首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Microbially synthesized fatty acids are an attractive platform for producing renewable alternatives to petrochemically derived transportation fuels and oleochemicals. Free fatty acids (FFA) are a direct precursor to many high-value compounds that can be made via biochemical and ex vivo catalytic pathways. To be competitive with current petrochemicals, flux through these pathways must be optimized to approach theoretical yields. Using a plasmid-free, FFA-producing strain of Escherichia coli, a set of chemostat experiments were conducted to gather data for FFA production under phosphate limitation. A prior study focused on carbon-limited conditions strongly implicated non-carbon limitations as a preferred media formulation for maximizing FFA yield. Here, additional data were collected to expand an established kinetic model of FFA production and identify targets for further metabolic engineering. The updated model was able to successfully predict the strain’s behavior and FFA production in a batch culture. The highest yield observed under phosphate-limiting conditions (0.1 g FFA/g glucose) was obtained at a dilution rate of 0.1 h?1, and the highest biomass-specific productivity (0.068 g FFA/gDCW/h) was observed at a dilution rate of 0.25 h?1. Phosphate limitation increased yield (~45 %) and biomass-specific productivity (~300 %) relative to carbon-limited cultivations using the same strain. FFA production under phosphate limitation also led to a cellular maintenance energy ~400 % higher (0.28 g/gDCW/h) than that seen under carbon limitation.  相似文献   

2.
3.
We have followed, in glucose-limited chemostats, the evolution of natural isolates of Escherichia coli possessing maximal growth rates of 0.48-1.43 doublings/h. Under these conditions a rapid-growth phenotype similar to that of standard laboratory wild-type strains was selected so that after 280 generations all of the cultures were characterized by bacteria with maximum growth rates close to 1.33 doublings/h. The growth yields of the natural isolates, on the other hand, were quite uniform and improved only slightly during the selection; it seems that the natural isolates are nearly maximally efficient at utilizing glucose. Some of the kinetic characteristics of ribosomes prepared from natural isolates vary markedly and in proportion to the growth rates of the original strains. After growth in glucose-limited chemostats, the ribosomes of all of the cultures become kinetically indistinguishable from those of laboratory wild-type bacteria. These observations confirm the interpretation that bacteria grown under normal laboratory conditions have been selected for maximum growth rates which demand maximum translation efficiency. In contrast, these characteristics do not seem to be strongly selected in the natural isolates.  相似文献   

4.

Background

Recombinant protein production is a process of great industrial interest, with products that range from pharmaceuticals to biofuels. Since high level production of recombinant protein imposes significant stress in the host organism, several methods have been developed over the years to optimize protein production. So far, these trial-and-error techniques have proved laborious and sensitive to process parameters, while there has been no attempt to address the problem by applying Synthetic Biology principles and methods, such as integration of standardized parts in novel synthetic circuits.

Results

We present a novel self-regulatory protein production system that couples the control of recombinant protein production with a stress-induced, negative feedback mechanism. The synthetic circuit allows the down-regulation of recombinant protein expression through a stress-induced promoter. We used E. coli as the host organism, since it is widely used in recombinant processes. Our results show that the introduction of the self-regulatory circuit increases the soluble/insoluble ratio of recombinant protein at the expense of total protein yield. To further elucidate the dynamics of the system, we developed a computational model that is in agreement with the observed experimental data, and provides insight on the interplay between protein solubility and yield.

