首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundThe mechanism of iron oxidation and core formation in homopolymeric H-type ferritins has been extensively studied in-vitro, so has the reductive mobilization of iron from the inorganic iron(III) core. However, neither process is well-understood in-vivo despite recent scientific advances.Scope of reviewHere, we provide a summary of our current understanding of iron mineralization and iron core dissolution in homopolymeric H-type ferritins and highlight areas of interest and further studies that could answer some of the outstanding questions of iron metabolism.Major conclusionsThe overall iron oxidation mechanism in homopolymeric H-type ferritins from vertebrates (i.e. human H and frog M ferritins) is similar, despite nuances in the individual oxidation steps due to differences in the iron ligand environments inside the three fold channels, and at the dinuclear ferroxidase centers. Ferrous cations enter the protein shell through hydrophilic channels, followed by their rapid oxidization at di‑iron centers. Hydrogen peroxide produced during iron oxidation can react with additional iron(II) at ferroxidase centers, or at separate sites, or possibly on the surface of the mineral core. In-vitro ferritin iron mobilization can be achieved using a variety of reducing agents, but in-vivo iron retrieval may occur through a variety of processes, including proteolytic degradation, auxiliary iron mobilization mechanisms involving physiological reducing agents, and/or oxidoreductases.General significanceThis review provides important insights into the mechanisms of iron oxidation and mobilization in homopolymeric H-type ferritins, and different strategies in maintaining iron homeostasis.  相似文献   

2.
Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores, consider how iron might be released from ferritins, and examine in detail how three selected ferritins oxidise Fe2+ to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins.  相似文献   

3.
The iron redox and hydrolysis chemistry of the ferritins   总被引:2,自引:0,他引:2  

Background

Ferritins are ubiquitous and well-characterized iron storage and detoxification proteins. In bacteria and plants, ferritins are homopolymers composed of H-type subunits, while in vertebrates, they typically consist of 24 similar subunits of two types, H and L. The H-subunit is responsible for the rapid oxidation of Fe(II) to Fe(III) at a dinuclear center, whereas the L-subunit appears to help iron clearance from the ferroxidase center of the H-subunit and support iron nucleation and mineralization.

Scope of review

Despite their overall similar structures, ferritins from different origins markedly differ in their iron binding, oxidation, detoxification, and mineralization properties. This chapter provides a brief overview of the structure and function of ferritin, reviews our current knowledge of the process of iron uptake and mineral core formation, and highlights the similarities and differences of the iron oxidation and hydrolysis chemistry in a number of ferritins including those from archaea, bacteria, amphibians, and animals.

General Significance

Prokaryotic ferritins and ferritin-like proteins (Dps) appear to preferentially use H2O2 over O2 as the iron oxidant during ferritin core formation. While the product of iron oxidation at the ferroxidase centers of these and other ferritins is labile and is retained inside the protein cavity, the iron complex in the di-iron cofactor proteins is stable and remains at the catalytic site. Differences in the identity and affinity of the ferroxidase center ligands to iron have been suggested to influence the distinct reaction pathways in ferritins and the di-iron cofactor enzymes.

Major conclusions

The ferritin 3-fold channels are shown to be flexible structures that allow the entry and exit of different ions and molecules through the protein shell. The H- and L-subunits are shown to have complementary roles in iron oxidation and mineralization, and hydrogen peroxide appears to be a by-product of oxygen reduction at the FC of most ferritins. The di-iron(III) complex at the FC of some ferritins acts as a stable cofactor during iron oxidation rather than a catalytic center where Fe(II) is oxidized at the FC followed by its translocation to the protein cavity.  相似文献   

4.
Escherichia coli Dps belongs to a family of bacterial stress-induced proteins to protect DNA from oxidative damage. It shares with Listeria innocua ferritin several structural features, such as the quaternary assemblage and the presence of an unusual ferroxidase center. Indeed, it was recently recognized to be able to oxidize and incorporate iron. Since ferritins are endowed with the unique capacity to direct iron deposition toward formation of a microcrystalline core, the structure of iron deposited in the E. coli Dps cavity was studied. Polarized single crystal absorption microspectrophotometry of iron-loaded Dps shows that iron ions are oriented. The spectral properties in the high spin 3d(5) configuration point to a crystal form with tetrahedral symmetry where the tetrahedron center is occupied by iron ions and the vertices by oxygen. Crystals of iron-loaded Dps also show that, as in mammalian ferritins, iron does not remain bound to the site after oxidation has taken place. The kinetics of the iron reduction/release process induced by dithionite were measured in the crystal and in solution. The reaction appears to have two phases, with t(12) of a few seconds and several minutes at neutral pH values, as in canonical ferritins. This behavior is attributed to a similar composition of the iron core.  相似文献   

