首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of foliar spraying with spermidine (Spd), ranging in concentration from 0.25 to 0.50 mmol/L, on the antioxidant system under Cd^2 stress (range 0.1- 0.2 mmol/L Cd^2 ) in Typha latifolia L. grown hydroponically were investigated in order to offer a referenced evidence for an understanding of the mechanism by which polyamines (PAs) relieve the damage to plants by heavy metal and improve the phytoremediation efficiency of heavy metal-contaminated water. The results showed that Cd^2 stress induced oxidative injury, as evidenced by an increase in the generation of superoxide anion (O2), as well as the hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents in both leaves and caudices. With the exception of superoxide dismutase (SOD) activity in the leaves, an increase in the activities of catalase (CAT), guaiacol peroxidase (GPX), and glutathione reductase (GR) was observed in both leaves and caudices, SOD activity was increased in caudices, and ascorbate peroxidase (APX) activity was increased in leaves following Cd^2 treatment. The reduced glutathione (GSH) content in both leaves and caudices and the reductive ascorbate content in leaves was obviously increased, which were prompted by the application of exogenous Spd. Spraying with Spd increased the activity of GR and APX in both leaves and caudices, whereas the activity of SOD, CAT, and GPX was increased only in caudices following spraying with Spd. The generation of O2 and the H2O2 and MDA content in both leaves and caudices decreased after spraying with Spd. The decrease in MDA was more obvious following the application of 0.25 than 0.50 mmol/L Spd. It is supposed that exogenous Spd elevated the tolerance of T. latifolia under Cd^2 stress primarily by increasing GR activity and the GSH level.  相似文献   

2.
The effects of foliar spraying with spermidine (Spd), ranging in concentration from 0.25 to 0.50mmol/L, on the antioxidant system under Cd2 stress (range 0.1- 0.2 mmol/L Cd2 ) in Typha latifolia L.grown hydroponically were investigated in order to offer a referenced evidence for an understanding of the mechanism by which polyamines (PAs) relieve the damage to plants by heavy metal and improve the phytoremediation efficiency of heavy metal-contaminated water. The results showed that Cd2 stress inhydrogen peroxide (H2O2) and malondialdehyde (MDA) contents in both leaves and caudices. With theexception of superoxide dismutase (SOD) activity in the leaves, an increase in the activities of catalase (CAT), guaiacol peroxidase (GPX), and glutathione reductase (GR) was observed in both leaves and caudices,SOD activity was increased in caudices, and ascorbate peroxidase (APX) activity was increased in leaves following Cd2 treatment. The reduced glutathione (GSH) content in both leaves and caudices and the reductive ascorbate content in leaves was obviously increased, which were prompted by the application of exogenous Spd. Spraying with Spd increased the activity of GR and APX in both leaves and caudices,whereas the activity of SOD, CAT, and GPX was increased only in caudices following spraying with Spd.with Spd. The decrease in MDA was more obvious following the application of 0.25 than 0.50 mmol/L Spd.It is supposed that exogenous Spd elevated the tolerance of T. latifolia under Cd2 stress primarily by increasing GR activity and the GSH level.  相似文献   

3.
Studies of uptake of ionic sources of N by two hydroponically grown rice (Oryza sativa L.) cultivars (paddy‐field‐adapted Koshihikari and dryland‐adapted Kanto 168) showed that the magnitude of the nitrogen isotope fractionation (?) for uptake of NH4+ depended on the concentrations of NH4+ and cultivar (averaging –6·1‰ for Koshihikari and –12·0‰ for Kanto 168 at concentrations from 40 to 200 mmol m?3 and, respectively, –13·4 and –28·9‰ for the two cultivars at concentrations from 0·5 to 4 mol m?3). In contrast, the ? for uptake of NO3? in similar experiments was almost insensitive to the N concentration, falling within a much narrower range (+3·2‰ to –0·9‰ for Koshihikari and –0·9‰ to –5·1‰ for Kanto 168 over NO3? concentrations from 0·04 to 2 mol m?3). From longer term experiments in which Norin 8 and its nitrate‐reductase deficient mutant M819 were grown with 2 or 8 mol m?3 NO3? for 30 d, it was concluded that the small concentration‐independent isotopic fractionation during absorption of this ion was not related to nitrate reductase activity.  相似文献   

