首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The levels of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, lactate dehydrogenase, and cyclic phosphodiesterase activities were examined in growing and starving plasmodia of Physarum polycephalum. The activities of lactate dehydrogenase, 6-phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase decreased whereas that of cyclic phosphodiesterase increased. The change in activity of lactate dehydrogenase was the result of the variation of the activity of a single enzyme quite similar to the lactate dehydrogenases of higher animals.  相似文献   

2.
Glucose-6-phosphate dehydrogenase is a rate-limiting enzyme of pentose phosphate pathway, existing in cytosolic and plastidic compartments of higher plants. A novel gene encoding plastidic glucose-6-phosphate dehydrogenase was isolated from rice (Oryza sativa L.) and designated OsG6PDH2 in this article. Through semiquantitative RT-PCR approach it was found that OsG6PDH2 mRNA was weakly expressed in rice leaves, stems, immature spikes or flowered spikes, and a little higher in roots. However, the expression of OsG6PDH2 in rice seedlings was significantly induced by dark treatment. The complete opening reading frame (ORF) of OsG6PDH2 was inserted into pET30a (+), and expressed in Escherichia coli strain BL21 (DE3). The enzyme activity assay of transformed bacterial cells indicated that OsG6PDH2 encoding product had a typical function of glucose-6-phosphate dehydrogenase.  相似文献   

3.
The activities of glycolytic and other enzymes of carbohydrate metabolism were measured in free-living and parasitic stages of the rabbit stomach worm Obeliscoides cuniculi. Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, phosphoglucomutase, hexokinase, glucosephosphate isomerase, phosphofructokinase, aldolase, triosephosphate isomerase, α-glycerophosphatase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase, pyruvate kinase, phosphoenol pyruvate carboxykinase, lactate dehydrogenase, alcohol dehydrogenase, and glucose-6-phosphatase activities were present in worms recovered 14, 20 and 190 days postinfection.The presence of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, and glucose-6-phosphatase indicates the possible function of a pentose phosphate pathway and a capacity for gluconeogenesis, respectively, in these worms.The ratio of pyruvate kinase (PK) to phosphoenol pyruvate carboxykinase (PEPCK) less than I in parasitic stages suggests that their most active pathway is that fixing CO2 into phosphoenol pyruvate to produce oxaloacetate.Low levels of glucose-6-phosphate dehydrogenase, triosephosphate isomerase, PEPCK and PK were recorded in infective third-stage larvae stored at 5°C for 5 and 12 mos. The ratio of PK to PEPCK greater than 1 indicates that infective larvae preferentially utilize a different terminal pathway than the parasitic stages.  相似文献   

4.
The metabolism of sucrose to long chain fatty acids in the endosperm of developing castor bean (Ricinus communis L.) seeds requires a combination of cytosolic and proplastid enzymes. The total activity and the subcellular distribution of the intermediate enzymic steps responsible for the conversion of sucrose to pyruvate have been determined. Hexose phosphate synthesis from sucrose occurs in the cytosol along with the first oxidative step in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase. The proplastids contain the necessary complement of glycolytic enzymes to account for the in vivo rates of acetate synthesis from glucose 6-phosphate. These organelles also contain the majority of the cellular 6-phosphogluconate dehydrogenase, transketolase, and transaldolase activities.  相似文献   

5.
When intact Kalanchoë plants are illuminated NADP-linked malic dehydrogenase and three enzymes of the reductive pentose phosphate pathway, ribulose-5-phosphate kinase, NADP-linked glyceraldehyde-3-phosphate dehydrogenase, and sedoheptulose-1,7-diphosphate phosphatase, are activated. In crude extracts these enzymes are activated by dithiothreitol treatment. Light or dithiothreitol treatment does not inactivate the oxidative pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase. Likewise, neither light, in vivo, nor dithiothreitol, in vitro, affects fructose-1,6-diphosphate phosphatase. Apparently the potential for modulation of enzyme activity by the reductively activated light effect mediator system exists in Crassulacean acid metabolism plants, but some enzymes which are light-dark-modulated in the pea plant are not in Kalanchoë.  相似文献   

6.
The relative substrate specificities of glucose dehydrogenases (E.C. 1.1.1.47) from beef liver and rat liver are very different. The beef enzyme oxidizes glucose more rapidly than either glucose-6-phosphate or galactose-6-phosphate. On the other hand, the dehydrogenase from rat liver prefers the hexose phosphates to glucose.A procedure for estimating the level of glucose dehydrogenase in rat and beef liver is described. The glucose-6-phosphate dehydrogenase activity attributed to glucose dehydrogenases is estimated to be about one-fifth and one-third that of cytoplasmic glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) in female and male rat liver respectively.A fluorometric adaptation of the less sensitive spectrophotometric assay for glucose dehydrogenase is described.  相似文献   