Conclusion

Our work introduces the idea of a self-regulatory circuit for recombinant protein products, and paves the way for processes with reduced external control or monitoring needs. It demonstrates that the library of standard biological parts serves as a valuable resource for initial synthetic blocks that needs to be further refined to be successfully applied in practical problems of biotechnological significance. Finally, the development of a predictive model in conjunction with experimental validation facilitates a better understanding of the underlying dynamics and can be used as a guide to experimental design.  相似文献   

5.
6.
7.
8.
9.
Penicillin-binding protein (PBP)-2 and the RodA protein are known to function in determining the rod shape of Escherichia coli cells. Peptidoglycan biosynthetic reactions that required these two proteins were demonstrated in the membrane fraction prepared from an E. coli strain that overproduced both of these two proteins and which lacked PBP-1B activity (the major peptidoglycan synthetase activity in the normal E. coli membranes). The cross-linked peptidoglycan was synthesized from UDP-N-acetylmuramylpentapeptide and UDP-N-acetylglucosamine in the presence of a high concentration of cefmetazole that inhibited all of PBPs except PBP-2. The peptidoglycan was synthesized via a lipid intermediate and showed up to 30% cross-linking. The cross-linking reaction was strongly inhibited by the amidinopenicillin, mecillinam, and by other beta-lactam antibiotics that have a high affinity for PBP-2, but not by beta-lactams that had very low affinity for PBP-2. The formation of peptidoglycan required the presence of high levels of both PBP-2 and the RodA protein in the membranes, but it is unclear which of the two proteins was primarily responsible for the extension of the glycan chains (transglycosylation). However, the sensitivity of the cross-linking reaction to specific beta-lactam antibiotics strongly suggested that it was catalyzed by PBP-2. The transglycosylase activity of the membranes was sensitive to enramycin and vancomycin and was unusual in being stimulated greatly by a high concentration of a chelating agent.  相似文献   

10.
New secretion vectors containing synthetic signal peptides were constructed to study the periplasmic translocation of green fluorescent protein (GFP) in Escherichia coli. These constructs encode synthetic signal peptides spA and spD fused to the amino terminal end of GFP, and expressed from T7/lac promoter in the BL21DE3 strain by induction with IPTG. The recombinant protein was detected in both the cytoplasmic and periplasmic fractions. Fluorescence analysis revealed that recombinant proteins with signal peptides were not fluorescent, indicating translocation to periplasmic space. In contrast, recombinant proteins without signal peptide were fluorescent. These results indicate that the expressed recombinant proteins were translocated into the periplasm. Therefore, the synthetic signal peptides derived from signal peptides of Bacillus sp. could efficiently secrete the heterologous proteins to the periplasmic space of E. coli.  相似文献   

11.
大肠杆菌合成1,2,4-丁三醇的途径优化   总被引:1,自引:0,他引:1  
1,2,4-丁三醇(BT)是一种在工业中有多种用途的重要的非天然化合物。文中通过将外源基因xdh和mdlC导入大肠杆菌BW25113表达,并敲除了xylA、xylB、yagE、yjhH、yiaE和ycdW等木糖和中间产物代谢旁路基因,构建了能够将D-木糖转化为BT的重组菌株。为优化BT合成途径,针对BT合成途径中的限速步骤——3-脱氧-D-甘油-戊酮糖酸的脱羧反应,进行了新酶的筛选和评价,获得了可显著提高反应效率的新的2-酮酸脱羧酶——KivD,并构建了表达该酶的重组菌株BW-025。在此基础上,通过初步条件优化,将BT产量提高至2.38g/L;进一步调节途径中各个酶的表达量,探究了它们对BW-025合成BT的影响,最终获得了BT产量较BW-025提高了48.62%的重组菌株BW-074。  相似文献   

12.
The influence of growth rate, the presence of acetate and variation in the dissolved oxygen concentration on the kinetics of nitrite oxidation was studied in suspensions of intact cells of Nitrobacter winogradskyi and Nitrobacter hamburgensis. The cells were grown in nitrite-limited chemostats at different dilution rates under chemolithotrophic and mixotrophic conditions. Growth of N. hamburgensis in continuous culture was dependent on the presence of acetate. Acetate hardly affected the maximal nitrite oxidation rate per cell (V max), but displayed a distinctly negative effect on the saturation constants for nitrite oxidation (K m ) of both Nitrobacter species. This effect was reversible; when acetate was removed from the suspensions the K m -values for nitrite oxidation returned to their original values. A reduction of the dissolved oxygen concentration from 100% to 18% air saturation slightly decreased the V max of chemolithotrophically grown N. winogradskyi cells, whereas a 2.3 fold increase was observed with mixotrophically grown cells of N. hamburgensis. It is suggested that the large variation in K m encountered in field samples could be due to this observed phenotypic variability. The V max per cell is not a constant, but apparently is dependent on growth rate and environmental conditions. This implies that potential nitrite oxidation activity and numbers of cells are not necessarily related. Considering their kinetic characteristics, it is unlikely that N. hamburgensis is able to compete succesfully with N. winogradskyi for limiting amounts of nitrite under mixotrophic conditions. However, at reduced partial oxygen tensions, N. hamburgensis may become the better competitor.  相似文献   

