首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amino acid composition of human alcohol dehydrogenase (ADH) was compared with alcohol dehydrogenases from different organisms and with other proteins. Similar amino acid sequences in human ADH (template protein) and in other proteins were determined by means of an original computer program. Analysis of amino acid motifs reveals that the ADHs from evolutionary more close organisms have more common amino acid sequences. The quantity measure of amino acid similarity was the number of similar motifs in analyzed protein per protein length. This value was measured for ADHs and for different proteins. For ADHs, this quotient was higher than for proteins with different functions; for vertebrates it correlated with evolutionary closeness. The similar operation of motif comparison was made with the help of program complex “MEME”. The analysis of ADHs revealed 4 motifs common to 6 of 10 tested organisms and no such motifs for proteins of different function. The conclusion is that general amino composition is more important for protein function than amino acid order and for enzymes of similar function it better correlates with evolutionary distance between organisms.  相似文献   

2.
Database including 392 homologous pairs of proteins from thermophilic and mesophilic organisms was created. Using this database we have found that proteins from termophilic organisms contain more atom-atom contacts per residue in comparison with mesophilic homologues. Contribution to increase of the number of contacts gives exterior amino acid residues, accessible for the solvent. Amino acid composition of interior, inaccessible for the solvent, and exterior amino acid residues of proteins from thermophilic and mesophilic organisms were analyzed. We have obtained that exterior residues of proteins from thermophilic organisms contain more such amino acid residues as Lys, Arg and Glu and smaller such amino acid residues as Ala, Asp, Asn. Gln, Ser, and Thr in comparison with proteins from mesophilic organisms. Amino acid compositions of interior residues of considered proteins are not different.  相似文献   

3.
Archaea, bacteria and eukaryotes represent the main kingdoms of life. Is there any trend for amino acid compositions of proteins found in full genomes of species of different kingdoms? What is the percentage of totally unstructured proteins in various proteomes? We obtained amino acid frequencies for different taxa using 195 known proteomes and all annotated sequences from the Swiss-Prot data base. Investigation of the two data bases (proteomes and Swiss-Prot) shows that the amino acid compositions of proteins differ substantially for different kingdoms of life, and this difference is larger between different proteomes than between different kingdoms of life. Our data demonstrate that there is a surprisingly small selection for the amino acid composition of proteins for higher organisms (eukaryotes) and their viruses in comparison with the "random" frequency following from a uniform usage of codons of the universal genetic code. On the contrary, lower organisms (bacteria and especially archaea) demonstrate an enhanced selection of amino acids. Moreover, according to our estimates, 12%, 3% and 2% of the proteins in eukaryotic, bacterial and archaean proteomes are totally disordered, and long (> 41 residues) disordered segments are found to occur in 16% of arhaean, 20% of eubacterial and 43% of eukaryotic proteins for 19 archaean, 159 bacterial and 17 eukaryotic proteomes, respectively. A correlation between amino acid compositions of proteins of various taxa, show that the highest correlation is observed between eukaryotes and their viruses (the correlation coefficient is 0.98), and bacteria and their viruses (the correlation coefficient is 0.96), while correlation between eukaryotes and archaea is 0.85 only.  相似文献   

4.
The metabolic cycle of Saccharomyces cerevisiae consists of alternating oxidative (respiration) and reductive (glycolysis) energy-yielding reactions. The intracellular concentrations of amino acid precursors generated by these reactions oscillate accordingly, attaining maximal concentration during the middle of their respective yeast metabolic cycle phases. Typically, the amino acids themselves are most abundant at the end of their precursor’s phase. We show that this metabolic cycling has likely biased the amino acid composition of proteins across the S. cerevisiae genome. In particular, we observed that the metabolic source of amino acids is the single most important source of variation in the amino acid compositions of functionally related proteins and that this signal appears only in (facultative) organisms using both oxidative and reductive metabolism. Periodically expressed proteins are enriched for amino acids generated in the preceding phase of the metabolic cycle. Proteins expressed during the oxidative phase contain more glycolysis-derived amino acids, whereas proteins expressed during the reductive phase contain more respiration-derived amino acids. Rare amino acids (e.g., tryptophan) are greatly overrepresented or underrepresented, relative to the proteomic average, in periodically expressed proteins, whereas common amino acids vary by a few percent. Genome-wide, we infer that 20,000 to 60,000 residues have been modified by this previously unappreciated pressure. This trend is strongest in ancient proteins, suggesting that oscillating endogenous amino acid availability exerted genome-wide selective pressure on protein sequences across evolutionary time. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Benjamin L. de Bivort and Ethan O. Perlstein have contributed equally to this work.  相似文献   