7.
Murine hexose-6-phosphate dehydrogenase has been purified from liver microsomes by affinity chromatography on 2('),5(')-ADP-Sepharose. The purified enzyme has 6-phosphogluconolactonase activity and glucose-6-phosphate dehydrogenase activity and has a native molecular mass of 178 kDa and a subunit molecular mass of 89 kDa. Glucose 6-phosphate, galactose 6-phosphate, 2-deoxyglucose 6-phosphate, glucosamine 6-phosphate, and glucose 6-sulfate are substrates for murine hexose-6-phosphate dehydrogenase, with either NADP or deamino-NADP as coenzyme. This study confirms that hexose-6-phosphate dehydrogenase is a bifunctional enzyme which can catalyze the first two reactions of the pentose phosphate pathway.  相似文献   

8.
Docosahexaenoic acid (DHA) is an important and widely used infant food additive. In this study, the effects of phosphate concentration on lipid and especially DHA synthesis in the oleaginous fungi Schizochytrium sp. HX-308 have been investigated in batch cultures. The maximum DHA yield (8.9 g/L) and DHA productivity (148.3 mg/L h) in 0.1 g/L KH2PO4 concentration were higher than the DHA yield (6.2 g/L) and DHA productivity (86.1 mg/L h) in 4 g/L KH2PO4 concentration. Furthermore, differences in related enzyme activities (malic enzyme, glucose-6-phosphate dehydrogenase and NAD+-isocitrate dehydrogenase) between phosphate-sufficient and phosphate-limitation conditions were assayed. The results showed that the phosphate-limitation condition could maintain higher activities of malic enzyme and glucose-6-phosphate dehydrogenase in addition to lower activity of NAD+-isocitrate dehydrogenase. In addition, glucose-6-phosphate dehydrogenase might be the main supplier of NADPH at the early stage of fermentation while malic enzyme might be the provider at the late stage. This information might explain the regulation mechanism of phosphate limitation for lipid production and be useful for further DHA production enhancement.  相似文献   

9.
The subcellular distribution of NADP+ and NAD+-dependent glucose-6-phosphate and galactose-6-phosphate dehydrogenases were studied in rat liver, heart, brain, and chick brain. Only liver particulate fractions oxidized glucose-6-phosphate and galactose-6-phosphate with either NADP+ or NAD+ as cofactor. While all of the tissues examined had NADP+-dependent glucose-6-phosphate dehydrogenase activity, only rat liver and rat brain soluble fractions had NADP+-dependent galactose-6-phosphate dehydrogenase activity. Rat liver microsomal and rat brain soluble galactose-6-phosphate dehydrogenase activities were kinetically different (Km's 0.5 mm and 10 mm, respectively, for galactose-6-phosphate), although their reaction products were both 6-phosphogalactonate. Rat brain subcellular fractions did not oxidize 6-phosphogalactonate with either NADP+ or NAD+ cofactors but phosphatase activities hydrolyzing 6-phosphogalactonate, galactose-6-phosphate and galactose-1-phosphate were found in crude brain homogenates. In addition, galactose-6-phosphate and 6-phosphogalactonate were tested as inhibitors of various enzymes, with largely negative results, except that 6-phosphogalactonate was a competitive inhibitor (Ki = 0.5 mM) of rat brain 6-phosphogluconate dehydrogenase.  相似文献   

10.
The Pseudomonas multivorans glucose-6-phosphate dehydrogenase (EC 1.1.1.49) active with nicotinamide adenine dinucleotide, which is inhibitable by adenosine-5'-triphosphate, was purified approximately 1,000-fold from extracts of glucose-grown bacteria, and characterized with respect to subunit composition, response to different inhibitory ligands, and certain other properties. The enzyme was found to be an oligomer composed of four subunits of about 60,000 molecular weight. Reduced nicotinamide adenine dinucleotide phosphate, but not reduced nicotinamide adenine dinucleotide, was found to be a potent inhibitor of its activity. The range of concentrations of reduced nicotinamide adenine dinucleotide phosphate over which inhibition occurred was about 100-fold lower than that for adenosine-5'-triphosphate. The data suggest that reduced nicotinamide adenine dinucleotide phosphate may play an important role in regulation of hexose phosphate metabolism in P. multivorans. Antisera prepared against the purified enzyme strongly inhibited its activity, but failed to inhibit the activity of the nicotinamide adenine dinucleotide phosphate-specific glucose-6-phosphate dehydrogenase which is also present in extracts of this bacterium. Immunodiffusion experiments confirmed the results of the enzyme inhibition studies, and failed to support the idea that the two glucose-6-phosphate dehydrogenase species from P. multivorans represent different oligomeric forms of the same protein.  相似文献   

11.
There is a substantial increase in the activities of phosphorylase, hexokinase, glucose-6-phosphate dehydrogenase and alcohol dehydrogenase in white yam tubers as they age. The high glucose-6-phosphate dehydrogenase activities suggest that the pentose phosphate pathway is important in yam tuber tissue.  相似文献   