13.
A tyrosine-requiring strain of Escherichia coli was grown in tyrosine-limited chemostats at a range of dilution rates between 0.08 h-1 and 0.42 h-1, conditions which always resulted in the selection of a prototrophic revertant population able to synthesise tyrosine. Analysis of the two-membered mixed cultures which arose showed that the prototrophic population outgrew the auxotroph since its growth rate was not restricted by the growth-limiting concentrations of exogenous tyrosine. During the take-over of the culture, the prototroph population grew exponentially but the specific growth rate increased with decreasing dilution rate of the competition experiments. In glucose-limited chemostats (in the presence of non-growth-limiting concentrations of tyrosine) of the tyrosine-requiring strain, prototrophs were never detected. Constructed two-membered mixed cultures with both populations competing for limiting amounts of glucose, showed that the prototroph was less competitive than the auxotroph.This work was supported by a grant from the Science Research Council.  相似文献   

14.
15.
16.
17.
Recombinant protein production in Escherichia coli   总被引:8,自引:0,他引:8  
Nuc P  Nuc K 《Postepy biochemii》2006,52(4):448-456
Growing needs for efficient recombinant production pose new challenges; starting from cell growth optimization under overexpression conditions, improving vectors, gene and protein sequence to suit them to protein biosynthesis machinery of the host, through extending the knowledge of protein folding, fusion protein construction, and coexpression systems, to improvements in protein purification and renaturation technologies. Hitherto Escherichia coli is the most defined and the cheapest protein biosynthesis system. With its wealth of available mutants tested is the best suited to economically test new gene constructs and to scale up the recombinant protein production.  相似文献   

18.
The secretory production of recombinant proteins by the Gram-negative bacterium Escherichia coli has several advantages over intracellular production as inclusion bodies. In most cases, targeting protein to the periplasmic space or to the culture medium facilitates downstream processing, folding, and in vivo stability, enabling the production of soluble and biologically active proteins at a reduced process cost. This review presents several strategies that can be used for recombinant protein secretion in E. coli and discusses their advantages and limitations depending on the characteristics of the target protein to be produced.  相似文献   

19.
20.
N-acetylneuraminic acid (NeuAc) has recently drawn much attention owing to its wide applications in many aspects. Besides extraction from natural materials, production of NeuAc was recently focused on enzymatic synthesis and whole-cell biocatalysis. In this study, we designed an artificial NeuAc biosynthetic pathway through intermediate N-acetylglucosamine 6-phosphate in Escherichia coli. In this pathway, N-acetylglucosamine 2-epimerase (slr1975) and glucosamine-6-phosphate acetyltransferase (GNA1) were heterologously introduced into E. coli from Synechocystis sp. PCC6803 and Saccharomyces cerevisiae EBY100, respectively. By derepressing the feedback inhibition of glucosamine-6-phosphate synthase, increasing the accumulation of N-acetylglucosamine and pyruvate, and blocking the catabolism of NeuAc, we were able to produce 1.62 g l?1 NeuAc in recombinant E. coli directly from glucose. The NeuAc yield reached 7.85 g l?1 in fed-batch fermentation. This process offered an efficient fermentative method to produce NeuAc in microorganisms using glucose as carbon source and can be optimized for further improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号