首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Platelet-activating factor is a phospholipid mediator that exhibits a wide variety of physiological and pathophysiological effects, including induction of inflammatory response, chemotaxis and cellular differentiation. Trypanosoma cruzi, the etiological agent of Chagas' disease, is transmitted by triatomine insects and while in the triatomine midgut the parasite differentiates from a non-infective epimastigote stage into the pathogenic trypomastigote metacyclic form. We have previously demonstrated that platelet activating factor triggers in vitro cell differentiation of T. cruzi. Here we show a platelet activating factor-like activity isolated from lipid extract of T. cruzi epimastigotes incubated in the presence of [14C]acetate. Trypanosoma cruzi-platelet activating factor-like lipid induced the aggregation of rabbit platelets, which was prevented by platelet activating factor-acetylhydrolase. Mouse macrophage infection by T. cruzi was stimulated when epimastigotes were kept for 5 days in the presence of T. cruzi-platelet activating factor, before interacting with the macrophages. The differentiation of epimastigotes into metacyclic trypomastigotes was also triggered by T. cruzi-platelet activating factor. These effects were abrogated by a platelet activating factor antagonist, WEB 2086. Polyclonal antibody raised against mouse platelet activating factor receptor showed labelling for T. cruzi epimastigotes using immunoblotting and immunofluorescence assays. These data suggest that T. cruzi contain the components of an autocrine platelet activating factor-like ligand-receptor system that modulates cell differentiation towards the infectious stage.  相似文献   

3.
Here we have investigated the function of TcRho1, a Rho family orthologue from the parasite Trypanosoma cruzi. We have selected parasites overexpressing wild-type TcRho1 and a truncated form of TcRho1 (TcRho1-DeltaCaaX) which is unable to undergo farnesylation and supposed to interfere with recruitment of Rho effectors to membranes. TcRho1 protein was localized at the anterior region of wild-type and TcRho1 overexpressing epimastigotes, suggesting association with the Golgi apparatus. Accordingly, parasites overexpressing TcRho1-DeltaCaaX presented cytoplasmic fluorescence. To address the function of TcRho1 during differentiation, from epimastigotes to trypomastigotes, we submitted parasites overexpressing the above-cited lineages to metacyclogenesis assays. Parasites overexpressing TcRho1-DeltaCaaX generated a discrete number of metacyclic trypomastigotes when compared with other lineages. Strikingly, TcRho1-DeltaCaaX cells died synchronously during the process of metacyclogenesis.  相似文献   

4.
Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is a major public health problem in Central and South America. The pathogenesis of Chagas disease is complex and the natural course of infection is not completely understood. The recent development of bioluminescence imaging technology has facilitated studies of a number of infectious and non-infectious diseases. We developed luminescent T. cruzi to facilitate similar studies of Chagas disease pathogenesis. Luminescent T. cruzi trypomastigotes and amastigotes were imaged in infections of rat myoblast cultures, which demonstrated a clear correlation of photon emission signal strength to the number of parasites used. This was also observed in mice infected with different numbers of luminescent parasites, where a stringent correlation of photon emission to parasite number was observed early at the site of inoculation, followed by dissemination of parasites to different sites over the course of a 25-day infection. Whole animal imaging from ventral, dorsal and lateral perspectives provided clear evidence of parasite dissemination. The tissue distribution of T. cruzi was further determined by imaging heart, spleen, skeletal muscle, lungs, kidneys, liver and intestines ex vivo. These results illustrate the natural dissemination of T. cruzi during infection and unveil a new tool for studying a number of aspects of Chagas disease, including rapid in vitro screening of potential therapeutical agents, roles of parasite and host factors in the outcome of infection, and analysis of differential tissue tropism in various parasite-host strain combinations.  相似文献   

5.
During invasion of nonphagocytic cells by Trypanosoma cruzi (T. cruzi), host cell lysosomes are recruited to the plasma membrane attachment site followed by lysosomal enzyme secretion. The membrane trafficking events involved in invasion have not been delineated. We demonstrate here that T. cruzi invasion of nonphagocytic cells was completely abolished by overexpression of a dominant negative mutant of dynamin. Likewise, overexpression of a dominant negative mutant of Rab5, the rate-limiting GTPase for endocytosis, resulted in reduced infection rates compared with cells expressing Rab5 wild-type. Moreover, cells expressing the activated mutant of Rab5 experienced higher infection rates. A similar pattern was also observed when Rab7-transfected cells were examined. Confocal microscopy experiments showed that parasites colocalized with green fluorescent protein-Rab5-positive early endosomes after 5 min of invasion. These data clearly indicate that newly forming T. cruzi phagosomes first interact with an early endosomal compartment and subsequently with other late component markers before lysosomal interaction occurs.  相似文献   

