5 mg l−1 when clumps are in direct contact with the selection medium, and bellow 5 mg l−1 for adventitious bud induction.  相似文献   

15.
Mature zygotic embryos of masson pine were cultured as initial explants to investigate the process of direct organogenesis. Adventitious buds were initiated on DCR medium (Douglas-fir cotyledon revised medium) supplemented with 0.5 mg l−1 N6-benzyladenine (BA) and 0.05 mg l−1 indolebutyric acid (IBA) or α-naphthaleneacetic acid (NAA). The highest induction frequency of adventitious buds was 99.3%. Subsequent transfer of buds to medium with lower concentrations of plant growth regulators in time was necessary for differentation of high quality adventitious buds. After culturing on elongating medium, in which the proportion of cytokinins to auxins was reduced, shoots higher than 2 cm were transferred for root induction to GD medium with half of the concentration of macro-salts (½ GD) and with 2 mg l−1 IBA and 0.05 mg l−1 BA. The average root frequency was over 70%. After adventitious roots had appeared, the shoots were transferred to ½ GD medium with a lower concentration of IBA (0.2 mg l−1) for further root development.  相似文献   

16.
Callus selection (CS) and the flamingo-bill explant (FB) methods were evaluated for efficacy in transformation for celery. Agrobacterium tumefaciens strains EHA105 and GV3101, each with the bar gene under the promoters NOS (pGPTV-BAR) or 35S (pDHB321.1), were used. Leaf explants were inoculated and co-cultivated for 2 d in the dark. Calluses emerged on the explants on callus medium (C), Murashige and Skoog (MS) medium + 2,4-Dichlorophenoxyacetic acid (2,4-D) (2.3 μM) + kinetin (2.8 μM) + timentin (300 mg·l−1). Calluses 4- to 6-wk-old were selected for glufosinate (GS) resistance by a two step method. First, calluses were transferred to C medium + GS 0.35, 0.5, 1, 2, 5, or 10 mg·l−1; calluses formed only with 0, 0.35 and 0.5 mg·l−1 GS. All growing calluses from 0 and 0.35 mg·l−1 and a few from 0.5 mg·l−1, were divided and placed back on C + GS 0.35–0.5 mg·l−1 for another 5–6 wk. Second, tolerant clones were again divided and placed on C + GS 1–50 mg·l−1. When cultivar XP85 was inoculated with both strains, using pGPTVBAR, 19 glufosinate resistant (GR) callus clones were selected, but shoots regenerated only for strain EHA105 inoculations. When both of the strains (each with pDHB321.1) were inoculated on cv. XP166, 3 and 12 GR calluses occurred for EHA105 and GV3101, respectively. Using CS, a total of 34 GR callus clones were selected, and shoots were regenerated from over 50% of them on Gamborg B5 medium + 6-(γ, γ-dimethylallylamino) purine 2ip (4.9 μM) + naphthaleneacetic acid (NAA; 1.6 μM) and rooted on MS in 5–6 mo total time. Conversely, using FB with inoculation by GV3101/pDHB321.1 on cv. XP166 yielded putative transgenic celery plants confirmed by polymerase chain reaction (PCR) in just 6 wk. Transformation of the bar gene into celery was confirmed by PCR for 5 and 6 CS and FB lines, respectively. Southern blot analyses indicated 1–2 copies in CS lines and 1 copy in FB lines. Herbicide assays on whole plants with 100 and 300 mg·l−1 glufosinate indicated a range of low to high tolerance for lines derived by both methods. The bar gene was found to be Mendelian inherited in one self-fertile CS derived line.  相似文献   