4.
The preference of paddy rice for NH4+ rather than NO3- is associated with its tolerance to low pH since a rhizosphere acidification occurs during NH4+ absorption. However, the adaptation of rice root to low pH has not been fully elucidated. This study investigated the acclimation of plasma membrane H+-ATPase of rice root to low pH. Rice seedlings were grown either with NH4+ or NO3-. For both nitrogen forms, the pH value of nutrient solutions was gradually adjusted to pH 6.5 or 3.0. After 4 d cultivation, hydrolytic H+-ATPase activity, V max, K m, H+-pumping activity, H+ permeability and pH gradient across the plasma membrane were significantly higher in rice roots grown at pH 3.0 than at 6.5, irrespective of the nitrogen forms supplied. The higher activity of plasma membrane H+-ATPase of adapted rice roots was attributed to the increase in expression of OSA1, OSA3, OSA7, OSA8 and OSA9 genes, which resulted in an increase of H+-ATPase protein concentration. In conclusion, a high regulation of various plasma membrane H+-ATPase genes is responsible for the adaptation of rice roots to low pH. This mechanism may be partly responsible for the preference of rice plants to NH4+ nutrition.  相似文献   

5.
土壤pH对玉米与微生物竞争吸收氨基酸的影响   总被引:2,自引:0,他引:2  
化学合成肥料的大量使用导致土壤pH发生显著变化,但其对植物与根际微生物竞争吸收氨基酸的影响机制尚不明确.本试验通过电解法调节杭州红壤和铁岭棕壤两种土壤pH, 采用外源添加15N标记甘氨酸短期吸收4 h的方法,研究了pH对玉米及根际微生物竞争吸收氨基酸的影响.结果表明:土壤pH对玉米根和地上部生物量有显著影响,对于红壤,pH为6.48最适宜玉米生长,且玉米地上部15N丰度和15N-甘氨酸吸收量也显著高于其他处理;对于棕壤,pH为7.65最适宜玉米生长,其玉米地上部和根系15N丰度显著低于pH为5.78处理,但15N-甘氨酸吸收量显著高于其他处理.红壤pH为6.48条件下,其微生物生物量碳相对较高,而棕壤pH为7.65条件下,其微生物生物量碳相对较低.综合根系吸收、转运及微生物竞争吸收的结果,推断红壤在pH为6.48条件下虽然面临着微生物的竞争吸收,但生长于其上的玉米通过提高吸收速率和转移比率提高了氨基酸的吸收量;在pH为7.65的棕壤中,微生物活性较低,降低了与玉米竞争吸收氨基酸的能力,从而增加了玉米对氨基酸的吸收量.  相似文献   

6.
The effect of phosphate (PO4 +3) and pH in regulating nitrate (NO3) and ammonia (NH3 +) uptake by phytoplankton was investigated in two Oklahoma lakes using 15N tracers. Addition of PO4 +3 above ambient concentrations had a negligible effect on the rate of uptake of NO3 or NH3 +. Manipulation of pH of lake water had little effect on uptake of either NO3 or NH3 +. A correlation analysis suggested that NO3 is not used by phytoplankton when NH3 + concentrations exceed about 210 µg NH3 +-N(1)–1.  相似文献   

7.
Summary Barley plants (Hordeum vulgare L.) grown from seed for 28 days in flowing solution culture were subjected to different root temperatures (3, 5, 7, 9, 11, 13, 17, 25°C) for 14 days with a common air temperature of 25/15°C (day/night). Uptake of NH4 and NO3 ions was monitored separately and continuously from solutions maintained at 10 M NH4NO3 and pH 6.0. Effects of root temperature on unit absorption rate , flux and inflow were compared. After 5 days , and increased with temperature over the range 3–11°C for NH4 ions and over the range 3–13°C for NO3 ions, with little change for either ion above these temperatures. Q10 temperature coefficients for NH4 ions (3–13°C) were 1.9, 1.7 and 1.6 for , and respectively, the corresponding values for NO3 ions being 5.0, 4.5 and 4.6. For both ions, , and changed with time as did their temperature dependence over the range 3–25°C, suggesting that rates of ontogenetic development and the extent of adaptation to temperature may have varied among treatments.  相似文献   

