首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
2.
A synthetic diet preparation supplemented with 10% by weight of either safflower oil, hydrogenated coconut oil containing 3% safflower oil, or 'max EPA' fish oil was fed to rats over a 8-week period. Serial measurements of serum fatty acids, serum thromboxane B2 and urinary prostaglandin excretion were taken during the treatment period to assess the rate of change in fatty acid composition and prostaglandin synthesis following dietary manipulation. There was no significant change in weight gain between the dietary groups during the treatment period. Significant changes in serum fatty acids occurred within 48 h of treatment, with the 'max EPA' oil group having arachidonic acid levels reduced by 23% (P less than 0.01) compared to the coconut oil group. Conversely, rats fed safflower oil had an 18% enhancement of arachidonic acid during the same time period. Whole blood synthesis of thromboxane B2 was significantly depressed (P less than 0.01) after 48 h in rats fed 'max EPA' oil compared to the safflower oil or coconut oil groups. This suppression reached a maximum of 65% (P less than 0.001) after 7 days of dietary 'max EPA' oil treatment. The safflower oil and coconut oil-fed groups showed the same levels of serum thromboxane B2 production over the treatment period. Urinary excretion of both 6-ketoprostaglandin F1 alpha and prostaglandin E2 varied significantly (P less than 0.01) between the groups after 7 days of dietary treatment. Rats fed 'max EPA' oil had depressed urinary prostanoid excretion compared to the safflower and coconut oil groups which remained very similar to each other. After the 8-week treatment period rats were killed and the phospholipid fatty acid composition and prostaglandin-generating capacity of platelets, aorta and renal tissue was examined. Prostanoid production by kidney cortex and medulla and segments of aorta was consistently suppressed in rats fed 'max EPA' oil. These observations correlated well with changes in the phospholipid fatty acid profiles in these tissues. This study shows rapid changes in serum fatty acids and thromboxane B2 generation following dietary manipulation, while changes in urinary excretion or prostanoid metabolites occur only after a longer time period.  相似文献   

3.
Rats were fed from conception till adulthood either with normal rat chow with a linoleic (LA) to linolenic acid (LNA) ratio of 8.2:1 or a rat chow supplemented with a mixture of perilla and soy bean oil giving a ratio of LA to LNA of 4.7:1. Fat content of the feed was 5%. Fatty acid and molecular species composition of ethanolamine phosphoglyceride was determined. Effect of this diet on gene expression was also studied. There was an accumulation of docosahexaenoic (DHA) and arachidonic acids (AA) in brains of the experimental animals. Changes in the ratio sn-1 saturated, sn-2 docosahexaenoic to sn-1 monounsaturated, sn-2 docosahexaenoic were observed. Twenty genes were found overexpressed in response to the 4.7:1 mixture diet and four were found down-regulated compared to normal rat chow. Among them were the genes related to energy household, lipid metabolism and respiration. The degree of up-regulation exceeded that observed with perilla with a ratio of LA to LNA 8.2:1 [Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 2619]. It was concluded that brain sensitively reacts to the fatty acid composition of the diet. It was suggested that alteration in membrane architecture and function coupled with alterations in gene expression profiles may contribute to the observed beneficial impact of n-3 type polyunsaturated fatty acids on cognitive functions.  相似文献   

4.
Inflamed rats with adjuvant-induced polyarthritis showed similar incorporation of dietary eicosapentaenoic acid (EPA) into peritoneal exudate cell (PEC) membrane phospholipids compared to pair fed non-inflamed control rats. Arachidonic acid (AA) content was similar in PEC phospholipids of inflamed and control rats whereas the linoleic acid content was consistently higher in inflamed rats.  相似文献   

5.
The quantity of translatable fatty acid synthetase mRNA in liver of rats subjected to different hormonal states was determined with a rabbit reticulocyte lysate cell-free translation system. Both membrane-free polysomal and total cellular poly (A)-containing RNA were translated. The level of translatable fatty acid synthetase mRNA was 11-fold or more lower in livers of diabetic rats than in similar animals treated with insulin. In contrast, both glucagon and dibutyl cyclic AMP caused a 3-fold reduction over controls in the amount of translatable fatty acid synthetase mRNA in livers of animals refed a fat-free diet for 12 hr. These changes are consistent with the previously reported alterations in the relative rates of fatty acid synthetase synthesis measured in vivo. This suggests that the changes in the amount of fatty acid synthetase that occur in liver in response to the above hormonal changes are primarily due to changes in the amount of mRNA coding for this enzyme.  相似文献   

6.
Rats were fed diets devoid of (n-3) fatty acids (olive oil supplementation) or high in (n-3) fatty acids (fish oil supplementation) for a period of 10 days. In spleen lymphocytes and liver microsomes derived from animals fed fish oil diets, relatively high levels of (n-3) eicosapentaenoic (20:5), docosapentaenoic (22:5) and docosahexaenoic acids (22:6) were obtained compared to minimal levels when fed the olive oil diet. When the average lipid motional properties were examined by measuring the fluorescence anisotropy of diphenylhexatriene, no significant different was found between intact liver microsomes from animals fed the two diets. However, when lipid motion was examined in vesicles of phosphatidylcholine, isolated from the microsomes from fish oil fed animals (21.4% (n-3) fatty acids), the fluorescence anisotropy was significantly less than the corresponding phosphatidylcholine from olive oil fed animals (5.6% (n-3) fatty acids), indicating a more disordered or fluid bilayer in the presence of higher levels of (n-3) fatty acids. Phosphatidylethanolamine (n-3) fatty acids were also elevated after fish oil supplementation (41.3% of total fatty acids), compared to the level after olive oil supplementation (21.4%). The major effect of the fish oil supplementation was a replacement of (n-6) arachidonic acid by the (n-3) fatty acids and when this was 'modeled', using liposomes of synthetic lipids, 1-palmitoyl-2-arachidonyl(n-6) or docosahexaenoyl(n-3)-phosphatidylcholine, significant differences in lipid motional properties were found, with the docosahexaenoate conferring a more disordered or fluid lipid environment. Thus it appears that although lipid order/fluidity can be significantly decreased by increases in the highly unsaturated (n-3) fatty acid levels, alterations in membrane domain organization and/or phospholipid molecular species composition effectively compensated for the changes, at least as far as average lipid motional properties in the intact membranes was concerned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号