6.
Trypanosoma cruzi, the etiological agent of Chagas' disease, is an obligatory intracellular parasite in the mammalian host. In order to invade a wide variety of mammalian cells, T. cruzi engages parasite components that are differentially expressed among strains and infective forms. Because the identification of putative protein receptors has been particularly challenging, we investigated whether cholesterol and membrane rafts, sterol- and sphingolipid-enriched membrane domains, could be general host surface components involved in invasion of metacyclic trypomastigotes and extracellular amastigotes of two parasite strains with distinct infectivities. HeLa or Vero cells treated with methyl-beta-cyclodextrin (MbetaCD) are less susceptible to invasion by both infective forms, and the effect was dose-dependent for trypomastigote but not amastigote invasion. Moreover, treatment of parasites with MbetaCD only inhibited trypomastigote invasion. Filipin labeling confirmed that host cell cholesterol concentrated at the invasion sites. Binding of a cholera toxin B subunit (CTX-B) to ganglioside GM1, a marker of membrane rafts, inhibited parasite infection. Cell labeling with CTX-B conjugated to fluorescein isothiocyanate revealed that not only cholesterol but also GM1 is implicated in parasite entry. These findings thus indicate that microdomains present in mammalian cell membranes, that are enriched in cholesterol and GM1, are involved in invasion by T. cruzi infective forms.  相似文献   

7.
Human infection with the protozoan Trypanosoma cruzi leads to Chagas disease. After 10-20 years of the normal acute phase, this disease develops to a chronic phase characterized mainly by dilated congestive cardiomyopathy. The mechanisms involved in the chronic phase are poorly understood, and it has been suggested that the parasite evades immune surveillance by down regulating the MHC class I antigen processing pathway. Here we analyzed whether composition or expression of the 20S proteasome, the major proteinase responsible for the generation of MHC class I ligands, were altered upon infection of HeLa cells by T. cruzi. Two-dimensional gel electrophoresis and RT-PCR experiments comparing non-infected and infected cells did not show differences between the composition of 20S proteasome or expression of its subunits. However, the proteasome’s trypsin- and chymotrypsin-like activities were 2.5 and 3.6 times higher in infected cells than in non-infected cells. Our results suggest that in vitroT. cruzi infection of human or rat cells do not alter the expression of 20S proteasomal subunits or particle composition, and fails to induce the formation of immunoproteasome. However, a significant increase in the trypsin- and chymotrypsin-like activities of the host proteasome was observed.  相似文献   

8.
In two murine models we studied Trypanosoma cruzi reinfection in the acute and chronic phase of experimental Chagas' disease in order to elucidate the relevance of reinfections in determining the variability of cardiac symptoms and the irreversible cardiac damage. They were followed for 120 and 600 days post infection (p.i.) for the acute and chronic model, respectively. Reinfected mice reached higher parasitaemia levels than infected mice. The survival was 33 and 21% in the chronic phase for mice reinfected in the acute phase and 13% for mice reinfected in the chronic stage at the end of the experiments. Sixty-six percent of the infected group presented electrocardiographic abnormalities (heart frequency, prolonged PQ segment or QRS complex) in the chronic stage whereas 100% of the reinfected animals exhibited electric cardiac dysfunction since 90 and 390 days p.i. for the acute and chronic reinfected model, respectively (P<0.01). Heart histopathological studies showed fibrosis and necrosis areas and mononuclear infiltrates supporting the view that parasite persistence is a major factor in continuing the tissue inflammation. This work shows that T. cruzi reinfections could be related to the variability and severity of the clinical course of Chagas' disease and that parasite persistence is involved in exacerbation of the disease.  相似文献   

9.
Social environment can represent a major source of stress affecting cortisol and/or corticosterone levels, thereby altering the immune response. We have investigated the effects of social isolation on the development of Trypanosoma cruzi infection in female Calomys callosus, a natural reservoir of this protozoan parasite. Animals were divided in groups of five animals each. The animals of one group were kept together in a single cage. In a second group, four females were kept together in a cage with one male. In the final group, five individuals were kept isolated in private cages. The isolated animals showed body weight reduction, decreased numbers of peritoneal macrophages, lower global leucocytes counts, smaller lytic antibody percentage and a significantly higher level of blood parasites compared to the other animals. Their behavior was also altered. They were more aggressive than grouped females, or females exposed to the presence of a male. These results suggest that isolation creates a distinct social behavior in which immunity is impaired and pathogenesis is enhanced.  相似文献   