5.
Horse ferritins from different organs show heterogeneity on electrofocusing in Ampholine gradients. Both ferritin and apoferritin from liver and spleen could be fractionated with respect to surface charge by serial precipitation with (NH4)2SO4. In the ferritin fractions, increasing iron content parallels increasing isoelectric point. After removal of their iron, those fractions which originally contained most iron accumulated added iron at the fastest rates. When unfractionated ferritins from different organs were compared the average isoelectric point increased in order spleen less than liver less than kidney less than heart. The order of initial rates of iron uptake by the apoferritins was spleen greater than kidney greater than heart and initial average iron contents also followed this order. The relatively low rates of iron accumulation by iron-poor molecules may have been due to structural alteration, to degradation, to activation of the iron-rich molecules or to other factors.  相似文献   

6.
Mitochondria mobilize iron from ferritin by a mechanism that depends on external FMN. With rat liver mitochondria, the rate of mobilization of iron is higher from rat liver ferritin than from horse spleen ferritin. With horse liver mitochondria, the rate of iron mobilization is higher from horse spleen ferritin than from rat liver ferritin. The results are explained by a higher affinity between mitochondria and ferritins of the same species. The mobilization of iron increases with the iron content of the ferritin and then levels off. A maximum is reached with ferritins containing about 1 200 iron atoms per molecule. The results represent further evidence that ferritin may function as a direct iron donor to the mitochondria.  相似文献   

7.
The hollow sphere-shaped 24-meric ferritin can store large amounts of iron as a ferrihydrite-like mineral core. In all subunits of homomeric ferritins and in catalytically active subunits of heteromeric ferritins a diiron binding site is found that is commonly addressed as the ferroxidase center (FC). The FC is involved in the catalytic Fe(II) oxidation by the protein; however, structural differences among different ferritins may be linked to different mechanisms of iron oxidation. Non-heme ferritins are generally believed to operate by the so-called substrate FC model in which the FC cycles by filling with Fe(II), oxidizing the iron, and donating labile Fe(III)–O–Fe(III) units to the cavity. In contrast, the heme-containing bacterial ferritin from Escherichia coli has been proposed to carry a stable FC that indirectly catalyzes Fe(II) oxidation by electron transfer from a core that oxidizes Fe(II). Here, we put forth yet another mechanism for the non-heme archaeal 24-meric ferritin from Pyrococcus furiosus in which a stable iron-containing FC acts as a catalytic center for the oxidation of Fe(II), which is subsequently transferred to a core that is not involved in Fe(II)-oxidation catalysis. The proposal is based on optical spectroscopy and steady-state kinetic measurements of iron oxidation and dioxygen consumption by apoferritin and by ferritin preloaded with different amounts of iron. Oxidation of the first 48 Fe(II) added to apoferritin is spectrally and kinetically different from subsequent iron oxidation and this is interpreted to reflect FC building followed by FC-catalyzed core formation.  相似文献   

8.
The production and characterization of recombinant mouse H- and L-ferritin chains from Escherichia coli are described. The proteins were efficiently expressed and purified with yields of 7-40 mg per liter of cell culture. They had the expected molecular mass and showed a physical stability analogous to that of the corresponding human ferritins. Mouse H- and L-ferritins had a very similar mobility on denaturing SDS-PAGE, but could be readily separated on nondenaturing PAGE because of the distinct slow mobility of mouse L-ferritin. Direct comparative experiments showed that mouse and human H-ferritins had the same iron incorporation activity, whereas mouse L-ferritin incorporated iron less efficiently than human L-ferritin. The difference was attributed to the substitution of a residue exposed on the cavity surface (Glu140 --> Lys) in mouse L-ferritin, a hypothesis confirmed by the finding that the mouse L-ferritin mutant Lys140-Glu incorporated iron as efficiently as human L-ferritin. Rabbit antisera elicited by the recombinant mouse ferritins were specific for the H- and L-chains and did not cross-react with the human ferritins. The antibodies and the derived specific ELISA assays allow the determination of H- and L-ferritins in mouse tissues.  相似文献   

9.
Högbom M  Nordlund P 《FEBS letters》2004,567(2-3):179-182
The crystal structure of an oxo-centered tri-nuclear iron complex formed on a protein surface is presented. The cluster forms when crystals of the class Ib ribonucleotide reductase R2 protein from Corynebacterium ammoniagenes are subjected to iron soaking. The tri-iron-oxo complex is coordinated by protein-derived carboxylate ligands arranged in a motif similar to the one found on the inner surface of ferritins and may mimic an early stage in the mineralization of iron in ferritins. In addition, the structure adds to the very limited data on protein-mineral interfaces.  相似文献   

