首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Phytolith analysis of grasses is a useful tool in palaeoenvironmental and archaeobotanical research. Lobate phytolith is one of the most important morphotypes of grass phytoliths. This study describes morphological variations of diagnostic lobate phytoliths and produces a tentative classification scheme based on 250 modern grass species from China and the south‐eastern U.S.A. Eighty‐five grass species were found to contain lobate phytoliths. They are derived mainly from Panicoideae, but also include the Chloridoideae, Oryzoideae and Arundinoideae subfamilies. Twenty‐five lobate morphological types were observed from different subfamilies, genera or tribes of grasses, based on two important parameters: (1) the length of the lobate shank and (2) the shape of the outer margin of the two lobes. The identification of grass tribe or even genus is possible based on the differences in lobate shape parameters or the composition of assemblages. However, not all of the lobate assemblages have a definite relationship with the genera that produce them, because grasses can only produce a limited range of lobate shapes that often overlap from one genus to another. Several C3 grasses and Chloridoideae subfamily grasses also produce characteristic lobate phytoliths. The variations of lobate morphologies can be related to environmental factors, especially moisture. Typical hygrophytic grasses tend to yield lobate phytoliths with very short shank, whereas typical xerophytic grasses tend to produce lobate phytoliths with a very long shank. The potential link between phytolith morphology, grass taxonomy and environmental conditions opens the possibility that phytolith morphology may be used as a proxy in palaeoclimatic reconstruction.  相似文献   

2.
In the present study, taxonomic potential of opal phytoliths was examined in grasses from lower Gangetic delta, West Bengal, India. The study revealed that finer classification of phytoliths can increase the efficacy of opal silica as taxonomic proxy by minimizing the influences of multiplicity and redundancy. We isolated 187 phytolith sub‐morphotypes, categorized under 10 major groups, from 110 grass species belonging to 45 genera, 21 sub‐tribes, 13 tribes and 7 subfamilies. Cluster and correspondence analyses showed that all the significantly represented subfamilies can be clearly distinguished on the basis of either principal morphotypes or sub‐morphotypes. However, genus/species level discrimination may only be possible by deploying phytolith based identification key developed by utilizing detailed grass phytolith micro‐morphometry and frequency attributes. We conclude that grass phytolith characteristics provide useful and significant information for distinguishing grass taxa of deltaic West Bengal.  相似文献   

3.
The arrival of hipparionine horses in the eastern Mediterranean region around 11 Ma was traditionally thought to mark the simultaneous westward expansion of savanna vegetation across Eurasia. However, recent paleoecological reconstructions based on tooth wear, carbon isotopes, and functional morphology indicate that grasses played a minor role in Late Miocene ecosystems of the eastern Mediterranean, which were more likely dry woodlands or forests. The scarcity of grass macrofossils and pollen in Miocene floras of Europe and Asia Minor has been used to support this interpretation. Based on the combined evidence, it has therefore been suggested that Late Miocene ungulate faunal change in the eastern Mediterranean signals increased aridity and landscape openness, but not necessarily the development of grass-dominated habitats.

To shed new light on the Miocene evolution of eastern Mediterranean ecosystems, we used phytolith assemblages preserved in direct association with faunas as a proxy for paleovegetation structure (grassland vs. forest). We extracted phytoliths and other biogenic silica from sediment samples from well-known Early to Late Miocene ( 20–7 Ma) faunal localities in Greece, Turkey, and Iran. In addition, a Middle Eocene sample from Turkey yielded phytoliths and served as a baseline comparison for vegetation inference.