17.
A modified culture protocol has been developed for the induction of somatic embryogenesis in Azadirachta indica (neem). Embryogenic calluses were initiated from cotyledons or hypocotyls using a Murashige and Skoog (MS) agar medium supplemented with 0.5 mg l−1 α-napthaleneacetic acid (NAA), 1 mg l−1 6-benzylaminopurine (BA), 1 g l−1 casein hydrolysate, and 50 g l−1 sucrose. The calluses, when transferred to a liquid medium similar to the agar medium but with NAA replaced by 0.5 mg l−1 indole-3-acetic acid (IAA), formed globular structures which further developed a rudimentary root, after 4 to 5 weeks incubation. Subsequently, these highly differentiated tissues when transferred into a hormone-free MS medium containing 1 g l−1 casein hydrolysate and 50 g l−1 sucrose, active embryo masses started to appear after 1 to 2 weeks. The embryo production was found to improve more than 2 fold by adding 0.2 mg l−1 zeatin to the medium. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Songbirds are widely studied to investigate the hormonal control of behavior. However, little is known about the effects of steroids on neurotransmission in these birds. We used electrophysiological and pharmacological techniques to characterize γ-aminobutyric acid (GABA) type A receptors (GABAA) of primary cultured telencephalic and hippocampal neurons from developing zebra finches. Additionally, their modulation by 17β-estradiol(E2), 5α- and 5β-dihydrotestosterone (DHT), 5α- and 5β-pregnan-3α-ol-20-one, and corticosterone was examined. Whole-cell GABA-evoked currents were inhibited by picrotoxin (10 μmol l−1) and bicuculline methiodide (10 μmol l−1) and potentiated by pentobarbital (100 μmol l−1) and propofol (3 μmol l−1). Loreclezole (10 μmol l−1) potentiated GABA-evoked currents, suggesting the presence of β2, β3 and/or β4 subunits. Diazepam (1 μmol l−1) potentiated currents, while Zn2+ (1 μmol l−1) caused no inhibition, indicating the presence of γ subunits. 5α- and 5β-Pregnan-3α-ol-20-one (100 nmol l−1) potentiated currents, whereas E2 (1 μmol l−1), 5α- and 5β-DHT (1 μmol l−1), and corticosterone (10 μmol l−1) had no detectable effect. We conclude that zebra finch telencephalic and hippocampal GABAA receptors include α, β, and γ subunits and are similar to their mammalian counterparts in both their biophysical and pharmacological properties. Additionally, GABA-evoked currents are greatly potentiated by 5α- and 5β-pregnan-3α-ol-20-one but show little or no acute modulation by sex steroids or corticosterone. Accepted: 12 November 1997  相似文献   

19.
The objective of this article is to study the effect of 5-aminolevulinic acid (ALA) and enhanced chlorophyll content, antioxidative enzymes and photosynthesis rate by foliar application of ALA. We evaluated three concentrations (control-distilled water, T1-50 mg l−1, T2-150 mg l−1, T3-250 mg l−1) of ALA and seven cultivars, “Sanchidaye” (Sa-1), “Lichuandasuomian” (Li-1), “Aijiaohuang” (Ai-1), “Qingyou” No. 4 (Qi-1), “Aikang” No. 5 (Ak-1), “Hanxiao” (Ha-1) and “Shulv” (Sl-1). “Ak-1” showed strongest response of POD (peroxidase) enzyme activity (0.4 U g−1 min−1) in 250 mg l−1 ALA solution. The highest CAT (catalase) activity (0.8 U g−1 min−1) after administration of 250 mg l−1 ALA was observed in “Li-1”. Meanwhile, highest (1.42 mg l−1) total chlorophyll content was also observed in “Ak-1”, when leaves were treated in 50 mg l−1 ALA, “Li-1” and “Ai-1” showed strongest response of specific activity of superoxide dismutase (SOD) in 50 mg l−1 and 50 mg l−1 ALA. Two hundred and fifty milligram per milliliter of ALA-treatment significantly improved the net photosynthetic rate.  相似文献   

20.
A broadly applicable direct shoot regeneration method from hypocotyls and stem explants has been developed for six cultivars of Antirrhinum majus L. In order to establish a stable and high frequency of shoot regeneration system, leaves, hypocotyls and stem explants of six cultivars were tested with 72 combinations of auxin (naphthaleneacetic acid (NAA) or 3-indoleacetic acid (IAA)) and cytokinin (6-benzylaminopurine (BA) or zeatin (Z)). A few adventitious shoots were directly regenerated from hypocotyl segments of cv. Orchid on MS medium with NAA + BA, IAA + BA, NAA + Z and IAA + Z. High frequency of direct shoot regeneration was obtained from hypocotyl segments on MS medium with 0.05, 0.1 or 0.25 mg l−1 NAA + 2 mg l−1 Z and 0.5 mg l−1 IAA + 2 mg l−1 Z. Finally, stable and high frequency (92–100%) of shoot regeneration with more than 10 adventitious shoots per explant was achieved from the hypocotyls and stem explants of all six cultivars on MS medium with 0.25 mg l−1 NAA + 2 mg l−1 Z. The shoots emerged directly from the hypocotyls and stem segments 4 weeks after culture initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号