10.
Insects transmit millions of cases of disease each year, and cost millions of dollars in agricultural losses. The control of insect-borne diseases is vital for numerous developing countries, and the management of agricultural insect pests is a very serious business for developed countries. Control methods should target insect-specific traits in order to avoid non-target effects, especially in mammals. Since insect cells have had a billion years of evolutionary divergence from those of vertebrates, they differ in many ways that might be promising for the insect control field—especially, in iron metabolism because current studies have indicated that significant differences exist between insect and mammalian systems. Insect iron metabolism differs from that of vertebrates in the following respects. Insect ferritins have a heavier mass than mammalian ferritins. Unlike their mammalian counterparts, the insect ferritin subunits are often glycosylated and are synthesized with a signal peptide. The crystal structure of insect ferritin also shows a tetrahedral symmetry consisting of 12 heavy chain and 12 light chain subunits in contrast to that of mammalian ferritin that exhibits an octahedral symmetry made of 24 heavy chain and 24 light chain subunits. Insect ferritins associate primarily with the vacuolar system and serve as iron transporters—quite the opposite of the mammalian ferritins, which are mainly cytoplasmic and serve as iron storage proteins. This review will discuss these differences.  相似文献   

11.
12.
Ferritin purified from horse heart and applied to nondenaturing polyacrylamide gel electrophoresis migrated as a single band that stained for both iron and protein. This ferritin contained almost equal amounts of fast- and slow-sedimenting components of 58 S and 3-7 S, which could be separated on sucrose density gradients. Iron removal reduced the sedimentation coefficient of the fast-sedimenting ferritin to 18 S, and sedimentation equilibrium gave a molecular weight 650,000, with some preparations containing ferritin of 500,000 molecular weight as well. Sedimentation rates of the 3 S and 7 S ferritins were not affected by iron removal, and sedimentation equilibrium data were consistent with Mr's 40,000 and 180,000, respectively. Preparations of ferritin extracted from horse spleen contained only 67 S (holo) or 16 S (apo) ferritin and no slow-sedimenting species. When examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, all of the ferritins contained the usual H and L subunits (23 and 20 kDa, respectively), but the slow-sedimenting (3 S and 7 S) heart apoferritins also contained appreciable quantities (ca 25%) of three larger subunits of 42, 55, and 65 kDa. All the subunits reacted positively in Western blots to polyclonal antibodies made against specially purified large heart or spleen ferritins containing only 20- and 23-kDa subunits. Similar results were obtained for ferritins from rat heart. The results indicate that mammalian heart tissue is peculiar not just in having an abnormally large iron-rich ferritin but also in having iron-poor ferritins of much lower molecular weight, partly composed of larger subunits.  相似文献   

13.
Summary Ferritins from liver and spleen of both-thalassaemia/haemoglobin E (HbE) and non-thalassaemic patients were purified by heating a methanol-treated homogenate, followed by molecular exclusion chromatography. The concentrations of ferritins in the-thalassaemia/HbE liver and spleen were calculated as 3.8 and 2.0 mg/g wet tissue. The-thalassaemia/HbE ferritin iron/protein ratios were higher than those of normal ferritins. On PAGE, all ferritins gave a single major monomeric band with only very small differences in their mobility. Ferritins from thalassaemic patients also possessed bands corresponding to oligomers. On SDS/PAGE, all ferritins were resolved into two major subunits: H and L with L subunit predominating. While the isoferritin profiles of ferritins from-thalassaemia/HbE liver and spleen were similar to each other and to those of normal liver and spleen, some extra bands were present in the acidic region. The microstructure of these pathological ferritins appears to result, to a large degree, from the particular nature and amount of iron loading present.Abbreviations PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate  相似文献   

14.

Background

Plant and animal ferritins stem from a common ancestor, but plant ferritins exhibit various features that are different from those of animal ferritins. Phytoferritin is observed in plastids (e.g., chloroplasts in leaves, amyloplasts in tubers and seeds), whereas animal ferritin is largely found in the cytoplasm. The main difference in structure between plant and animal ferritins is the two specific domains (TP and EP) at the N-terminal sequence of phytoferritin, which endow phytoferritin with specific iron chemistry. As a member of the nonheme iron group of dietary iron sources, phytoferritin consists of 24 subunits that assemble into a spherical shell storing up to ∼ 2000 Fe3 + in the form of an iron oxyhydroxide-phosphate mineral. This feature is distinct from small molecule nonheme iron existing in cereals, which has poor bioavailability.

Scope of review

This review focuses on the relationship between structure and function of phytoferritin and the recent progress in the use of phytoferritin as iron supplement.

Major conclusions

Phytoferritin, especially from legume seeds, represents a novel alternative dietary iron source.

