首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The maximum growth temperature, the optimal growth temperature, and the estimated normal physiological range for growth of Shewanella gelidimarina are functions of water activity (a(w)), which can be manipulated by changing the concentration of sodium chloride. The growth temperatures at the boundaries of the normal physiological range for growth were characterized by increased variability in fatty acid composition. Under hyper- and hypoosmotic stress conditions at an a(w) of 0.993 (1.0% [wt/vol] NaCl) and at an a(w) of 0.977 (4.0% [wt/vol] NaCl) the proportion of certain fatty acids (monounsaturated and branched-chain fatty acids) was highly regulated and was inversely related to the growth rate over the entire temperature range. The physical states of lipids extracted from samples grown at stressful a(w) values at the boundaries of the normal physiological range exhibited no abrupt gel-liquid phase transitions when the lipids were analyzed as liposomes. Lipid packing and adaptational fatty acid composition responses are clearly influenced by differences in the temperature-salinity regime, which are reflected in overall cell function characteristics, such as the growth rate and the normal physiological range for growth.  相似文献   

2.
Low pH and salt are two factors contributing to the inactivation of bacterial pathogens during a 60-day curing period for cheese. The kinetics of inactivation for Mycobacterium avium subsp. paratuberculosis strains ATCC 19698 and Dominic were measured at 20°C under different pH and NaCl conditions commonly used in processing cheese. The corresponding D values (decimal reduction times; the time required to kill 1 log10 concentration of bacteria) were measured. Also measured were the D values for heat-treated and nonheated M. avium subsp. paratuberculosis in 50 mM acetate buffer (pH 5.0, 2% [wt/vol] NaCl) and a soft white Hispanic-style cheese (pH 6.0, 2% [wt/vol] NaCl). Samples were removed at various intervals until no viable cells were detected using the radiometric culture method (BACTEC) for enumeration of M. avium subsp. paratuberculosis. NaCl had little or no effect on the inactivation of M. avium subsp. paratuberculosis, and increasing NaCl concentrations were not associated with decreasing D values (faster killing) in the acetate buffer. Lower pHs, however, were significantly correlated with decreasing D values of M. avium subsp. paratuberculosis in the acetate buffer. The D values for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese were higher than those predicted by studies done in acetate buffer. The heat-treated M. avium subsp. paratuberculosis strains had lower D values than the nonheated cells (faster killing) both in the acetate buffer (pH 5, 2% [wt/vol] NaCl) and in the soft white cheese. The D value for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese (36.5 days) suggests that heat treatment of raw milk coupled with a 60-day curing period will inactivate about 103 cells of M. avium subsp. paratuberculosis per ml.  相似文献   

3.
Salmonella spp. are reported to have an increased heat tolerance at low water activity (aw; measured by relative vapor pressure [rvp]), achieved either by drying or by incorporating solutes. Much of the published data, however, cover only a narrow treatment range and have been analyzed by assuming first-order death kinetics. In this study, the death of Salmonella enterica serovar Typhimurium DT104 when exposed to 54 combinations of temperature (55 to 80°C) and aw (rvp 0.65 to 0.90, reduced using glucose-fructose) was investigated. The Weibull model (LogS = −btn) was used to describe microbial inactivation, and surface response models were developed to predict death rates for serovar Typhimurium at all points within the design surface. The models were evaluated with data generated by using six different Salmonella strains in place of serovar Typhimurium DT104 strain 30, two different solutes in place of glucose-fructose to reduce aw, or six low-aw foods artificially contaminated with Salmonella in place of the sugar broths. The data demonstrate that, at temperatures of ≥70°C, Salmonella cells at low aw were more heat tolerant than those at a higher aw but below 65°C the reverse was true. The same patterns were generated when sucrose (rvp 0.80 compared with 0.90) or NaCl (0.75 compared with 0.90) was used to reduce aw, but the extent of the protection afforded varied with solute type. The predictions of thermal death rates in the low-aw foods were usually fail-safe, but the few exceptions highlight the importance of validating models with specific foods that may have additional factors affecting survival.  相似文献   