5.
H Nakashima  K Nishikawa  T Ooi 《Proteins》1990,8(2):173-178
A compact mitochondrial gene contains all essential information about the synthesis of mitochondrial proteins which play their roles in a small compartment of the mitochondrium. Almost no noncoding regions have been found through the gene, but a necessary set of tRNAs for the 20 amino acids is provided for biosynthesis, some of them coding different amino acids from those in a usual cell. Since the gene is so compact that the produced proteins would have some characteristic aspects for the mitochondrium, amino acid compositions of mitochondrial proteins (mt-proteins) were examined in the 20-dimensional composition space. The results show that compositions of proteins translated from the mitochondrial genes have a distinct character having more hydrophobic content than others, which is illustrated by a clustered distribution in the multidimensional composition space. The cluster is located at the tail edge of the global distribution pattern of a Gaussian shape for other various kinds of proteins in the space. The mt-proteins are rich in hydrophobic amino acids as is a membrane protein, but are different from other membrane proteins in a lesser content of Val. A good correlation found between the base and amino acid compositions for the mitochondria was examined in comparison to those of organisms such as thermophilic bacterium having an extreme G-C-rich base composition.  相似文献   

6.
One of the well-known observations of proteins from thermophilic bacteria is the bias of the amino acid composition in which charged residues are present in large numbers, and polar residues are scarce. On the other hand, it has been reported that the molecular surfaces of proteins are adapted to their subcellular locations, in terms of the amino acid composition. Thus, it would be reasonable to expect that the differences in the amino acid compositions between proteins of thermophilic and mesophilic bacteria would be much greater on the protein surface than in the interior. We performed systematic comparisons between proteins from thermophilic bacteria and mesophilic bacteria, in terms of the amino acid composition of the protein surface and the interior, as well as the entire amino acid chains, by using sequence information from the genome projects. The biased amino acid composition of thermophilic proteins was confirmed, and the differences from those of mesophilic proteins were most obvious in the compositions of the protein surface. In contrast to the surface composition, the interior composition was not distinctive between the thermophilic and mesophilic proteins. The frequency of the amino acid pairs that are closely located in the space was also analyzed to show the same trend of the single amino acid compositions. Interestingly, extracellular proteins from mesophilic bacteria showed an inverse trend against thermophilic proteins (i.e. a reduced number of charged residues and rich in polar residues). Nuclear proteins from eukaryotes, which are known to be abundant in positive charges, showed different compositions as a whole from the thermophiles. These results suggest that the bias of the amino acid composition of thermophilic proteins is due to the residues on the protein surfaces, which may be constrained by the extreme environment.  相似文献   

7.
Amino acid compositions of simian virus 40 structural proteins   总被引:3,自引:0,他引:3  
The structural proteins of purified SV40 particles were isolated by preparative polyacrylamide gel electrophoresis and the amino acid composition of each protein was obtained. The amino acid composition of VP1 (the major coat protein) was significantly different to that of VP3 (the capsid protein most closely associated with SV40 DNA). The amino acid compositions of VP4, VP5 and VP6 indicated that these proteins were not exclusively histones.  相似文献   

8.
An approach to identify fragments produced from proteins of known sequence, based on their amino acid composition, is described. A BASIC computer program (SEARCH) was used to quantitate the degree of relatedness between an experimentally determined amino acid composition and theoretical test peptide compositions calculated from a protein of known amino acid sequence. This computerized approach provides a rapid and objective identification of autolytic peptide fragments produced from thermolysin. Three different types composition indexes were compared with respect to their value versus the number of sequence differences between experimental and test compositions. The difference index was found to show a linear relationship and the lowest level of variability in this regard. On the basis of this comparison, we conclude that the difference index is the most reliable indicator of peptide fragment identity.  相似文献   