Phytolith analysis showed that the Middle Eocene assemblage consists of abundant grass phytoliths (grass silica short cells) interpreted as deriving from bambusoid grasses, as well as diverse forest indicator phytoliths from dicotyledonous angiosperms and palms, pointing to the presence of a woodland or forest with abundant bamboos. In contrast, the Miocene assemblages are dominated by diverse silica short cells typical of pooid open-habitat grasses. Forest indicator phytoliths are also present, but are rare in the Late Miocene (9–7 Ma) assemblages. Our analysis of the Miocene grass community composition is consistent with evidence from stable carbon isotopes from paleosols and ungulate tooth enamel, showing that C4 grasses were rare in the Mediterranean throughout the Miocene. These data indicate that relatively open habitats had become common in Turkey and surrounding areas by at least the Early Miocene ( 20 Ma), > 7 million years before hipparionine horses reached Europe and arid conditions ensued, as judged by faunal data.  相似文献   


4.
C4 grasses constitute the main component of savannas and are pervasive in other dry tropical ecosystems where they serve as the main diet for grazing animals. Among potential factors driving C4 evolution of grasses, the interaction between grasses and grazers has not been investigated. To evaluate if increased grazing pressure may have selected for higher leaf silica production as the grasses diverged, we reconstructed the phylogeny of all 800 genera of the grass family with both molecular (combined multiplastid DNA regions) and morphological characters. Using molecular clocks, we also calculated the age and number of origins of C4 clades and found that shifts from C3 to C4 photosynthesis occurred at least 12 times starting 30.9 million years ago and found evidence that the most severe drop in atmospheric carbon dioxide in the late Oligocene (between 33 and 30 million years ago) matches the first origin of C4 photosynthesis in Chloridoideae. By combining fossil and phylogenetic data for ungulates and implementing a randomization procedure, our results showed that the appearance of C4 grass clades and ungulate adaptations to C4-dominated habitats match significantly in time. An increase of leaf epidermal density of silica bodies was found to correspond to postulated shifts in diversification rates in the late Miocene [24 significant shifts in diversification ( P <0.05) were detected between 23 and 3.7 million years ago]. For aristidoid and chloridoid grasses, increased grazing pressure may have selected for a higher leaf epidermal silica production in the late Miocene.  相似文献   

5.
Due to the immense ecological and economic significance of grasses, their highly characteristic long–short epidermal patterning and associated silica phytoliths represent significant diagnostic markers in studies of ancient climate change and agriculture. We explore the link between epidermal cell patterning and phytolith development and review the evolutionary history of phytoliths in the context of recent well-resolved phylogenetic analyses of grasses and allied Poales, focusing on early-divergent grasses and the subfamilies that constitute the BEP group (the bamboos and their allies). Dimorphic epidermal patterning is a common feature of Poaceae and the related family Joinvilleaceae, where phytoliths are located primarily in the short cells. However, Joinvillea lacks the short-cell pairs that occur in many grasses. The costal rows of phytoliths that characterize some grasses could represent loss of long–short cell patterning over the veins. Unlobed phytoliths probably represent the ancestral condition in grasses, though bilobate phytoliths evolved at an early stage. Either transverse-unlobed or transverse-bilobate phytoliths predominate in the early-divergent lineages, whereas axial-bilobates (or polylobates) primarily characterize the PACMAD clade and the BEP subfamily Pooideae.  相似文献   

6.
Herbaceous plants grown with free access to nutrients exhibit inherent differences in maximum relative growth rate (RGR) and rate of nutrient uptake. Measured rates of root respiration are higher in fast-growing species than in slow-growing ones. Fast-growing herbaceous species, however, exhibit lower rates of respiration than would be expected from their high rates of growth and nitrate uptake. We investigated why the difference in root O2 uptake between fast- and slow-growing species is relatively small. Inhibition of respiration by the build-up of CO2 in closed cuvettes, diurnal variation in respiration rates or an increasing ratio of respiratory CO2 release to O2 uptake (RQ) with increasing RGR failed to explain the relatively low root respiration rates in fast-growing grasses. Furthermore, differences in alternative pathway activity can at most only partly explain why the difference in root respiration between fast- and slow-growing grasses is relatively small. Although specific respiratory costs for maintenance of biomass are slightly higher in the fast-growing Dactylis glomerata L. than those in the slow-growing Festuca ovina L., they account for 50% of total root respiration in both species. The specific respiratory costs for ion uptake in the fast-growing grass are one-third of those in the slow-growing grass [0·41 versus 1·22 mol O2 mol (NO3)–1]. We conclude that this is the major cause of the relatively low rates of root respiration in fast-growing grasses.  相似文献   