4.
In this study we investigated the long-term survival of and morphological changes in Salmonella strains at low water activity (aw). Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 survived at low aw for long periods, but minimum humectant concentrations of 8% NaCl (aw, 0.95), 96% sucrose (aw, 0.94), and 32% glycerol (aw, 0.92) were bactericidal under most conditions. Salmonella rpoS mutants were usually more sensitive to bactericidal levels of NaCl, sucrose, and glycerol. At a lethal aw, incubation at 37°C resulted in more rapid loss of viability than incubation at 21°C. At aw values of 0.93 to 0.98, strains of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium formed filaments, some of which were at least 200 μm long. Filamentation was independent of rpoS expression. When the preparations were returned to high-aw conditions, the filaments formed septa, and division was complete within approximately 2 to 3 h. The variable survival of Salmonella strains at low aw highlights the importance of strain choice when researchers produce modelling data to simulate worst-case scenarios or conduct risk assessments based on laboratory data. The continued increase in Salmonella biomass at low aw (without a concomitant increase in microbial count) would not have been detected by traditional microbiological enumeration tests if the tests had been performed immediately after low-aw storage. If Salmonella strains form filaments in food products that have low aw values (0.92 to 0.98), there are significant implications for public health and for designing methods for microbiological monitoring.  相似文献   

5.
The fatty acid composition of Listeria monocytogenes Scott A was determined by close-interval sampling over the entire biokinetic temperature range. There was a high degree of variation in the percentage of branched-chain fatty acids at any given temperature. The percentage of branched C17 components increased with growth temperature in a linear manner. However, the percentages of iso-C15:0 (i15:0) and anteiso-C15:0 (a15:0) were well described by third-order and second-order polynomial curves, respectively. There were specific temperature regions where the proportion of branched-chain fatty acids deviated significantly from the trend established over the entire growth range. In the region from 12 to 13°C there were significant deviations in the percentages of both i15:0 and a15:0 together with a suggested deviation in a17:0, resulting in a significant change in the total branched-chain fatty acids. In the 31 to 33°C region the percentage of total branched-chain components exhibited a significant deviation. The observed perturbations in fatty acid composition occurred near the estimated boundaries of the normal physiological range for growth.  相似文献   

6.
Exposure of Cryptosporidium parvum oocysts to solutions used for cellulose acetate membrane (CAM) dissolution filtration reduced their infectivity in HCT-8 cells. Ethanol (95% [vol/vol] and 70% [vol/vol]) alone and short exposure times to acetone decreased infectivity. These findings contrast with similar experiments using excystation assays and infectivity in mice.  相似文献   

7.
The lipid compositions of barophilic bacterial strains which contained docosahexaenoic acid (DHA [22:6n-3]) were examined, and the adaptive changes of these compositions were analyzed in response to growth pressure. In the facultatively barophilic strain 16C1, phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) were major components which had the same fatty acid chains. However, in PE, monounsaturated fatty acids such as hexadecenoic acid were major components, and DHA accounted for only 3.7% of the total fatty acids, while in PG, DHA accounted for 29.6% of the total fatty acids. In response to an increase in growth pressure in strain 16C1, the amounts of saturated fatty acids in PE were reduced, and these decreases were mainly balanced by an increase in unsaturated fatty acids, including DHA. In PG, the decrease in saturated fatty acids was mainly balanced by an increase in DHA. Similar adaptive changes in fatty acid composition were observed in response to growth pressure in obligately barophilic strain 2D2. Furthermore, these adaptive changes in response were also observed in response to low temperature in strain 16C1. These results confirm that the general shift from saturated to unsaturated fatty acids including DHA is one of the adaptive changes in response to increases in pressure and suggest that DHA may play a role in maintaining the proper fluidity of membrane lipids under high pressure.  相似文献   