9.
Gu W  Zhou T  Ma J  Sun X  Lu Z 《Bio Systems》2004,73(2):89-97
The role of silent position in the codon on the protein structure is an interesting and yet unclear problem. In this paper, 563 Homo sapiens genes and 417 Escherichia coli genes coding for proteins with four different folding types have been analyzed using variance analysis, a multivariate analysis method newly used in codon usage analysis, to find the correlation between amino acid composition, synonymous codon, and protein structure in different organisms. It has been found that in E. coli, both amino acid compositions in differently folded proteins and synonymous codon usage in different gene classes coding for differently folded proteins are significantly different. It was also found that only amino acid composition is different in different protein classes in H. sapiens. There is no universal correlation between synonymous codon usage and protein structure in these two different organisms. Further analysis has shown that GC content on the second codon position can distinguish coding genes for different folded proteins in both organisms.  相似文献   

10.
The influence of dipeptide composition on protein thermostability   总被引:5,自引:0,他引:5  
Ding Y  Cai Y  Zhang G  Xu W 《FEBS letters》2004,569(1-3):284-288
In this work, the influence of dipeptide composition on protein thermostability was studied. After comparing the normalized dipeptide composition between mesophilic proteins and (hyper)thermophilic proteins, we concluded that when organism optimal growth temperature increased, for archaeal proteins, the compositions of VK, KI, YK, IK, KV, KY, and EV increased significantly and the compositions of DA, AD, TD, DD, DT, HD, DH, DR, and DG decreased significantly; and for bacterial proteins, the compositions of KE, EE, EK, YE, VK, KV, KK, LK, EI, EV, RK, EF, KY, VE, KI, KG, EY, FK, KF, FE, KR, VY, MK, WK, and WE increased significantly and the compositions of WQ, AA, QA, MQ, AW, QW, QQ, RQ, QH, HQ, AD, AQ, WL, QL, HA, and DA decreased significantly. So these characteristic dipeptides are correlative to protein thermostability. At the same time, the influence of single amino acid composition on protein thermostability was also studied for comparison. We found that the influence of single amino acid composition could be deduced from the influence of dipeptide composition. So we thought that the influence of dipeptide composition on protein thermostability is larger than the influence of amino acid composition. The characteristic dipeptides not only describe the dipeptides that influence protein thermostability significantly but also show the relationship among significant single amino acids that influence protein thermostability.  相似文献   

11.
Two glycoproteins bands isolated from the cyst wall protein pattern of two colpodid ciliates, Colpoda inflata (gp46CI) and Colpoda cucullus (gp46CC) were analysed for their amino acid composition. Both glycoproteins are very rich in glycine and have a relatively high hydrophobicity, containing additionally many leucine and alanine residues. Their high degree of similarity is both quantitative and qualitative. Compared with just two previously published reports, their amino acid compositions are similar to those found in the hydrolysed cyst wall total proteins from the ciliates C. steinii and Paraurostyla spp. The amino acid composition corroborates that they are indeed glycoproteins, because asparagine, an amino acid residue suitable for the attachment to N-acetylglucosamine by its amide group (N-glycan), is abundant in both proteins. We discuss our data in relation to other glycine-rich proteins and a comparison with amino acid composition protein databases is carried out.  相似文献   

12.
Sato Y  Nishida M 《Gene》2009,441(1-2):3-11
Previous studies of protein evolution have identified important mutations in various proteins that affect a small number of residues, but dramatically alter protein function. However, the evolutionary process underlying the three-dimensional protein properties, which are determined by a much larger number of residues, remains unclear. Based on a comparative evolutionary analysis of teleost phosphoglucose isomerases (PGIs; EC 5.3.1.9), we previously demonstrated that the relatively weak selection on many amino acid sites has played an important role in the evolution of protein electric charge as a model of three-dimensional protein properties. To ascertain the generality of this finding, we sought further evidence of this type of protein evolution. For this purpose, we analyzed the vertebrate isoforms of fructose-1,6-bisphosphate aldolase (ALD; EC 4.1.2.13), for which electric charges are known to have diverged after gene duplication. The results showed that the divergence in electric charge between the ALD isoforms was also driven by weak selection on many amino acid sites, as in PGI, confirming the generality of earlier findings. To obtain further insights, ALD and PGI were compared to the proteins pancreatic ribonuclease (EC 3.1.27.5) and triose-phosphate isomerase (EC 5.3.1.1), for which electric charges likely evolved through a well-defined mode of molecular evolution; namely, strong selection on specific amino acid sites. Comparison of the number and composition of amino acids on the protein surface suggested that the absolute number of evolutionarily changeable amino acids in a protein affects the strength of selection pressure acting on individual amino acid sites.  相似文献   