10.
Trypanosoma cruzi, the causative agent of Chagas disease, has at least two principal intraspecific subdivisions, T. cruzi I (TCI) and T. cruzi II (TCII), the latter containing up to five subgroups (a-e). Whilst it is known that TCI predominates from the Amazon basin northwards and TCII to the South, where the disease is considered to be clinically more severe, the precise clinical and evolutionary significance of these divisions remains enigmatic. Here, we present compelling evidence of an association between TCI and opossums (Didelphis), and TCII and armadillos, on the basis of key new findings from the Paraguayan Chaco region, together with a comprehensive analysis of historical data. We suggest that the distinct arboreal and terrestrial ecologies, respectively, of these mammal hosts provide a persuasive explanation for the extant T. cruzi intraspecific diversity in South America, and for separate origins of Chagas disease in northern South America and in the southern cone countries.  相似文献   

11.
12.
13.
Nineteen Trypanosoma cruzi stocks, most of them of wild origin, and four Trypanosoma rangeli stocks from Colombia were analysed by molecular karyotype analysis with cloned DNA cruzipain as the probe. Another 27 cloned stocks of T. cruzi from different geographic areas of South America were used as reference for T. cruzi lineages. Phenetic analysis of chromosome size polymorphism demonstrated a great variability of Colombian T. cruzi stocks, suggesting that most belong to lineage I, although two of them belong to lineage II. The 2 lineage II T. cruzi, 17 T. cruzi lineage I, and 3 T. rangeli stocks from Colombia were studied further by Southern blot analysis with a panel of kinetoplast DNA minicircle probes. Hybridisation results indicate that the two T. cruzi II stocks are genetically distant from each other and from T. cruzi lineages IIb, IId, and IIe from Chile. Finally, T. cruzi minicircle probes do not cross-hybridise in any stringency condition tested with T. rangeli minicircles, a clear indication that these parasites can be easily distinguished by this method.  相似文献   

14.
We studied the capacity of macrophage-derived peroxynitrite to diffuse into and exert cytotoxicity against Trypanosoma cruzi, the causative agent of Chagas' disease. In two types of macrophage-T. cruzi co-cultures, one with a fixed separation distance between source and target cells, and another involving cell-to-cell interactions, peroxynitrite resulted in significant oxidation of intracellular dihydrorhodamine and inhibition of [(3)H]thymidine incorporation in T. cruzi, which were not observed by superoxide or nitric oxide alone. The effects were attenuated in the presence of bicarbonate, in agreement with the extracellular consumption of peroxynitrite by its fast reaction with CO(2). However, studies using different T. cruzi densities, which allow to modify average diffusion distances of exogenously added peroxynitrite to target cells, indicate that at distances <5 microm, the diffusion process outcompetes the reaction with CO(2) and that the levels of peroxynitrite formed by macrophages would be sufficient to cause toxicity to T. cruzi during cell-to-cell contact and/or inside the phagosome.  相似文献   

15.
We searched for molecules that selectively inactivate homodimeric triosephosphate isomerase from Trypanosoma cruzi (TcTIM), the parasite that causes Chagas' disease. We found that some benzothiazoles inactivate the enzyme. The most potent were 3-(2-benzothiazolylthio)-propanesulfonic acid, 2-(p-aminophenyl)-6-methylbenzothiazole-7-sulfonic acid, and 2-(2-4(4-aminophenyl)benzothiazole-6-methylbenzothiazole-7-sulfonic acid. Half-maximal inactivation by these compounds was attained with 33, 56, and 8 microM, respectively; in human TIM, half-maximal inactivation required 422 microM, 3.3 mM, and 1.6 mM. In TcTIM, the effect of the benzothiazoles decreased as the concentration of the enzyme was increased. TcTIM has a cysteine (Cys 15) at the dimer interface, whereas human TIM has methionine in that position. In M15C human TIM, the benzothiazole concentrations that caused half-maximal inactivation were much lower than in the wild type. The overall findings suggest that the benzothiazoles perturb the interactions between the two subunits of TcTIM through a process in which the interface cysteine is central in their deleterious action.  相似文献   

16.
The role of amino acids in trypanosomatids goes beyond protein synthesis, involving processes such as differentiation, osmoregulation and energy metabolism. The availability of the amino acids involved in those functions depends, among other things, on their transport into the cell. Here we characterize a glutamate transporter from the human protozoan parasite Trypanosoma cruzi. Kinetic data show a single saturable system with a Km of 0.30 mM and a maximum velocity of 98.34 pmoles min(-1) per 2 x 10(7) cells for epimastigotes and 20 pmoles min(-1) per 2 x 10(7) cells for trypomastigotes. Transport was not affected by parasite nutrient starvation for up to 3h. Aspartate, alanine, glutamine, asparagine, methionine, oxaloacetate and alpha-ketoglutarate competed with the substrate in 10-fold excess concentrations. Glutamate uptake was strongly dependent on pH, but not on Na+ or K+ concentrations in the extracellular medium. These data were consistent with the sensitivity of the system to the H+ ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone, suggesting that transport is driven by H+ concentration gradient across the cytoplasmic membrane. The glutamate transport increased linearly with temperature in a range from 15 to 40 degrees C, allowing the calculation of an activation energy of 52.38 kJ/mol.  相似文献   