8.
Summary The effect of water activity (aw) on the growth and end-product formation of Lactobacillus viridescens SMRICC 174, Lactobacillus SMRICC 173 (homofermentative) and Brochothrix thermosphacta ATCC 11509T was studied. All strains orginated from meat or meat products. The aw was adjusted in the range 0.94–0.99 with NaCl or glycerol. A greater reduction in growth rates was found for L. viridescens and B. thermosphacta when aw was regulated with NaCl rather than with glycerol, the opposite was true for Lactobacillus 173. L. viridescens grew at aw >-0.94. At 0.94 aw B. thermosphacta was totally inhibited when NaCl was the solute and Lactobacillus 173 when glycerol was the solute. Only minor variations in the end-product formation of the Lactobacillus spp. were found at different aw values. In aerobic culture B. thermosphacta produced less l-lactic acid and more acetic acid as the aw was decreased with NaCl, while the yields were unaffected when glycerol was used.  相似文献   

9.
White rot fungi can oxidize high-molecular-weight polycyclic aromatic hydrocarbons (PAH) rapidly to polar metabolites, but only limited mineralization takes place. The objectives of this study were to determine if the polar metabolites can be readily mineralized by indigenous microflora from several inoculum sources, such as activated sludge, forest soils, and PAH-adapted sediment sludge, and to determine if such metabolites have decreased mutagenicity compared to the mutagenicity of the parent PAH. 14C-radiolabeled benzo[a]pyrene was subjected to oxidation by the white rot fungus Bjerkandera sp. strain BOS55. After 15 days, up to 8.5% of the [14C]benzo[a]pyrene was recovered as 14CO2 in fungal cultures, up to 73% was recovered as water-soluble metabolites, and only 4% remained soluble in dibutyl ether. Thin-layer chromatography analysis revealed that many polar fluorescent metabolites accumulated. Addition of indigenous microflora to fungal cultures with oxidized benzo[a]pyrene on day 15 resulted in an initially rapid increase in the level of 14CO2 recovery to a maximal value of 34% by the end of the experiments (>150 days), and the level of water-soluble label decreased to 16% of the initial level. In fungal cultures not inoculated with microflora, the level of 14CO2 recovery increased to 13.5%, while the level of recovery of water-soluble metabolites remained as high as 61%. No large differences in 14CO2 production were observed with several inocula, showing that some polar metabolites of fungal benzo[a]pyrene oxidation were readily degraded by indigenous microorganisms, while other metabolites were not. Of the inocula tested, only PAH-adapted sediment sludge was capable of directly mineralizing intact benzo[a]pyrene, albeit at a lower rate and to a lesser extent than the mineralization observed after combined treatment with white rot fungi and indigenous microflora. Fungal oxidation of benzo[a]pyrene resulted in rapid and almost complete elimination of its high mutagenic potential, as observed in the Salmonella typhimurium revertant test performed with strains TA100 and TA98. Moreover, no direct mutagenic metabolite could be detected during fungal oxidation. The remaining weak mutagenic activity of fungal cultures containing benzo[a]pyrene metabolites towards strain TA98 was further decreased by subsequent incubations with indigenous microflora.  相似文献   

10.
We found that Clostridium botulinum type A grew well and produced toxin in media with a water activity (aw) of 0.972 or 0.965 and a pH of 5.7, but no growth or toxin production was observed at or below an aw of 0.949 during incubation at 30°C for 52 to 59 days. aw and pH values of media were adjusted to those of cheese spreads commercially produced. Solutes used to adjust aw included combinations of NaCl, cheese whey powder, emulsifying salt, sodium tripolyphosphate, and glycerol. In agreement with results obtained for media, toxin was produced in samples of cheese spread (aw, 0.970; pH, 5.7) at 30 to 70 days of incubation at 30°C.  相似文献   

11.
This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10,201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO2 by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization (53% of added [14C]benzo[a]pyrene was recovered as 14CO2 in 100 days), and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula.  相似文献   