13.
Lee S  Lee BC  Kim D 《Proteins》2006,62(4):1107-1114
Knowing protein structure and inferring its function from the structure are one of the main issues of computational structural biology, and often the first step is studying protein secondary structure. There have been many attempts to predict protein secondary structure contents. Previous attempts assumed that the content of protein secondary structure can be predicted successfully using the information on the amino acid composition of a protein. Recent methods achieved remarkable prediction accuracy by using the expanded composition information. The overall average error of the most successful method is 3.4%. Here, we demonstrate that even if we only use the simple amino acid composition information alone, it is possible to improve the prediction accuracy significantly if the evolutionary information is included. The idea is motivated by the observation that evolutionarily related proteins share the similar structure. After calculating the homolog-averaged amino acid composition of a protein, which can be easily obtained from the multiple sequence alignment by running PSI-BLAST, those 20 numbers are learned by a multiple linear regression, an artificial neural network and a support vector regression. The overall average error of method by a support vector regression is 3.3%. It is remarkable that we obtain the comparable accuracy without utilizing the expanded composition information such as pair-coupled amino acid composition. This work again demonstrates that the amino acid composition is a fundamental characteristic of a protein. It is anticipated that our novel idea can be applied to many areas of protein bioinformatics where the amino acid composition information is utilized, such as subcellular localization prediction, enzyme subclass prediction, domain boundary prediction, signal sequence prediction, and prediction of unfolded segment in a protein sequence, to name a few.  相似文献   

14.
A novel sequence-analysis technique for detecting correlated amino acid positions in intermediate-size protein families (50-100 sequences) was developed, and applied to study voltage-dependent gating of potassium channels. Most contemporary methods for detecting amino acid correlations within proteins use very large sets of data, typically comprising hundreds or thousands of evolutionarily related sequences, to overcome the relatively low signal-to-noise ratio in the analysis of co-variations between pairs of amino acid positions. Such methods are impractical for voltage-gated potassium (Kv) channels and for many other protein families that have not yet been sequenced to that extent. Here, we used a phylogenetic reconstruction of paralogous Kv channels to follow the evolutionary history of every pair of amino acid positions within this family, thus increasing detection accuracy of correlated amino acids relative to contemporary methods. In addition, we used a bootstrapping procedure to eliminate correlations that were statistically insignificant. These and other measures allowed us to increase the method's sensitivity, and opened the way to reliable identification of correlated positions even in intermediate-size protein families. Principal-component analysis applied to the set of correlated amino acid positions in Kv channels detected a network of inter-correlated residues, a large fraction of which were identified as gating-sensitive upon mutation. Mapping the network of correlated residues onto the 3D structure of the Kv channel from Aeropyrum pernix disclosed correlations between residues in the voltage-sensor paddle and the pore region, including regions that are involved in the gating transition. We discuss these findings with respect to the evolutionary constraints acting on the channel's various domains. The software is available on our website  相似文献   

15.
The negative correlation between the frequencies of usage of amino acids and their biosynthetic cost suggests that organisms minimize costs of protein biosynthesis. Empirical results support that: (1) free-living organisms (Archaea, Bacteria, and Eucaryota) minimize the usage of heavy amino acids more than intracellular organisms (viruses, chloroplasts, and mitochondria), a result confirmed by comparing intracellular Bacteria with other Bacteria; (2) avoidance of amino acids with low impact on protein structure (Chou-Fasman indices) is greater than for those with equal molecular weight but greater structural impact: constraints on protein function limit cost-minimization; (3) amino acid weight minimization (WM) for a protein correlates positively with the protein's expression level and with its size; (4) preliminary results suggest that for different proteins, the evolutionary rate of amino acid replacements correlates negatively with WM in these proteins; (5) results suggest that WM decreases with genome-size; and (6) developmental rates correlate positively with WM (within primates and rodents), even after confounding factors were accounted for. Effects of biosynthetic cost-minimization at whole-organism levels vary with metabolic and ecological strategies. Biosynthetic cost-minimization is an adaptive hypothesis that yields a semi-mechanistic explanation for small differences in allele fitness.  相似文献   

