首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of Trypanosoma cruzi mitochondrial ATPase (Fo-F1) with the xanthine oxidase system (XO), Fenton's reagent (Fe2+ + H2O2) and the ascorbate-Cu system, caused gradual loss of enzyme activity, which increased as a function of incubation time and rate of oxygen radical generation. The essential role of OH. radicals for ATPase inactivation was supported by a) the enzyme protection afforded by superoxide dismutase, catalase and mannitol, when using the XO system; b) the similar effect of mannitol and benzoate with Fenton's reagent; c) the similar effect of catalase, EDTA and histidine with the ascorbate-Cu system; d) the increased rate of ATPase inactivation by 1) the XO system supplemented with chelated iron, and 2) the ascorbate-Cu system supplemented with H2O2. Comparison of oxygen radical generators for their action on membrane-bound (Fo-F1) and soluble F1 revealed that ascorbate-Cu was the most effective one, possibly because of its capability of producing OH. radicals that react preferentially with the enzyme at their formation site.  相似文献   

2.
Treatment of the plasma membrane H+-ATPase of Neurospora crassa with the arginine-specific reagents phenylglyoxal or 2,3-butanedione at 30 degrees C, pH 7.0, leads to a marked inhibition of ATPase activity. MgATP, the physiological substrate of the enzyme, protects against inactivation. MgADP, a competitive inhibitor of ATPase activity with a measured Ki of 0.11 mM, also protects, yielding calculated KD values of 0.125 and 0.115 mM in the presence of phenylglyoxal and 2,3-butanedione, respectively. The excellent agreement between Ki and KD values makes it likely that MgADP exerts its protective effect by binding to the catalytic site of the enzyme. Loss of activity follows pseudo-first order kinetics with respect to phenylglyoxal and 2,3-butanedione concentration, and double log plots of pseudo-first order rate constants versus reagent concentration yield slopes of 0.999 (phenylglyoxal) and 0.885 (2,3-butanedione), suggesting that the modification of one reactive site/mol of H+-ATPase is sufficient for inactivation. This stoichiometry has been confirmed by direct measurements of the incorporation of [14C]phenylglyoxal. Taken together, the results support the notion that one arginine residue, either located at the catalytic site or shielded by a conformational change upon nucleotide binding, plays an essential role in Neurospora H+-ATPase activity.  相似文献   

3.
The mitochondrial ATPase is rapidly inactivated by the arginine selective reagent phenylglyoxal. Recently, the purported major reacting residue has been reported for the chloroplast enzyme (Viale, A. M., and Vallejos, R. H. (1985) J. Biol. Chem. 260, 4958-4962) corresponding to Arg-328 in the beta-subunit of the yeast Saccharomyces cerevisiae mitochondrial ATPase, a highly conserved residue in the ATPase. This arginine residue was concluded to be in the active site of the ATPase and possibly involved in the binding of nucleotides. To test this hypothesis, site-directed mutagenesis of the yeast enzyme has been used to replace Arg-328 with alanine and lysine. The modified genes were transformed into a yeast strain, DMY111, which contained a null mutation in the gene coding for the beta-subunit of the ATPase. Both of the substitutions were functional in vivo as demonstrated by the ability of yeast transformants to grow on a nonfermentable carbon source. The water soluble F1-ATPase with Ala-328 and Lys-328 were extremely unstable, but could be stabilized with glycerol. The rate of enzymatic decay followed first order kinetics with half-lives of 1.1 and 4.0 min for the mutants with Ala-328 and Lys-328 in 10% and 5% glycerol, respectively, while the wild type enzyme was stable even in the absence of glycerol. Kinetic analysis of both ATPase and GTPase has been determined. The wild type enzyme had two observable apparent Km and Vmax values for ATPase which were 0.056 mM-1 and 67 units/min/mg and 0.140 mM-1 and 100 units/min/mg. The mutant enzyme containing Lys-328 showed similar kinetic values of 0.066 mM-1 and 23 units/min/mg and 0.300 mM-1 and 43 units/min/mg. The mutant enzyme containing Ala-328, however, only demonstrated a single site with values of 0.121 mM-1 and 45 units/min/mg. In contrast to ATPase activity, kinetic values for GTPase were nearly identical for the wild type and mutant enzymes. Opposite to predicted results, the mutant enzymes were more sensitive to the reagent phenylglyoxal. These results indicate that Arg-328 is important for protein stability, but not involved in catalysis.  相似文献   