12.
Deuterated styrene ([2H8]styrene) was used as a tracer in combination with phospholipid fatty acid (PLFA) analysis for characterization of styrene-degrading microbial populations of biofilters used for treatment of waste gases. Deuterated fatty acids were detected and quantified by gas chromatography-mass spectrometry. The method was evaluated with pure cultures of styrene-degrading bacteria and defined mixed cultures of styrene degraders and non-styrene-degrading organisms. Incubation of styrene degraders for 3 days with [2H8]styrene led to fatty acids consisting of up to 90% deuterated molecules. Mixed-culture experiments showed that specific labeling of styrene-degrading strains and only weak labeling of fatty acids of non-styrene-degrading organisms occurred after incubation with [2H8]styrene for up to 7 days. Analysis of actively degrading filter material from an experimental biofilter and a full-scale biofilter by this method showed that there were differences in the patterns of labeled fatty acids. For the experimental biofilter the fatty acids with largest amounts of labeled molecules were palmitic acid (16:0), 9,10-methylenehexadecanoic acid (17:0 cyclo9-10), and vaccenic acid (18:1 cis11). These lipid markers indicated that styrene was degraded by organisms with a Pseudomonas-like fatty acid profile. In contrast, the most intensively labeled fatty acids of the full-scale biofilter sample were palmitic acid and cis-11-hexadecenoic acid (16:1 cis11), indicating that an unknown styrene-degrading taxon was present. Iso-, anteiso-, and 10-methyl-branched fatty acids showed no or weak labeling. Therefore, we found no indication that styrene was degraded by organisms with methyl-branched fatty fatty acids, such as Xanthomonas, Bacillus, Streptomyces, or Gordonia spp.  相似文献   

13.
Chapman et al. (B. Chapman, N. Jensen, T Ross, and M. B. Cole, Appl. Environ. Microbiol. 72:5165-5172, 2006) demonstrated that an increased NaCl concentration prolongs survival of Escherichia coli O157 SERL 2 in a broth model simulating the aqueous phase of a food dressing or sauce containing acetic acid. We examined the responses of five other E. coli strains and four Salmonella enterica strains to increasing concentrations of NaCl under conditions of lethal acidity and observed that the average “lag” time prior to inactivation decreases in the presence of hydrochloric acid but not in the presence of acetic acid. For E. coli in the presence of acetic acid, the lag time increased with increasing NaCl concentrations up to 2 to 4% at pH 4.0, up to 4 to 6% at pH 3.8, and up to 4 to 7% (wt/wt of water) NaCl at pH 3.6. Salmonella was inactivated more rapidly by combined acetic acid and NaCl stresses than E. coli, but increasing NaCl concentrations still decreased the lag time prior to inactivation in the presence of acetic acid; at pH 4.0 up to 1 to 4% NaCl was protective, and at pH 3.8 up to 1 to 2% NaCl delayed the onset of inactivation. Sublethal injury kinetics suggest that this complex response is a balance between the lethal effects of acetic acid, against which NaCl is apparently protective, and the lethal effects of the NaCl itself. Compared against 3% NaCl, 10% (wt/wt of water) sucrose with 0.5% NaCl (which has similar osmotic potential) was found to be equally protective against adverse acetic acid conditions. We propose that hypertonicity may directly affect the rate of diffusion of acetic acid into cells and hence cell survival.We previously observed that inactivation of Escherichia coli O157 SERL 2 by acetic acid at adverse pH in a broth model simulating the aqueous phase of acidic sauces and dressings was reduced by the presence of NaCl (4). Specifically, the time to a 3-log10-unit reduction (t3D) of E. coli SERL 2 as function of NaCl concentration was significantly nonmonotonic; that is, the t3D initially increased when NaCl was increased (from 1 to 3% [wt/wt] of solution), but the t3D decreased upon a further increase in NaCl concentration (to 8% [wt/wt] of solution) (4). The statistical significance of this “nonmonotonic” response increased with increasing exposure time from 24 to 72 h (at 23°C), primarily due to a proportionally greater increase in inactivation at 1% (wt/wt) NaCl with increasing treatment time than that which was observed at higher NaCl concentrations (4).The combination of acid and NaCl is a common example of the food industry''s “hurdle” approach, which is used to preserve a large and diverse range of foods, including acidic dressings and sauces, fermented meats, cheeses, and preserved vegetables. Given the widespread use of this hurdle combination in food manufacturing, the first aim of this study was to determine whether the observed protection of E. coli SERL 2 from acid inactivation by NaCl is common among E. coli and Salmonella enterica and at what NaCl concentration maximum protection is achieved. A second aim was to determine whether NaCl protection is specific against acid pH in general or against acetic acid in particular. Third, possible protection against acid inactivation by another osmolyte, sucrose, was assessed to resolve whether the effect is solute specific.When cells are placed in hypertonic environments, plasmolysis occurs as the cytoplasmic volume reduces due to water loss by osmosis. The thin peptidoglycan layer of gram-negative microorganisms is anchored to the cytoplasmic membrane and can be distended by plasmolysis or even ruptured when plasmolysis is more extreme. Decad and Nikaido (5) observed that the cytoplasmic volume in gram-negative microorganisms was reduced to ∼50% at ∼0.3 M NaCl but that the plasmolysis-induced cell wall damage was minimal. At 0.5 M (2.9%, wt/wt) NaCl, however, they observed cell wall damage in a large fraction of cells. Thus, in the experiments described here we explored the mechanism of the protective effect of NaCl, and specifically cell wall damage in E. coli populations simultaneously exposed to NaCl and either acetic or hydrochloric acid (HCl), by enumeration of both injured and noninjured survivors by culture on media with and without bile salts.  相似文献   