8.
Ruan J  Ma L  Shi Y  Han W 《Annals of botany》2004,93(1):97-105
BACKGROUND AND AIMS: Tea plants (Camellia sinensis L.) accumulate large amounts of fluoride (F) from soils containing normal F concentrations. The present experiments examined the effects of pH and Ca on F uptake by this accumulating plant species. METHODS: The effect of pH was assessed in two experiments, one using uptake solutions with different pHs, and the other using lime, as CaO, applied to the soil. The effect of Ca was examined by analysing F concentrations in plants supplied with varying amounts of Ca, as Ca(NO3)2, either in uptake solutions or through the soil. KEY RESULTS: F uptake was highest at solution pH 5.5, and significantly lower at pH 4.0. In the soil experiment, leaf F decreased linearly with the amounts of lime, which raised the soil pH progressively from 4.32 to 4.91, 5.43, 5.89 and, finally, 6.55. Liming increased the water-soluble F content of the soil. Including Ca in the uptake solution or adding Ca to soil significantly decreased leaf F concentrations. The distribution pattern of F in tea plants was not altered by Ca treatment, with most F being allocated to leaves. The activity of F- in the uptake solution was unaffected and water-soluble F in the soil was sometimes increased by added Ca. CONCLUSIONS: F uptake by tea plants, which are inherently able to accumulate large quantities of F, was affected both by pH and by Ca levels in the medium. The reduced F uptake following Ca application appeared not to be due simply to the precipitation of CaF2 in solution and soil or to the complexing of Ca and F in roots, although these factors cannot be dismissed. It was more likely due to the effect of Ca on the properties of cell wall or membrane permeability in the solution experiments, and to alteration of F speciations and their quantities in soil solutions following Ca application.  相似文献   

9.
The potential for cadmium (Cd) removal from contaminated soil by two species—marigold (Tagetes erecta L.) and Guinea grass (Panicum maximum)—was investigated in pot culture experiments in a greenhouse in triplicate. The concentration of Cd was varied from 50 to 200 mg kg?1 and the pH was varied from 5.0 to 7.5 to investigate the effect of pH on Cd uptake. The results showed that total biomass of Guinea grass was around nine and seven times higher than that of marigold for Cd treatments of 50 and 100 mg kg?1 at pH 5.0, respectively. Total cadmium uptake at Cd treatments of 50 and 100 mg kg?1 at pH 5.0 by Guinea grass was 19.28 ± 3.14 and 36.06 ± 4.28 mg kg?1, respectively, and for marigold was 15.66 ± 4.17 and 20.38 ± 3.24 mg kg?1, respectively. The total Cd uptake by Guinea grass was 1.23 and 1.77 higher than that of marigold at Cd treatments of 50 and 100 mg kg?1, respectively, at pH 5.0 due to higher biomass. The maximum Cd uptake by marigold and Guinea grass occurred at pH 5.0 at Cd treatment of 100 mg kg?1. The results clearly show that the two species behave very differently for Cd uptake. Guinea grass is easy to grow, drought tolerant and, due to its higher biomass, it can be used for remediation of Cd-contaminated soil.  相似文献   

10.
NH4+ and K+ uptake experiments have been conducted with 3 ectomycorrhizal fungi, originating from Douglas fir (Pseudotsuga menziesii (Mirb.] Franco) stands. At concentrations up to 250 μM, uptake of both NH4+ and K+ follow Michaelis-Menten kinetics. Laccaria bicolor (Maire) P. D. Orton, Lactarius rufus (Scop.) Fr. and Lactarius hepaticus Plowr. ap. Boud. exhibit Km values for NH4+ uptake of 6, 35, and 55 μM, respectively, and Km values for K+ uptake of 24, 18, and 96 μM, respectively. Addition of 100 μM NH4+ raises the Km of K+ uptake by L. bicolor to 35 μM, while the Vmax remains unchanged. It is argued that the increase of Km is possibly caused by depolarization of the plasma membrane. It is not due to a competitive inhibition of K+ by NH4+ since the apparent inhibitor constant is much higher than the Km, for NH4+ uptake. The possibility that NH4+ and K+ are taken up by the same carrier can be excluded. The Km, values for K+ uptake in the two other fungi are not significantly affected by 100 μM NH4+. Except for a direct effect of NH4+ on influx of K+ into the cells, there may also be an indirect effect after prolonged incubation of the cells in the presence of 100 μM NH4+.  相似文献   