4.
Treatment of purified ATPase of the thermophilic bacterium PS-3 with the arginine reagent phenylglyoxal or with Woodward's reagent K, gave complete inactivation of the enzyme. The inactivation rates followed apparent first-order kinetics. The apparent order of reaction with respect to inhibitor concentrations gave values near to 1 with both reagents, suggesting that inactivation was a consequence of modifying one arginine or carboxyl group per active site. ADP and ATP strongly protected the thermophilic ATPase against both reagents. GDP and IDP protected less, whilst CTP did not protect. Experiments in which the incorporation of [14C]phenylglyoxal into the enzyme was measured show that extrapolation of incorporation to 100% inactivation of the enzyme gives 8-9 mol [14C]phenylglyoxal per mol ATPase, whilst ADP or ATP prevent modification of about one arginine per mol.  相似文献   

5.
A preparation of purified erythrocyte membrane ATPase whose activation by Ca2+ is or is not dependent on calmodulin depending on the enzyme dilution was used in the low dilution state for these studies. In appropriate conditions, the purified ATPase in the absence of calmodulin exhibited a Ca2+ concentration dependence identical to that of the native enzyme in the erythrocyte membrane ghost in the presence of calmodulin. Accordingly, an apparent Kd approximately equal to 1 X 10(-7) M was derived for cooperative calcium binding to the activating and transport sites of the nonphosphorylated enzyme. The kinetics of enzyme phosphorylation in the transient state following addition of ATP to enzyme activated with calcium were then resolved by rapid kinetic methods, demonstrating directly that phosphoenzyme formation precedes Pi production, consistent with the phosphoenzyme role as an intermediate in the catalytic cycle. Titration of a low affinity site (Kd approximately equal to 2 X 10(-3) M) with calcium produced inhibition of phosphoenzyme cleavage and favored reversal of the catalytic cycle, indicating that calcium dissociation from the transport sites precedes hydrolytic cleavage of the phosphoenzyme. The two different calcium dissociation constants of the nonphosphorylated and phosphorylated enzyme demonstrate that a phosphorylation-induced reduction of calcium affinity is the basic coupling mechanism of catalysis and active transport, with an energy expenditure of approximately 6 kcal/mol of calcium in standard conditions. From the kinetic point of view, a rate-limiting step is identified with the slow dissociation of calcium from the phosphoenzyme; another relatively slow step following hydrolytic cleavage and preceding recycling of the enzyme is suggested by the occurrence of a presteady state phosphoenzyme overshoot.  相似文献   

6.
The inactivation of 3-HBA-6-hydroxylase isolated from Micrococcus species by phenylglyoxal and protection offered by 3-HBA against inactivation indicate the presence of arginine residue at or near the substrate binding site. The loss of enzyme activity was time and concentration dependent and displayed pseudo-first order kinetics. A 'n' value of 0.9 was obtained thus suggesting the modification of a single arginine residue per active site which led to the loss of enzyme activity. The enzyme activity could be restored by extensive dialysis at neutral pH. Quenching of the intrinsic fluorescence and reduction in the ellipticity value at 280 nm in the near-UV CD spectrum of the enzyme was noticed after its treatment with phenylglyoxal. These observations probably imply distinct perturbations in the environment of adjacent aromatic amino acid residues such as tryptophan as a consequence of arginine modification.  相似文献   

7.
The flavoprotein nitroalkane oxidase from the fungus Fusarium oxysporum catalyzes the oxidative denitrification of primary or secondary nitroalkanes to yield the respective aldehydes or ketones, hydrogen peroxide and nitrite. The enzyme is inactivated in a time-dependent fashion upon treatment with the arginine-directed reagents phenylglyoxal, 2,3-butanedione, and cyclohexanedione. The inactivation shows first order kinetics with all reagents. Valerate, a competitive inhibitor of the enzyme, fully protects the enzyme from inactivation, indicating that modification is active site directed. The most rapid inactivation is seen with phenylglyoxal, with a k(inact) of 14.3 +/- 1.1 M(-1) min(-1) in phosphate buffer at pH 7.3 and 30 degrees C. The lack of increase in the enzymatic activity of the phenylglyoxal-inactivated enzyme after removing the unreacted reagent by gel filtration is consistent with inactivation being due to covalent modification of the enzyme. A possible role for an active site arginine in substrate binding is discussed.  相似文献   