14.
Wada H  Murata N 《Plant physiology》1990,92(4):1062-1069
Changes in glycerolipid and fatty acid composition with a change in growth temperature were studied in the cyanobacterium, Synechocystis PCC6803. Under isothermal growth conditions, temperature did not significantly affect the composition of the various classes of lipids, but a decrease in temperature altered the degree of unsaturation of C18 acids at the sn-1 position, but not that of C16 acids at the sn-2 position of the glycerol moiety in each class of lipids. When the growth temperature was shifted from 38°C to 22°C, the desaturation of C18 acids, but not that of C16 acids, was stimulated. The desaturation of fatty acids occurred only in the light and was inhibited by chloramphenicol, rifampicin and 3-(3,4-dichlorophenyl)-1, 1-dimethylurea, but not by cerulenin, an inhibitor for fatty acid synthesis. These findings suggest that desaturase activities are induced after a shift from a higher to a lower temperature, and that the desaturation of fatty acids is connected with the reactions involved in photosynthetic electron transport.  相似文献   

15.
A Phoma sp., known to produce the pharmaceutically active metabolites squalestatin 1 (S1) and squalestatin 2 (S2), was cultured on malt-extract/agar (MEA) over a range of water activities (a w, 0.995–0.90) and temperatures (10–35 °C) to investigate the influence on growth and metabolite production. Use of the ionic solute NaCl to adjust a w resulted in significantly lower (P < 0.01) squalestatin yields than when the Phoma sp. was grown on MEA amended with the non-ionic solute glycerol. Water activity and temperature and their interactions were highly significant factors (P < 0.001) affecting growth of the Phoma sp., with optimum conditions of 0.998–0.980 a w and 25 °C. Squalestatin production was similarly influenced by a w, temperature, time and their interactions (P < 0.001). S1 and S2 production occurred over a narrower a w and temperature range than growth, with a slightly lower optimum a w range of 0.995–0.980 a w. The optimum temperature for squalestatin production varied from 20 °C (S1) to 25 °C (S2) and yields of S2 were up to 1000 times lower than those of S1. The ratio of S1 and S2 produced by the Phoma sp. was influenced by a w and temperature, with highest values at 0.99–0.98 a w, and at 15 °C. Incubation times of 28 days gave highest yields of both S1 and S2. Up to 2000-fold increases in squalestatin yields were measured at optimum environmental conditions, compared to the unmodified MEA. This indicates the need to consider such factors in screening systems used to detect biologically active lead compounds produced by fungi. Received: 2 June 1997 / Received last revision: 6 November 1997 / Accepted: 7 November 1997  相似文献   