7.
Phytoliths are microscopic amorphous silicon dioxide (SiO2.H2O) particles occurring in leaves, internodes, glumes and inflorescence within all members of the grass family Poaceae. Phytoliths of grasses are of particular interest, as they possess morphological features which have encouraged many investigators to identify these plants from which fossil phytoliths might have originated. The present study is a step towards preparing a systematic inventory of grass phytoliths in western tropical Africa. Morphology and dimensions of phytoliths from 66 species belonging to the tribe Paniceae have been studied. Four shape categories of lobate phytoliths have been determined in leaf blade spodograms: bilobate, nodular bilobate, polylobate, quadra-lobate. Bilobate shaped phytoliths are frequently represented in all genera of Paniceae. 13 groups of lobate phytoliths have been distinguished based on significant morphological criteria like shape of outer margins, shape of the shank and number of lobes. A size category system of lobate phytolith dimensions (length, width; length and width of shanks) has been developed by the analysis of average, minimum and maximum values of these dimensions. Application of the size category system results on classifying the major groups into 25 subgroups. The study proves that size and shape can be used to assign some of the lobate phytoliths to their respective genera. Some rarely produced lobate shapes like nodular bilobate and polylobate types could be used together on assemblage basis as markers for definite genera in the tribe Paniceae, e.g. Brachiaria, Panicum, Pennisetum and Setaria. Also, bilobate phytoliths with concave margins have been recorded in five species. Bilobate phytoliths with flattened and convex margins and quadra-lobate shapes are produced by almost all species which therefore resulted in an inconsistent and indefinite relationship with the taxa that produce them. The study shows a correlation between width dimensions of bilobate shapes and their shanks. Greater width dimensions usually connected to thick shanks while short ones are attached to thin shanks. A spectrum on percentages of species producing each type of lobate phytolith has been designed. It is recommended that such spectrum should be carried out for all tribes of Poaceae on phyto-geographical basis which might eliminate the effect of redundancy and multiplicity on the classification of grass phytoliths.  相似文献   

8.
A rodent plague on prairie diversity   总被引:4,自引:0,他引:4  
Selective vole ( Microtus pennsylvanicus ) suppression of prairie grasses and forbs in experimental restorations suggests why many of the plants are likely to be uncommon in nature. Vole herbivory reduced densities of legumes and grasses and increased unpalatable forbs in replicated plantings in Illinois: six otherwise common species ( Dalea purpurea , Desmanthus illinoensis , Elymus canadensis , Panicum virgatum , Phalaris arundinacea , Sorghastrum nutans ) declined 27–89% in abundance, whereas two species ( Echinacea purpurea and Rudbeckia hirta ) increased by 61% and 1023%. Species number dropped by 19% and plant diversity (Simpson's D) by 37% in one treatment to which voles had access. Plots were planted with 18 prairie species of the region, but in even distributions of 35 or 350 seeds species−1 m−2, rather than skewed in favour of large C4 grasses common in native remnants. Manipulation of plant composition and vole access revealed what are likely to be formative effects of rodent herbivory on vegetative composition. These experimental tallgrass communities appear to be assembling from plant species that voles prefer not to eat.  相似文献   

9.
The distribution pattern of C3 and C4 grasses was studied in eight sites located between 350 m and 2100 m along an altitudinal gradient in Central Argentina. Of 139 taxa fifty-nine are C3 and eighty C4. Species of the C3 tribes (Stipeae, Poeae, Meliceae, Aveneae, Bromeae and Triticeae) and C3 Paniceae species increase in number at higher elevations; only one C3 species was found below 650 m. C4 Aristideae, Pappophoreae, Eragrostideae, Cynodonteae, Andropogoneae and Paniceae increase at lower altitudes. The floristic crossover point is at about 1500 m; the ground cover cross-over point is at about 1000 m. Analysis of the relationships between % C4 species along the gradient and nine climatic and environmental variables showed the highest correlation with July mean temperature, but all temperature variables show highly significant correlations with % C4. Correlation with annual rainfall is lower but also significant. These results are consistent with previous research showing the relative importance of C4 grasses as temperature increases. C3 species make a high contribution to relative grass coverage below the C3/C4 floristic crossover point but are rare below 1000 m.  相似文献   