8.
The (Ca2+ + Mg2+)-dependent ATPase of sarcoplasmic reticulum has been shown to ast as a Ca2+-dependent and selective ionophore in artificial lipid bilayers. Four fragments of 55,000, 45,000, 30,000, and 20,000 daltons have been purified from tryptic digests of the enzyme and it has been shown that the 55,000- and 45,000-dalton fragments are obtained from a single cleavage of the 100,000-dalton ATPase, while the 30,000- and 20,000-dalton fragments are obtained subsequently by a cleavage of the 55,000-dalton fragment. The 55,000- and 20,000-dalton fragments have ionophore activity inhibited by ruthenium red and by mercuric chloride but not by methylmercuric chloride, an inhibitor of the hydrolytic site of the enzyme. Under standard conditions the 45,000-dalton fragment was not active as an ionophore, while the 30,000-dalton fragment acted as a nonselective ionophore. The 55,000- and 30,000-dalton fragments have been shown to contain the site of phosphorylation and of N-ethyl [2-3H]-maleimide binding indicative of the hydrolytic site in the enzyme, and this site is absent from the 20,000-dalton fragment. Therefore, the ionophoric and hydrolytic sites are localized in separate regions of the ATPase molecule and they have now been physically separated. The 20,000-dalton fragment was degraded with cyanogen bromide and fragments were separated by molecular sieving. Ionophore activity was found in fragments of molecular mass less than 2,000 daltons.  相似文献   

9.
The effect of the arginine-specific reagents phenylglyoxal and butanedione on the activity of neutral endopeptidase 24.11 ("enkephalinase") was determined. Inactivation of the enzyme by butanedione is completely protected by methionine-enkephalin, but only partially protected by methionine-enkephalinamide. In contrast, phenylglyoxal inactivation of the enzyme exhibits saturation kinetics with a Kd of 20 mM. The enzyme is only partially protected against phenylglyoxal inactivation by both methionine-enkephalin and its amide, indicating that phenylglyoxal reacts at two sites. Reaction of the enzyme with phenylglyoxal in the presence of saturating methionine-enkephalin involves the direct reaction of the reagent with the enzyme-substrate complex. Enzyme treated with butanedione or with phenylglyoxal (at site 1) exhibits a 3-5 decrease in substrate binding with little change in kcat. In contrast, reaction with phenylglyoxal in the presence of saturating methionine-enkephalin shows little change in substrate binding but a 4-fold decrease in kcat. Enzyme inactivation involves the incorporation of approximately 1 mol of phenylglyoxal/enzyme subunit in the absence of methionine-enkephalin and approximately 2.5 mol of phenylglyoxal/enzyme subunit in the presence of saturating methionine-enkephalin. These results suggest that an arginine residue on the enzyme is involved in substrate binding.  相似文献   

10.
Studies of phenylglyoxal incorporation by beef-heart mitochondrial ATPase reveal one fast-reacting arginyl residue/enzyme molecule. Modification of this group proceeds at a rate which parallels the loss of enzymatic activity. Efrapeptin protects the arginyl residue from reaction with phenylglyoxal. The data suggest that efrapeptin binds at the catalytic site and blocks accessibility of an essential arginine at the adenine nucleotide binding site. The detection of a single, fast-reacting, essential arginine on an enzyme with multiple copies of the catalytic subunit, provides further evidence in support of the alternating site mechanism for ATP synthesis proposed by Kayalar et al. (Kayalar, C., Rosing, J., and Boyer, P.D. (1977) J.Biol. Chem. 252, 2486--2491).  相似文献   

11.
The mercuric reductase from Yersinia enterocolitica 138A14 was inactivated by the arginine modifying reagents 2,3-butanedione and phenylglyoxal. The inactivation by 2,3-butanedione exhibited second order kinetics with rate constant of 32 min-1 M-1. In the case of phenylglyoxal, biphasic kinetics were observed. The oxidized coenzyme (NADP+) prevented inactivation of the enzyme by the alpha-dicarbonyl reagents, whereas the reduced coenzyme (NADPH) enhanced the inactivation rate. The loss of enzyme activity was related to the incorporation of [2-14C] phenylglyoxal; when two arginines per subunit were modified the enzyme was completely inactivated.  相似文献   