16.
Despite differences in behaviors and living conditions, vertebrate organisms share the great majority of proteins, often with subtle differences in amino acid sequence. Here, we present a simple way to analyze the difference in amino acid occurrence by comparing highly homologous proteins on a subproteome level between several vertebrate model organisms. Specifically, we use this method to identify a pattern of amino acid conservation as well as a shift in amino acid occurrence between homeotherms (warm-blooded species) and poikilotherms (cold-blooded species). Importantly, this general analysis and a specific example further establish a broad correlation, if not likely connection between the thermal adaptation of protein sequences and two of their physical features: on average a change in their protein dynamics and, even more strongly, in their solvation. For poikilotherms, such as frog and fish, the lower body temperature is expected to increase the protein–protein interaction due to a decrease in protein internal dynamics. In order to counteract the tendency for enhanced binding caused by low temperatures, poikilotherms enhance the solvation of their proteins by favoring polar amino acids. This feature appears to dominate over possible changes in dynamics for some proteins. The results suggest that a general trend for amino acid choice is part of the mechanism for thermoadaptation of vertebrate organisms at the molecular level.  相似文献   

17.
Sorimachi K 《Amino acids》2002,22(1):55-69
Summary. The free amino acid compositions in archaeobacteria, eubacteria, protozoa, blue-green alga, green alga, slime mold, plants and mammalian cells were analyzed, to investigate whether changes in their free amino acid compositions reflect biological evolution. Cell homogenates were treated with 80–90% ethanol to separate cellular proteins and free amino acids contained in the cells. Different patterns of the free amino acid compositions were observed in the various organisms. Characteristic differences were observed between plant and mammalian cells, and between archaeobacteria and eubacteria. The patterns of the free amino acid composition in blue-green alga, green alga, protozoa and slime mold differed from each other and from those of eubacteria and archaeobacteria. Rat hepatoma cells (R-Y121B) were cultured in Eagle's minimum essential medium (MEM) containing 5% serum or in a modified MEM lacking arginine, tyrosine and glutamine. No significant difference in the free amino acid composition was observed between the two cell groups cultured under two different conditions. It is suggested that the free amino acid composition reflects apparent biological changes as the result of evolution. Received July 5, 2000 Accepted July 31, 2001  相似文献   

18.
Fraction 1 protein of spinach and tobacco leaves was purifiedby Sephadex G-200 and DEAE-cellulose column chromatography.Immunological comparison of purified preparations of these proteinswas carried out with precipitin analysis using an antiserumof tobacco fraction 1 protein. Two different antigenic activitieswere found in tobacco fraction 1 protein, of which one was commonlyfound in the spinach protein and the other was specific to tobaccofraction 1 protein. The immunological results suggest that fraction 1 protein iscomposed of at least two different structures, one of whichis common to both spinach and tobacco proteins and the otherof which is specific to each of these proteins. This was confirmedfrom a chemical experiment. Fraction 1 protein was divided intolarge and small polypeptide components by sodium dodecyl sulfatetreatment and subsequent Sephadex G-100 column chromatography,then the amino acid compositions of each polypeptide of theseproteins were compared. The amino acid composition of the smallpolypeptide of spinach was different from that of tobacco, whileamino acid compositions of the large polypeptides of those proteinswere similar to each other. (Received July 1, 1968; )  相似文献   

19.
We have examined the merits of the three functions based on amino acid compositions which have been proposed to indicate the similarity in amino acid sequences of two proteins; the difference index, the composition divergence and the composition coefficient. We have taken the amino acid compositions and sequences of 41 cytochrome c's and used the 820 values from all possible comparisons in the evaluation. We conclude that the functions do have a limited value in predicting proteins which are closely related in sequence and that the three functions are equivalent in this predictive ability. We have used the composition divergence values obtained from available pyruvate kinase amino acid compositions to generate a phylogenetic tree for this glycolytic enzyme.  相似文献   

20.
A comparison is made between orthologous proteins from a methanogen (Methanopyrus kandleri) and from a non-methanogen (Pyrococcus abyssi) in order to determine the amino acid substitution pattern. This analysis makes it possible to establish which amino acids are significantly and asymmetrically utilised by these two organisms. A methanophily index (MI) based on this asymmetry makes it possible for any protein to be associated with a numerical value which, when calculated for the same orthologous protein from methanogenic and non-methanogenic organisms, turns out to have the power to discriminate between these two groups of organisms, even if only for about 20% of the analysed proteins. The MI can also be associated to the genetic code under the assumption that the frequency of synonymous codons specifying the amino acids in the genetic code also reflects the frequency with which amino acids appeared in ancestral proteins. Finally a t-test shows that the MI value associated to the genetic code is not different from the mean value of the MI deriving from methanogen proteins, but it differs from the mean MI of non-methanogen proteins. This might indicate that the genetic code evolved in a methanogenic ‘organism’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号