10.
We report new information on silica deposition in 15 plant species,including nine grasses, two sedges and four composites. Thesilica depositional patterns found in seven of the grass speciesindicate that they are C4 plants. However the festucoid grassCortaderia selloana is a C3 plant with long leaf trichomes andoval silica structures in the leaves. In contrast the panicoidC4 grasses Chasmathium latifolium, Chasmathium sessiflorum,Imperata cylindrica, Panicum repens, Panicum commutatum andSetaria magna, all produce dumb-bell-shaped silica structuresin the leaves. The chloridoid grasses Spartina patens and Spartinacynosuroides have saddle-shaped structures and no dumb-bellor oval shaped ones. The sedges Rhynchospora plumosa and Scirpuscyperinus were found to have oval phytoliths and may be C3 plants.Our examination of these and other grasses strongly suggeststhat C4 grasses tend to produce the same type of silica cells.Grasses and sedges with C3 type photosynthesis tend to produceoval silica structures. The composite Grindelia squarrosa andsunflowers Helianthus angustifolia, Helianthus atrorubens andHelianthus tuberosus absorb relatively small amounts of siliconand larger amounts of calcium, where both elements deposit inleaf trichomes. We found no clear indicator for the C3 sunflowersor C4 types in the Asteraceae. Helianthus tuberosus leaves havemany trichomes on the adaxial surface. These trichomes havea higher concentration of silica than the surrounding leaf surface.Helianthus tuberosus leaves had much higher ash and silica contentsthan those of Helianthus angustifolia and Helianthus atrorubens.The composite Grindelia squarrosa has a usual deposition ofsilica in the basal cells around the guard cells. Silica depositionoften reflects the surface features of a leaf. An exceptionis Scripus cyperinus where the silica structures are deep inthe tissue and do not reflect the surface configurations. Theinforescence of Setaria magna had a 14.64 silica content. Thetufts of white, silky hairs characteristic of Imperata cylindricainflorescence have no silica. C3 and C4 plants, silica and ash content, scanning electron microscopy, energy-dispersive X-ray analysis, silicon distribution, spectra of elements in plants, trichomes, silica fibres, phytoliths  相似文献   

11.
A 32Si autoradiographic technique using a liquid photographic emulsion was developed for the study of diatom silica deposition in culture or in natural water samples. The method was used in the Central North Pacific to study silica deposition by diatoms of the genus Rhizosolenia. The species examined form centimeter-sized aggregates commonly referred to as mats. The Rhizosolenia mats examined were composed of a matrix of R. fallax Sundström chains, embedded with chains of larger cells, either R. debyana H. Peragallo or R. acuminata H. Peragallo. The autoradiographs revealed distinct rings of labeled intercalary bands and/or labeled valves. A greater proportion of the frustule of the larger species was labeled during the incubations with 32Si, implying higher rates of silicification by R. debyana and R. accuminata compared to R. fallax. A quantitative consideration of these differences in species-specific Si production combined with abundance and surface area estimates for each species indicates that cells of the larger species carry out the majority of silica production in Rhizosolenia mats. The large cell size (pervalvar axis 240 to 3000 μm) and elongate frustule morphology of Rhizosolenia cells enabled us to localize the deposition of silica along the pervalvar axis. Positions of labeled bands along this axis indicate progress through the Si deposition cycle, and the results suggest that cell division is phased, with either a bimodal or unimodal age distribution of cells within the cell cycle for all species in a mat. Species-specific doubling times from 25 to 60 h were implied by the mean fractions of frustule that were labeled. 32Si autoradiography revealed unique species-specific differences in diel patterns of cell division and silica deposition and has potential for studies of Si deposition by other diatom species and assemblages.  相似文献   