12.
Nonactivated phosphorylase kinase from rabbit skeletal muscle is inactivated by treatment with phenylglyoxal. Under mild reaction conditions, a derivative that retains 10-15% of the pH 8.2 catalytic activity is obtained. The kinetics of inactivation profile, differential effects of modification on pH 6.8 and 8.2 catalytic activities, and the insensitiveness of the modified enzyme to activation by ADP reveal that the 10-15% of catalytic activity remaining is very likely due to intrinsic catalytic activity of the derivative rather than to the presence of unmodified enzyme molecules. The kinetic results also suggest that the inactivation is correlatable with the reaction of one molecule of the reagent with the enzyme without any prior binding of phenylglyoxal. The phenylglyoxal modification reduces the autophosphorylation rate of the kinase. Autophosphorylated phosphorylase kinase is inactivated by phenylglyoxal at a much slower rate than the inactivation of nonactivated kinase. Thus, phenylglyoxal modification influences the phosphorylation and vice versa. The modified enzyme can be reactivated by treatment with trypsin or by dissociation using chatropic salts. The activity of the phenylglyoxal-modified enzyme after trypsin digestion or dissociation with LiBr reaches the same level as that of the native enzyme digested with trypsin or treated with LiBr under identical conditions. The results suggest that the effect of modification is overcome by dissociation of the subunits of phosphorylase kinase and that the catalytic site is not modified under conditions when 85% of the pH 8.2 catalytic activity is lost. Among various nucleotides and metal ions tested, only ADP, with or without Mg2+, afforded effective protection against inactivation with phenylglyoxal. At pH 6.8, 1 mM ADP afforded complete protection against inactivation. Experiments with 14C-labeled phenylglyoxal revealed that ADP seemingly protects one residue from modification. This result is in agreement with the kinetic result that the inactivation seemingly is due to reaction of one molecule of the reagent with the enzyme. The results confirm the existence of a high-affinity ADP binding site on nonactivated phosphorylase kinase and suggest the involvement of a functional arginyl residue at or near the ADP binding site in the regulation of of pH 8.2 catalytic activity of the enzyme.  相似文献   

13.
A N Glazer 《FASEB journal》1988,2(9):2487-2491
Attack by reactive oxygen species leads to a decay in phycoerythrin fluorescence emission. This phenomenon provides a versatile new assay for small molecules and macromolecules that can function as protective compounds. With 1-2 x 10(-8) M phycoerythrin, under conditions where peroxyl radical generation is rate-limiting, the fluorescence decay follows apparent zero-order kinetics. On reaction with HO., generated with the ascorbate-Cu2+ system, the fluorescence decays with apparent first-order kinetics. Examination of the major components of human urine in this assay confirms that at physiological concentrations, urate protects against both types of oxygen radicals. A novel finding is that creatinine protects efficiently by a chelation mechanism against radical damage in the ascorbate-Cu2+ system at creatinine, ascorbate, and Cu2+ concentrations comparable to those in normal urine. Urate and creatinine provide complementary modes of protection against reactive oxygen species in the urinary tract.  相似文献   

14.
Rat liver ATP citrate lyase was inactivated by 2, 3-butanedione and phenylglyoxal. Phenylglyoxal caused the most rapid and complete inactivation of enzyme activity in 4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid buffer, pH 8. Inactivation by both butanedione and phenylglyoxal was concentration-dependent and followed pseudo- first-order kinetics. Phenylglyoxal also decreased autophosphorylation (catalytic phosphate) of ATP citrate lyase. Inactivation by phenylglyoxal and butanedione was due to the modification of enzyme arginine residues: the modified enzyme failed to bind to CoA-agarose. The V declined as a function of inactivation, but the Km values were unaltered. The substrates, CoASH and CoASH plus citrate, protected the enzyme significantly against inactivation, but ATP provided little protection. Inactivation with excess reagent modified about eight arginine residues per monomer of enzyme. Citrate, CoASH and ATP protected two to three arginine residues from modification by phenylglyoxal. Analysis of the data by statistical methods suggested that the inactivation was due to modification of one essential arginine residue per monomer of lyase, which was modified 1.5 times more rapidly than were the other arginine residues. Our results suggest that this essential arginine residue is at the CoASH binding site.  相似文献   

15.
Three catalytic sites in mitochondrial ATPase   总被引:1,自引:0,他引:1  
Kinetic data obtained after determining the hydrolytic activity of ATPase from rat liver in preparations where the enzyme had been purified, or in mitochondria, strongly suggest the existence of three different catalytic sites with different affinity for the substrate. The results obtained when measuring the ATPase activity at different substrate concentrations, and in the presence of the inhibitors KOCN or KSCN, or of the activators dinitrophenol and bicarbonate, show that the binding of these compounds to a regulatory site or sites affects in a different degree the hydrolytic activity of each catalytic site.  相似文献   

16.
4-Hydroxyisophthalate hydroxylase was inactivated by treatment with phenylglyoxal by a process obeying pseudo-first order kinetics indicating the presence of an essential arginine located presumably in the active site. Addition of saturating amounts of 4-hydroxyisophthalate during the treatment resulted in complete protection of the enzyme from the inactivation, but addition of NADPH was totally ineffective. Analysis of the effect of various substrate analogs on the protection of the enzyme showed that carboxyl and hydroxyl groups at para positions on the aromatic ring are essential for substrate binding to the active site. It was also observed that analogs which protect the enzyme against phenylglyoxal inactivation are themselves effective inhibitors of the enzyme activity.  相似文献   