11.
In contrast to cereals or other crops, legumes are known to acidify the rhizosphere even when supplied with nitrates. This phenomenon has been attributed to N2 fixation allowing excess uptake of cations over anions; however, as we have found previously, the exposure of the shoot to illumination can cause rhizosphere acidification in the absence of N2 fixation in cowpea (Vigna unguiculata L. Walp). In this study, we examined whether the light-induced acidification can relate to photosynthetic activity and corresponding alterations in cation-anion uptake ratios. The changes of rhizosphere pH along the root axis were visualized using a pH indicator agar gel. The intensity of pH changes (alkalization/acidification) in the rhizosphere was expressed in proton fluxes, which were obtained by processing the images of the pH indicator agar gel. The uptake of cations and anions was measured in nutrient solution. The rhizosphere was alkalinized in the dark but acidified with exposure of the shoots to light. The extent of light-induced acidification was increased with leaf size and intensity of illumination on the shoot, and completely stopped with the application of photosynthesis inhibitor. Although the uptake of cations was significantly lower than that of anions, the rhizosphere was acidified by light exposure. Proton pump inhibitors N,N'-dicyclohexyl carbodimide and vanadate could not stop the light-induced acidification. The results indicate that light-induced acidification in cowpea seedlings is regulated by photosynthetic activity, but is not due to excess uptake of cations.  相似文献   

12.
用分光光度法在体外研究了不同pH条件下马铃薯'转心乌'块茎花色苷颜色呈现和降解速率的变化,以探讨马铃薯'转心乌,块茎颜色呈现的机理.结果显示:在pH 2.0时,该花色苷呈现最强烈的红色.随着pH从0增加到13.0,该花色苷在可见光区的最大吸收波长(λvis max)依次出现红移、蓝移,然后消失,在可见光区的最大吸收波长处的吸光值(Aλ,vis max)呈现为一条单峰曲线,峰值在pH 2.0处.当原始pH值被恢复到2.0后,如果原始pH小于或等于5.0,花色苷的红色均被恢复得更浓烈,λvis max不同程度地趋向537 nm,Aλ,vis max增加;如果原始pH大于或等于6.0,花色苷的红色根本不能被恢复,λvis max几乎不变,Aλ,vis max仍然维持低水平.在15℃、黑暗中,该花色苷在pH 0~5.0条件下均随时间推移而降解,在pH 2.0时的降解速度最慢;当pH小于或等于3.0时,该花色苷总体上降解缓慢,而且降解过程基本符合一级反应动力学.研究表明,'转心乌'块茎花色苷在可见光区的吸收光谱和在15℃、黑暗中的降解速度均具pH依赖性.  相似文献   

13.
Cations, including calcium, magnesium, potassium, sodium, copper, iron, nickel and zinc, inhibited (up to 40%) extracellular binding and intracellular uptake of cadmium by Lemna polyrhiza in solution culture. Test plants showed a high capacity of extracellular cadmium binding which was competitively inhibited by copper, nickel and zinc; however, calcium, magnesium and potassium caused non-competitive inhibition. Iron and sodium increased K m and decreased V max, thereby causing mixed inhibition of extracellular binding. Intracellular cadmium uptake displayed Michaelis-Menten kinetics. It was competitively inhibited by calcium, magnesium, iron, nickel and zinc. Monovalent cations (sodium and potassium) caused non-competitive and copper caused mixed inhibition of intracellular cadmium uptake. Thus, high levels of cations and metals in the external environment should be expected to lower the cadmium accumulation efficiency of L. polyrhiza.  相似文献   