12.
1. Silica, deposited as opaline phytoliths in the leaves of grasses, constitutes 2-5% of dry leaf mass, yet its function remains unclear. It has been proposed that silica may act as an antiherbivore defence by increasing the abrasiveness and reducing the digestibility of grass leaves, although there is little direct experimental evidence to support this. 2. We investigated the effects of manipulated silica levels on the abrasiveness of the leaves of five grass species. We also examined the effects of silica levels on the feeding preferences, growth performance and digestion efficiency of two folivorous insects and one phloem-feeding insect. 3. Silica addition resulted in increases to leaf abrasiveness in four of the five grass species studied. Silica addition also deterred feeding by both folivores and reduced their growth rates and digestion efficiency. 4. These effects resulted in lower pupal mass of the lepidopteron larvae Spodoptera exempta and compensatory feeding by the orthopteran, Schistocerca gregaria. In contrast, silica had no effects on the feeding preference or the population growth of the phloem feeder, Sitobion avenae. 5. Our results demonstrate that silica is an effective defence against folivorous insects, both as a feeding deterrent, possibly mediated by increased abrasiveness, and as a digestibility reducer. The effects of silica on pupal mass and development time may impact on herbivore fitness and exposure to natural enemies. 6. These results are the first demonstration of a direct effect of silica on the abrasiveness of grasses and the adverse impact of silica on herbivore preference and performance.  相似文献   

13.
Silica phytoliths in grasses are thought to serve as a defence mechanism against grazing ungulates by causing excessive tooth wear. It is posited that they contributed to the evolution of hypsodonty in these animals. However, some have questioned whether grass phytoliths can abrade enamel. Here Mohs hardness testing was conducted on Blue Grama grass (Bouteloua gracilis) to determine phytolith hardness. Microindentation was performed on horse and American bison molars to establish dental constituent hardness values. To infer the phytoliths' abrasion capacity, the hardness values were contrasted. Phytolith hardness ranged from 18.0 to 191.5 HV. This is considerably softer than the values obtained for ungulate enamel, which range from 332.6 to 363.4 HV, but harder than the other dental constituents. Although Blue Grama phytoliths are incapable of directly abrading enamel, when viewed in conjunction with other data on phytolith hardness, there is considerable variation across grass species and some phytoliths are actually harder than ungulate enamel. Blue Grama grass phytoliths may even promote enamel wear due to pressure accentuation caused by the recession of softer tissues. Given these findings and considerations, it is plausible phytoliths served an integral role in the co-evolution of grasses and herbivorous ungulates, although more testing is needed to bear this out.  相似文献   

14.
Second-generation, dedicated lignocellulosic crops for bioenergy are being hailed as the sustainable alternative to food crops for the generation of liquid transport fuels, contributing to climate change mitigation and increased energy security. Across temperate regions they include tree species grown as short rotation coppice and intensive forestry (e.g. Populus and Salix species) and C4 grasses such as miscanthus and switchgrass. For bioenergy crops it is paramount that high energy yields are maintained in order to drive the industry to an economic threshold where it has competitive advantage over conventional fossil fuel alternatives. Therefore, in the face of increased planting of these species, globally, there is a pressing need for insight into their responses to predicted changes in climate to ensure these crops are 'climate proofed' in breeding and improvement programmes. In this review, we investigate the physiological responses of bioenergy crops to rising atmospheric CO2 ([Ca]) and drought, with particular emphasis on the C3 Salicaceae trees and C4 grasses. We show that while crop yield is predicted to rise by up to 40% in elevated [Ca], this is tempered by the effects of water deficit. In response to elevated [Ca] stomatal conductance and evapotranspiration decline and higher leaf–water potentials are observed. However, whole-plant responses to [Ca] are often of lower magnitude and may even be positive (increased water use in elevated [Ca]). We conclude that rising [Ca] is likely to improve drought tolerance of bioenergy crop species due to improved plant water use, consequently yields in temperate environments may remain high in future climate scenarios.  相似文献   