17.
The rate of inactivation of the mitochondrial F1-ATPase by dicyclohexylcarbodiimide is slowed by concentrations of chlorpromazine, dibucaine, or tetracaine which have been shown by others (B. Chazotte, G. Vanderkooi, and D. Chignell (1982)Biochim. Biophys. Acta680, 310–316) to inhibit the hydrolytic reaction catalyzed by the enzyme. The order of effectiveness of the drugs as protectors of the enzyme against inactivation by dicyclohexylcarbodiimide is: chlorpromazine > dibucaine > tetracaine. Examination of the steady state kinetics showed the chlorpromazine inhibits the ATPase competitively at concentrations up to 18.5 μM while complex kinetic behavior is exhibited at chlorpromazine concentrations from 25–50 μM. These results suggest that the drugs inhibit the F1-ATPase by interacting with the catalytic site of the enzyme and not by promoting its dissociation.  相似文献   

18.
UDP-glucose 4-epimerase from Saccharomyces fragilis was inactivated by the arginine-specific reagents phenylglyoxal, 1,2-cyclohexanedione, and 2,3-butanedione following pseudo first order reaction kinetics. The reaction order with respect to phenylglyoxal was 1.8 and that with respect to the other two diones was close to unity. Protection afforded by substrate and competitive inhibitors against inactivation by phenylglyoxal and the reduced interaction of 1-anilinonaphthalene 8-sulfonic acid, a fluorescent probe for the substrate-binding region after phenylglyoxal modification, suggested the presence of an essential arginine residue at the substrate-binding region. Experiments with [7-14C]phenylglyoxal in the presence of UMP, a ligand known to interact at the substrate-binding region, showed that only the arginine residue at the active site could be modified by phenylglyoxal. The characteristic coenzyme fluorescence of the yeast enzyme was found to be enhanced three times in phenylglyoxal-inactivated enzyme suggesting the incorporation of the phenyl ring near the pyridine moiety of NAD.  相似文献   

19.
The ATPase activity of soluble chloroplast coupling factor (CF1) was irreversibly inactivated by phenylglyoxal, an arginine reagent. Under the conditions of inactivation, 2.48 mol of [14C]phenylglyoxal were incorporated per 400,000 g of enzyme when the ATPase was inactivated 50% by the reagent. Isolation of the component polypeptide subunits of the [14C]phenylglyoxal-modified enzyme revealed that the distribution of moles of labeled reagent/mol of subunit was the following: alpha, 0.37; beta, 0.40; gamma, 0.08; delta, none; epsilon, 0.03. CNBr treatment of the isolated alpha and beta subunits and fractionation of the peptides by gel electrophoresis revealed that the radioactivity bound to the alpha subunit was nonspecifically associated with several peptides, while a single peptide derived from the beta subunit contained the majority of the radioactivity associated with this subunit. After treating the isolated beta subunit with trypsin and Staphylococcus aureus protease, a major radioactive peptide was isolated with a sequence Arg-Ile-Thr-Ser-Ile-Lys. This sequence, when compared with the primary structure of the CF1 beta subunit as translated from the gene (Zurawski, G., Bottomley, W., and Whitfeld, P. R. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 6260-6264) indicated that the arginine marked with the asterisk, the predominant residue modified by phenylglyoxal when the ATPase activity of CF1 is inactivated by the reagent, is Arg 312.  相似文献   

20.
Chemical modification of carboxypeptidase Ag1 from goat pancreas with phenylglyoxal or ninhydrin led to a loss of enzymatic activity. The inactivation by phenylglyoxal in 200 mM N-ethylmorpholine, 200 mM sodium chloride buffer, pH 8.0, or in 300 mM borate buffer, pH 8.0, followed pseudo-first-order kinetics at all concentrations of the modifier. The reaction order with respect to phenylglyoxal was 1.68 and 0.81 in 200 mM N-ethylmorpholine, 200 mM NaCl buffer and 300 mM borate buffer, pH 8.0, respectively, indicating modification of single arginine residue per mole of enzyme. The kinetic data were supported by amino acid analysis of modified enzyme, which also showed the modification of single arginine residue per mole of the enzyme. The modified enzyme had an absorption maximum at 250 nm, and quantification of the increase in absorbance showed modification of single arginine residue. Modification of arginine residue was protected by beta-phenylpropionic acid, thus suggesting involvement of an arginine residue at or near the active site of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号