17.
WD (tryptophan/aspartic acid) repeat proteins perform a wide variety of functions in eukaryotic cells. They are characterised by the presence of a number of conserved repeat motifs that contribute to the beta-propeller structures which are the common feature of this large group of proteins. We report here the properties of the first characterised member of this family in the American trypanosome, Trypanosoma cruzi (TcBPP1). In the CL Brener clone the protein is 482 amino acids long and is predicted to contain four WD repeat motifs, flanked by amino and carboxyl terminal extensions. TcBPP1 is a single copy gene present on a 1.0/1.6 Mb pair of homologous chromosomes in a locus that is syntenic with the corresponding regions of Trypanosoma brucei and Leishmania major chromosomes. Consistent with the proposed hybrid nature of the CL Brener clone, the proteins encoded by the two different alleles share only 97% identity at the amino acid level. To determine subcellular location, we examined transfected parasites for the distribution of green fluorescent protein (GFP) fused with different regions of TcBPP1. These studies demonstrated that a 115 amino acid peptide derived from the amino terminal domain of TcBPP1 is able to target GFP to the mitochondrion. Interestingly this region lacks a typical amino terminal presequence suggesting that mitochondrial import is mediated by an alternative targeting signal.  相似文献   

18.
In mammalian cells, the Rab7 protein is a key element of late endocytic membrane traffic. Several results suggest that it is involved in the transport from early to late endosome or from late endosome to lysosome. We have previously characterized a Rab7 gene homologue (TcRAB7) in Trypanosoma cruzi. Now, using an affinity-purified antibody specific to TcRAB7 protein we have determined that it is localized at the Golgi apparatus of the parasite. Our results indicate that the T. cruzi Rab7 homologue may function in a different route than its counterparts in mammalian cells.  相似文献   

19.
To verify the influence of some predominant components from indigenous microbiota on systemic immunological responses during experimental Chagas disease, germ-free NIH Swiss mice were mono-associated with Escherichia coli, Enterococcus faecalis, Bacteroides vulgatus or Peptostreptococcus sp. and then infected with the Y strain of Trypanosoma cruzi. All the mono-associations predominantly induced a Th1 type of specific immune response to the infection by T. cruzi. A direct correlation was observed between a higher survival rate and increased IFN-gamma and TNF-alpha production (P<0.05) in E. faecalis-, B. vulgatus-, and Peptostreptococcus-associated mice. Moreover, higher levels of anti-T. cruzi IgG1 and anti-T. cruzi IgG2a were also found in mono-associated animals after infection. On the other hand, with the exception of E. faecalis-associated mice, mono-association induced a lower IL-10 production after infection (P<0.05) when compared with germ-free animals. Interestingly, spleen cell cultures from non-infected germ-free and mono-associated mice spontaneously produced higher levels (P<0.05) of IL-10 than cultures from infected mono-associated mice, except again for E. faecalis-associated animals. In conclusion, the presence of the components of the indigenous microbiota skews the immune response towards production of inflammatory cytokines during experimental infection with T. cruzi in gnotobiotic mice. However, the degree of increase in production of cytokines depends on each bacterial component.  相似文献   

20.
A few days after blood meal the number of bacteria in the anterior midgut (stomach) of Rhodnius prolixus, a vector of Trypanosoma cruzi, the causative agent of Chagas' disease, increases dramatically. Many of the bloodstream trypomastigotes of the pathogenic protozoan as well as ingested erythrocytes are lysed in the stomach. Incubation of T. cruzi with Serratia marcescens variant SM365, lead to parasite lysis. In the present study, this bacterium rapidly adhered to the protozoan surface through d-mannose recognizing fimbriae and rapidly induced its complete lysis. In contrast, the DB11 variant of the same bacterial species did not adhere and did not induce protozoan lysis. Scanning and transmission electron microscopy revealed that following bacteria-protozoan attachment there is an assembly of long filamentous structures, identified as a biofilm, which connect the protozoan to the bacteria forming bacterial clusters. We conclude that parasite lysis and biofilm formation mechanisms are important for understanding parasite-microbiota interactions in the gut of insect vectors of trypanosomatids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号