14.
McLaughlin  M.J.  Lambrechts  R.M.  Smolders  E.  Smart  M.K. 《Plant and Soil》1998,202(2):217-222
Sulfate complexation of Cd in nutrient solution has been shown to have little impact on Cd uptake by plants. This study examined the effect of sulfate added to soil on Cd concentrations in soil solution and Cd uptake by Swiss chard (Beta vulgaris L. cv. Fordhook Giant). Swiss chard was grown in soil which was wetted with complete nutrient solution containing equivalent salt concentrations of NaNO3 or Na2SO4. Plant growth was reduced by increasing both NO3 and SO4 concentrations in soil solution, with growth reductions similar for both salts. The Cd concentration in soil solution increased P< 0.05) more consistently with increasing concentrations of SO4 compared to NO3 in soil solution. Solution speciation, calculated with GEOCHEM-PC, showed significant increases of Cd2+ activities with increasing salt rates. Shoot Cd content in 19-day-old Swiss chard plants was marginally but significantly P <0.05) increased with increasing SO4 concentration but no effect was observed with increasing NO3 concentration. These results are compared with earlier work on the marked effect of Cl- salinity on Cd availability in Swiss chard. Possible mechanisms explaining the smaller effect of SO4 compared to Cl on Cd availability are proposed.  相似文献   

15.
McLaughlin  M. J.  Andrew  S. J.  Smart  M.K.  Smolders  E. 《Plant and Soil》1998,202(2):211-216
The impacts of both sulfate (SO4) and calcium (Ca) concentrations in solution on plant uptake of cadmium (Cd) vary according to effects on both sorption of Cd by soil and on uptake by the plant root. This study investigated how complexation of Cd by SO4 affected plant Cd uptake in nutrient solution. Swiss chard (Beta vulgaris L. cv. Fordhook Giant) was grown in nutrient solution with SO4 concentrations varying between 8 mM and 58 m M, with ionic strength maintained constant across treatments using nitrate (NO3). In a separate experiment, solution Ca concentrations was also varied to compensate for SO4 complexation by Ca. Plant growth was unaffected by increasing SO4 concentrations in solution. Despite considerable reductions in free Cd2+ ion activities in solution by increasing SO4 concentrations, plant Cd concentrations were unaffected. Similarly, plant Cd concentrations were unaffected by increasing Ca concentrations in solution to compensate for SO4 complexation of Ca. These data suggest that the CdSO40 complex is taken up by plants with equal efficiency to the free Cd2+ ion.  相似文献   

16.
Poor growth of white lupin (Lupinus albus L.) on alkaline soils may result from its sensitivity to iron deficiency and poor nodulation. This study examined interactive effects of iron supply and high pH on the growth and nodulation of three genotypes differing in their sensitivity to iron deficiency. Three genotypes (P27486, Ultra and WTD180) were grown for 17 days in buffered solutions with Fe supply of 0.2, 2 and 20 μM. Solution pH was adjusted to 5.2, 6.5 or 7.5. Plant growth, nodulation and nutrient concentrations in plants were measured. Decreasing Fe supply decreased chlorophyll concentration in young leaves by up to 92%. Increasing pH decreased chlorophyll concentration by an average of 40% at pH 6.5 and by 47% at pH 7.5. The decrease of chlorophyll was less obvious in P27485 than in Ultra or WTD180. Shoot biomass was reduced by up to 18% by Fe deficiency, with such decrease being less for P27486. Increasing pH exacerbated the effect of Fe deficiency on shoot biomass only of Ultra. Decreasing Fe supply decreased nodule number by an average of 54%, and increasing pH decreased nodule number by 80%. P27486 formed the greatest number of nodules while WTD180 the least. P27486 had high Fe uptake and low internal requirement. Irrespective of genotype, leaf chlorosis positively correlated with cluster root formation. The results suggest that a combination of Fe deficiency and high pH impaired nodulation in L. albus, and that selection of genotypes for both tolerance of iron deficiency and good nodulation at high pH is important for a successful lupin crop on alkaline soils.  相似文献   