16.
We investigated the effects of temperature, water activity (aw), and syrup film composition on the CFU growth of Wallemia sebi in crystalline sugar. At a high aw (0.82) at both high (20°C) and low (10°C) temperatures, the CFU growth of W. sebi in both white and extrawhite sugar could be described using a modified Gompertz model. At a low aw (0.76), however, the modified Gompertz model could not be fitted to the CFU data obtained with the two sugars due to long CFU growth lags and low maximum specific CFU growth rates of W. sebi at 20°C and due to the fact that growth did not occur at 10°C. At an aw of 0.82, regardless of the temperature, the carrying capacity (i.e., the cell concentration at t = ∞) of extrawhite sugar was lower than that of white sugar. Together with the fact that the syrup film of extrawhite sugar contained less amino-nitrogen relative to other macronutrients than the syrup film of white sugar, these results suggest that CFU growth of W. sebi in extrawhite sugar may be nitrogen limited. We developed a secondary growth model which is able to predict colony growth lags of W. sebi on syrup agar as a function of temperature and aw. The ability of this model to predict CFU growth lags of W. sebi in crystalline sugar was assessed.  相似文献   

17.
The effect of water activity (aw) reduction on growth and acid and diacetyl production by three lactic streptococci was studied. In addition, the influence of low moisture conditions on several bacteria of significance in the fermentation of sauerkraut was examined. The minimal aw supporting growth of dairy lactics was 0.93 in a medium adjusted with glycerol. Media adjusted with sucrose generally were more inhibitory than those in which glycerol was the humectant. Titratable acidity, although not related to the type of humectant, did depend on the aw of the medium and was directly related to the extent of growth. Diacetyl concentration increased in cultures of reduced aw when the media were adjusted with both humectants; however, the effect was greatest with glycerol. A lactic strain associated with sauerkraut fermentation appeared to grow at a lower minimal aw in a glycerol-adjusted medium than in a system adjusted with NaCl; however, none of the sauerkraut organisms grew at aw levels of <0.95 when NaCl was the solute. Acid production appeared to be related to the presence and extent of growth at all of the aw levels studied.  相似文献   

18.
Enhanced Broth Media for Selective Growth of Vibrio vulnificus   总被引:1,自引:0,他引:1       下载免费PDF全文
Rapid detection of Vibrio vulnificus can be enhanced by optimizing the components of enrichment broth. PNC (5% peptone, 1% NaCl, and 0.08% cellobiose [pH 8.0]) enhanced the growth of V. vulnificus compared to alkaline peptone broth. PNCC (PNC with 1.0 to 4.1 U of colistin methanesulfonate per ml) increased the growth of low levels of V. vulnificus while suppressing non-target bacteria.  相似文献   

19.
During submerged culture in the presence of glucose and glutamate, the filamentous fungus Monascus ruber produces water-soluble red pigments together with citrinin, a mycotoxin with nephrotoxic and hepatoxic effects on animals. Analysis of the 13C-pigment molecules from mycelia cultivated with [1-13C]-, [2-13C]-, or [1,2-13C]acetate by 13C nuclear magnetic resonance indicated that the biosynthesis of the red pigments used both the polyketide pathway, to generate the chromophore structure, and the fatty acid synthesis pathway, to produce a medium-chain fatty acid (octanoic acid) which was then bound to the chromophore by a trans-esterification reaction. Hence, to enhance pigment production, we tried to short-circuit the de novo synthesis of medium-chain fatty acids by adding them to the culture broth. Of fatty acids with carbon chains ranging from 6 to 18 carbon atoms, only octanoic acid showed a 30 to 50% stimulation of red pigment production, by a mechanism which, in contrast to expectation, did not involve its direct trans-esterification on the chromophore backbone. However, the medium- and long-chain fatty acids tested were readily assimilated by the fungus, and in the case of fatty acids ranging from 8 to 12 carbon atoms, 30 to 40% of their initial amount transiently accumulated in the growth medium in the form of the corresponding methylketone 1 carbon unit shorter. Very interestingly, these fatty acids or their corresponding methylketones caused a strong reduction in, or even a complete inhibition of, citrinin production by M. ruber when they were added to the medium. Several data indicated that this effect could be due to the degradation of the newly synthesized citrinin (or an intermediate in the citrinin pathway) by hydrogen peroxide resulting from peroxisome proliferation induced by medium-chain fatty acids or methylketones.  相似文献   

20.
The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号