General significance

An understanding of the chemistry and biology of phytoferritin, its interaction with iron, and its stability against gastric digestion is beneficial to design diets that will be used for treatment of global iron deficiency.  相似文献   

15.
16.
Mitochondrial ferritin (MtF) is a newly identified ferritin encoded by an intronless gene on chromosome 5q23.1. The mature recombinant MtF has a ferroxidase center and binds iron in vitro similarly to H-ferritin. To explore the structural and functional aspects of MtF, we expressed the following forms in HeLa cells: the MtF precursor (approximately 28 kDa), a mutant MtF precursor with a mutated ferroxidase center, a truncated MtF lacking the approximately 6-kDa mitochondrial leader sequence, and a chimeric H-ferritin with this leader sequence. The experiments show that all constructs with the leader sequence were processed into approximately 22-kDa subunits that assembled into multimeric shells electrophoretically distinct from the cytosolic ferritins. Mature MtF was found in the matrix of mitochondria, where it is a homopolymer. The wild type MtF and the mitochondrially targeted H-ferritin both incorporated the (55)Fe label in vivo. The mutant MtF with an inactivated ferroxidase center did not take up iron, nor did the truncated MtF expressed transiently in cytoplasm. Increased levels of MtF both in transient and in stable transfectants resulted in a greater retention of iron as MtF in mitochondria, a decrease in the levels of cytosolic ferritins, and up-regulation of transferrin receptor. Neither effect occurred with the mutant MtF with the inactivated ferroxidase center. Our results indicate that exogenous iron is as available to mitochondrial ferritin as it is to cytosolic ferritins and that the level of MtF expression may have profound consequences for cellular iron homeostasis.  相似文献   

17.
Ferritin protein nanocages are the main iron store in mammals. They have been predicted to fulfil the same function in plants but direct evidence was lacking. To address this, a loss-of-function approach was developed in Arabidopsis. We present evidence that ferritins do not constitute the major iron pool either in seeds for seedling development or in leaves for proper functioning of the photosynthetic apparatus. Loss of ferritins in vegetative and reproductive organs resulted in sensitivity to excess iron, as shown by reduced growth and strong defects in flower development. Furthermore, the absence of ferritin led to a strong deregulation of expression of several metal transporters genes in the stalk, over-accumulation of iron in reproductive organs, and a decrease in fertility. Finally, we show that, in the absence of ferritin, plants have higher levels of reactive oxygen species, and increased activity of enzymes involved in their detoxification. Seed germination also showed higher sensitivity to pro-oxidant treatments. Arabidopsis ferritins are therefore essential to protect cells against oxidative damage.  相似文献   

18.
Genes encoding ferritins were isolated and cloned from cDNA libraries of hard tick Ixodes ricinus and soft tick Ornithodoros moubata. Both tick ferritins are composed of 172 amino-acid residues and their calculated mass is 19,667.2 Da and 19,974.5 Da for I. ricinus and O. moubata, respectively. The sequences of both proteins are closely related to each other as well as to the ferritin from another tick species Dermacentor variabilis (>84% similarity). The proteins contain the conserved motifs for ferroxidase center typical for heavy chains of vertebrate ferritins. The stem-loop structure of a putative iron responsive element was found in the 5' untranslated region of ferritin mRNA of both ticks. Antibodies against fusion ferritin from O. moubata were raised in a rabbit and used to monitor the purification of a small amount of ferritins from both tick species. The authenticity of ferritin purified from O. moubata was confirmed by mass-fingerprinting analysis. In the native state, the tick ferritins are apparently larger (~500 kDa) than horse spleen ferritin (440 kDa). On SDS-PAGE tick ferritins migrate as a single band of about 21 kDa. These results suggest that tick ferritins are homo-oligomers of 24 identical subunits of heavy-chain type. The Northern blot analysis revealed that O. moubata ferritin mRNA level is likely not up-regulated after ingestion of a blood meal.  相似文献   

19.
20.
Mammalian ferritins are predominantly heteropolymeric species consisting of 24 structurally similar, but functionally different subunit types, named H and L, that co-assemble in different proportions. Despite their discovery more than 8 decades ago, recombinant human heteropolymer ferritins have never been synthesized, owing to the lack of a good expression system. Here, we describe for the first time a unique approach that uses a novel plasmid design that enables the synthesis of these complex ferritin nanostructures. Our study reveals an original system that can be easily tuned by altering the concentrations of two inducers, allowing the synthesis of a full spectrum of heteropolymer ferritins, from H-rich to L-rich ferritins and any combinations in-between (isoferritins). The H to L subunit composition of purified ferritin heteropolymers was analyzed by SDS-PAGE and capillary gel electrophoresis, and their iron handling properties characterized by light absorption spectroscopy. Our novel approach allows future investigations of the structural and functional differences of isoferritin populations, which remain largely obscure. This is particularly exciting since a change in the ferritin H- to L-subunit ratio could potentially lead to new iron core morphologies for various applications in bio-nanotechnologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号