17.
The proton release by a species that can hyperaccumulate nickel (Alyssum murale) and by a non-accumulator (Raphanus sativus L.) was studied at different pH and heavy metal concentrations in solution culture. Both factors influenced the growth and composition of the plants.A. murale was more sensitive than radish to a decrease of pH from 7.0 to 6.0 in the growth medium; plant yield and proton production diminished with decreasing pH. However, yields and proton production of radish only decreased at pH 5.5. The differences in the amounts of protons produced between the hyperaccumulator species and radish were not large enough to conclude that decreasing pH in the rhizosphere ofA. murale is a mechanism for heavy metal solubilization.Nickel concentrations inA. murale followed the typical pattern of an accumulator plant — more Ni was accumulated in the shoots than in the roots. Lower concentrations of Zn and Cd occurred in the shoots than in roots ofA. murale, and also of Ni in radish. The concentrations of Co inA. murale shoots were increased when Zn, Ni and Cd were absent from the nutrient solution. However, Co concentrations in radish shoots were independent of the concentrations of other heavy metals in the growth medium.  相似文献   

18.
砂培条件下施加钙、砷对蜈蚣草吸收砷、磷和钙的影响   总被引:15,自引:0,他引:15  
廖晓勇  肖细元  陈同斌 《生态学报》2003,23(10):2057-2065
在砂培条件下 ,研究施加钙、砷对蜈蚣草生长和砷、磷和钙的吸收及转运的影响。添加砷对蜈蚣草的生物量 (根、叶柄和羽叶的干物重 )虽未达到显著影响 (p<0 .0 5) ,但添加 0 .1 mmol/L砷时 ,表现出刺激生长效应。提高介质中钙浓度明显抑制蜈蚣草根系生长 ,钙浓度过高还会显著限制地上部生长。供应 0 .0 3mmol/L钙时 ,蜈蚣草羽片砷浓度为 42 1 8mg/kg,明显高于 2 .5和 5 mmol/L钙处理下相应的砷浓度。砷的转运系数 (羽片 /根 )随着介质中砷浓度的升高而增大 ,随着介质中钙浓度的升高而减少。这说明一定范围内提高介质中砷浓度促进砷向地上部运输 ,而钙却明显抑制砷向地上部转运。钙和砷浓度过高时 ,植株均会出现中毒症状。钙中毒表现为叶脉变褐和叶肉坏死 ;而砷中毒现象表现在叶尖和叶缘变褐。介质中砷限制蜈蚣草根部对磷的吸收 ,但对地上部磷浓度无显著影响。介质中添加砷 ,植物体内钙浓度升高 ,可能起缓解砷毒的作用。钙、砷对蜈蚣草羽片砷累积量和总累积量均有极显著的交互作用 ,钙是负交互效应 ,砷是正交互效应。添加 2 .5和 5.0 mmol/L钙时 ,相对于 0 .0 3 mmol/L钙处理分别减少地上部砷累积量 2 0 .8%和73.1 %。这表明在应用蜈蚣草进行植物修复时 ,介质中出现过高浓度的钙是不利于提高土壤修复效率  相似文献   

19.
20.
Welch  R.M.  Hart  J.J.  Norvell  W.A.  Sullivan  L.A.  Kochian  L.V. 《Plant and Soil》1999,208(2):243-250
Cd accumulation in durum wheat presents a potential health risk to consumers. In an effort to understand the physiological mechanisms involved with Cd accumulation, this study examined the effects of Zn on Cd root uptake and phloem translocation in a split– root system. Durum wheat seedlings were grown in chelate-buffered nutrient solution with intact root systems divided into two sections. Each root section grew in a separate 1 l pot, one of which contained 0.2 μM CdSO4. In addition, each two-pot system contained ZnSO4 in the following combinations (in μm) (for -cd root system: +cd root system): 1:1, 1:10, 10:1,10:10, 1:19, and 19:1. Harvested plant material was analyzed for Cd and Zn. In addition, rates of Cd and Zn net uptake, translocation to the shoot, and root export (translocation from one root segment to the other) between days 8 and 22 were calculated. Results show that Zn was not translocated from one root section to its connected root section. Uptake rates of Cd increased as solution Zn concentrations increased. Cd translocation from one root section to the other decreased significantly when the Zn concentration in either pot was greater than 1 μM. These results show the potential of Zn to inhibit movement of Cd via the phloem, and suggests that providing adequate Zn levels may limit phloem loading of Cd into wheat grain. Increasing the rhizosphere activity of Zn2+ in Cd-containing soils may therefore result in reduced Cd accumulation in grain even while net Cd uptake is slightly enhanced. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号