15.
Progressive degeneration and intraneuronal Lewy bodies made of filamentous α-synuclein (α-syn) in dopaminergic cells of the nigrostriatal system are characteristics of Parkinson's disease (PD). Glucose uptake is reduced in some of the brain regions affected by PD neurodegenerative changes. Defects in mitochondrial activity in the substantia nigra have been observed in the brain of patients affected by PD and substantia nigra lesions can induce the onset of a secondary parkinsonism. Thus, energy starvation and consequently metabolic impairment to dopaminergic neurons may be related to the onset of PD. On this line, we evaluated the effect of nutrient starvation, reproduced ' in vitro ' by glucose deprivation (GD), in primary mesecephalic neuronal cultures and dopaminergic-differentiated SH-SY5Y cells, to evaluate if decreased glucose support to dopaminergic cells can lead to mitochondrial damage, neurodegeneration and α-syn misfolding. Furthermore, we investigated the effect of dopamine (DA) treatment in the presence of a DA-uptake inhibitor or of the D2/D3 receptor (D2R/D3R) agonist quinpirole on GD-treated cells, to evaluate the efficacy of these therapeutic compounds. We found that GD induced the formation of fibrillary aggregated α-syn inclusions containing the DA transporter in dopaminergic cells. These alterations were accompanied by dopaminergic cell death and were exacerbated by DA overload. Conversely, the block of DA uptake and D2R/D3R agonist treatment exerted neuroprotective effects. These data indicate that glucose starvation is likely involved in the induction of PD-related pathological changes in dopaminergic neurons. These changes may be counteracted by the block of DA uptake and by dopaminergic agonist treatment.  相似文献   

16.
Diversity decreases invasion via both sampling and complementarity effects   总被引:10,自引:1,他引:9  
Complementarity and sampling effects may both contribute to increased invasion resistance at higher diversity. We measured plant invader biomass across a long-term experimental plant diversity gradient. Invader species' biomass was inhibited in more diverse plots, largely because of the presence of strongly competitive C4 bunchgrasses, consistent with a sampling effect. Invader biomass was negatively correlated with resident root biomass, and positively correlated with soil nitrate concentrations, suggesting that competition for nitrogen limited invader success. Resident root biomass increased and soil nitrate concentrations decreased with the presence of C4 grasses and also across the diversity gradient, suggesting that diverse plots are more competitive because of the presence of C4 grasses. In addition to this evidence for a sampling effect, we also found evidence for a complementarity effect. Specifically, the percentage of plots that had lower invader biomass than did the best resident monoculture (i.e. that had invader 'underyielding') increased across the species richness gradient. This pattern cannot be explained by a sampling effect and is a unique signature of complementarity effects. Our results demonstrate the importance of multiple mechanisms by which diversity can increase invasion resistance.  相似文献   

17.
Abstract.  1. Factors affecting the nutritional ecology of mixed-feeding, polyphagous herbivores are poorly understood. Mixed-feeding herbivores do better when they consume both forb and grass species although they typically feed primarily on forbs, which are of relatively higher protein content than grasses.
2. In a field experiment, we examined the effects of nitrogen and phosphorus fertilization and associated changes in host-plant C:N:P on proportional grass consumption by a mixed-feeding insect herbivore, Melanoplus bivittatus , using natural abundance stable carbon isotope (12C/13C) methods. We also examined a grass-feeding ( Phoetaliotes nebrascensis ) and forb-feeding ( Hesperotettix viridis ) species.
3. The C isotope signatures of M. bivittatus collected from plots fertilized with nitrogen (+N), phosphorus (+P), nitrogen and phosphorus (+N+P) and no fertilizer were compared with the C isotope signatures of plants in those plots to determine the proportion of assimilated C derived from C4 grasses and C3 forbs in each plot. We also examined the relationship between M. bivittatus diets and plant C:N:P stoichiometry.
4. The proportion of grass assimilated approximately doubled in N-fertilized treatments (39.1 ± 0.1%) compared with non-fertilized treatments (19 ± <0.1%), an increase associated with decreased C:N and increased N:P of grasses.
5. These results indicate that mixed-feeding M. bivittatus can selectively feed to balance C:N:P intake even when choosing between two structurally and chemically different groups of plants.
6. The strong relationship between diet selection and grass stoichiometry also suggests that plant nutrient composition may be more important than defensive chemistry in food choice.  相似文献   

18.
We studied the effects on the phenology, growth and reproduction of 19 Mediterranean species, of elevating the atmospheric CO2 concentration ([CO2]) to twice-ambient. Intact monoliths were taken from an old-field and put, during a six month growing season, into growth chambers in which external climatic conditions were mimicked and [CO2] was regulated. Fruit set time was significantly changed in six species under elevated [CO2] and leaf and branch senescence accelerated in most species. Grasses had fewer leaves and legumes were more branched at peak production under elevated [CO2] than under ambient. Plant seed number was not significantly changed under elevated [CO2], whereas the reproductive effort of grasses was significantly depressed. Reproductive and vegetative characteristics showed related responses to [CO2], as species with enhanced biomass had a hastened fruit set time, a higher number of fruits per plant and a higher reproductive biomass under elevated [CO2] than under ambient conditions, while species with depressed biomass had a delayed fruit set time, a lower number of fruits per plant and a lower reproductive biomass. Our results also show a high interspecific variability in [CO2] response, but some trends emerged at the family level: the production of vegetative and reproductive modules were depressed in grasses and slightly stimulated in legumes.  相似文献   

19.
Parkinson's disease (PD) is characterized in part by the presence of α-synuclein (α-syn) rich intracellular inclusions (Lewy bodies). Mutations and multiplication of the α-synuclein gene ( SNCA ) are associated with familial PD. Since Ca2+ dyshomeostasis may play an important role in the pathogenesis of PD, we used fluorimetry in fura-2 loaded SH-SY5Y cells to monitor Ca2+ homeostasis in cells stably transfected with either wild-type α-syn, the A53T mutant form, the S129D phosphomimetic mutant or with empty vector (which served as control). Voltage-gated Ca2+ influx evoked by exposure of cells to 50 mM K+ was enhanced in cells expressing all three forms of α-syn, an effect which was due specifically to increased Ca2+ entry via L-type Ca2+ channels. Mobilization of Ca2+ by muscarine was not strikingly modified by any of the α-syn forms, but they all reduced capacitative Ca2+ entry following store depletion caused either by muscarine or thapsigargin. Emptying of stores with cyclopiazonic acid caused similar rises of [Ca2+]i in all cells tested (with the exception of the S129D mutant), and mitochondrial Ca2+ content was unaffected by any form of α-synuclein. However, only WT α-syn transfected cells displayed significantly impaired viability. Our findings suggest that α-syn regulates Ca2+ entry pathways and, consequently, that abnormal α-syn levels may promote neuronal damage through dysregulation of Ca2+ homeostasis.  相似文献   

20.
Ash and silica contents and depositional patterns were determinedfor different tissues of 11 plants growing in the southeasternand central parts of the USA. Silica content was high in theleaves, sheaths and inflorescences of the grasses studied, especiallyso in the inflorescence of the C3 grass, Stipa comata Trise.and Rupr. The ash content was especially high in leaves of Polymniauvedalia L., which are also high in calcium. Calcium depositionwas largely in trichomes and in veins of the leaf. Energy-dispersiveX-ray analysis showed that the distribution of the element siliconis closely related to certain epidermal structures such as ridges,cell walls, rows of irregularly-shaped structures lying lenghthwisealong the leaf, dumb-bell shaped structures and trichomes. Thesestructures also correspond to the phytoliths left behind afterdecay of the plant. The C3 grasses differed from the C4 in thatthey showed oval structures and produced correspondingly ovalphytoliths. Silicified trichomes (particularly in the C3 grasses)and long, narrow, silica fibres were common in the inflorescencesof the grasses studied. These sharp particles could be irritatingto oesophageal and other tissues. Similar fibres in other grasseshave been implicated in certain cancers. High silicificationof the inflorescence structures might afford protection forthe seed, as reported for other grasses. C3 and C4 grasses, silica and ash content, scanning electron microscopy, energy-dispersive X-ray analysis, silicon distribution, spectra of elements in plants, trichomes, silica fibres, phytoliths  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号