12.
Summary Male and female rat liver were studied during post-natal development. A correlation was found between biochemically determined hydroxylations and enzymhisto-chemically determined NADPH-nitro-BT reductase and Naphthol-AS-D esterase. No correlation was found between glucose-6-phosphate dehydrogenase or iso-citric acid dehydrogenase activity and hydroxylations. The difference in hydroxylating capacity between male and female rats may be caused by the fact that the number of cells with hydroxylating activity in the liver lobule, as judged by the NADPH-nitro-BT reductase and Naphthol-AS-D esterase activity, is higher in male than in female rats.List of Abbreviations NADH reduced nicotinamide adenine dinucleotide - NADPH reduced nicotinamide adenine dinucleotide phosphate - G6PD glucose-6-phosphate dehydrogenase - ICD iso-citric acid dehydrogenase - G6Pase glucose-6-phosphatase - NADPH -nitro-BT red - NADPH Nitro-blue tetrazolium reductase - SDH succinic acid dehydrogenase - TCA trichloracetic acid  相似文献   

13.
14.
Isoenzymes of glucose-6-phosphate dehydrogenase and 6-P-gluconate dehydrogenase from a 70% ammonium sulfate precipitate of spinach leaf homogenate were separated by differential solubilization in a gradient of 70-0% ammonium sulfate and analyzed by disc gel electrophoresis. Isolated whole chloroplasts contained isoenzyme 1 of both glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase 1, whereas isoenzyme 2 of each was found in the soluble cytosol fraction. Both isoenzymes of each dehydrogenase were present in about equal amounts. Glucose-6-phosphate dehydrogenase isoenzymes 1 and 2 had pH optima of 9.2 and 9.0 and Km values of 400 and 330 μm, respectively. Molecular weights for both isoenzyme of glucose-6-phosphate dehydrogenase were very similar at about 105,000 ± 10% as estimated by sedimentation velocity measurements. For 6-phosphogluconate dehydrogenase isoenzymes 1 and 2 the pH optima were 9.0 and 9.3, respectively, the Km values were 100 and 80 μm, and the apparent molecular weights were also nearly identical at about 110,000 ± 10%. The data support the hypothesis that leaf cells have two oxidative pentose phosphate pathways, one in the chloroplast and the other in the cytosol.  相似文献   

15.
Summary Glucose-6-phosphate dehydrogenase activity was analysed cytophotometrically in oocytes and pre-implantation embryos of mice. A bimodal distribution pattern was not found. Therefore, female and male embryos could not be discriminated on the basis of linkage of the enzyme with the X-chromosome during the pre-implantation period. The dehydrogenase activity in ovulated eggs and pre-implantation embryos up to the 8-cell stage was 65% of that present in follicular oocytes. In morulae and blastulae, the activity was further decreased to a level that was only 10–20% of the activity present in oocytes. The dramatic decrease in dehydrogenase activity could not be explained by modulation of the enzyme molecules, because K M values did not vary strongly. It is unlikely that the abundant activity of glucose-6-phosphate dehydrogenase in oocytes is due to high activity of the pentose phosphate pathway because of the low activity of 6-phosphogluconate dehydrogenase, the next step in this pathway. It is concluded that high activity of glucose-6-phosphate dehydrogenase in oocytes is needed for keeping oocytes viable, and for generation of NADPH which is important for the fertilization process.  相似文献   

16.
Glucose Metabolism in Neisseria gonorrhoeae   总被引:32,自引:8,他引:24       下载免费PDF全文
The metabolism of glucose was examined in several clinical isolates of Neisseria gonorrhoeae. Radiorespirometric studies revealed that growing cells metabolized glucose by a combination on the Entner-Doudoroff and pentose phosphate pathways. A portion of the glyceraldehyde-3-phosphate formed via the Entner-Doudoroff pathway was recycled by conversion to glucose-6-phosphate. Subsequent catabolism of this glucose-6-phosphate by either the Entner-Doudoroff or pentose phosphate pathways yielded CO(2) from the original C6 of glucose. Enzyme analyses confirmed the presence of all enzymes of the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways. There was always a high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) relative to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The glucose-6-phosphate dehydrogenase utilized either nicotinamide adenine dinucleotide phosphate or nicotinamide adenine dinucleotide as electron acceptor. Acetate was the only detectable nongaseous end product of glucose metabolism. Following the disappearance of glucose, acetate was metabolized by the tricarboxylic acid cycle as evidenced by the preferential oxidation of [1-(14)C]acetate over that of [2-(14)C]acetate. When an aerobically grown log-phase culture was subjected to anaerobic conditions, lactate and acetate were formed from glucose. Radiorespirometric studies showed that under these conditions, glucose was dissimilated entirely by the Entner-Doudoroff pathway. Further studies determined that this anaerobic dissimilation of glucose was not growth dependent.  相似文献   

17.
Commercially obtained fruits of Corylus avellana exhibit the characteristic loss of dormancy of this seed following chilling under moist conditions. The activities of cytosolic and organellar enzymes of pentose phosphate pathway in cotyledonary tissue were assayed throughout stratification and over a similar period in damp vermiculite at 20° C. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconic acid dehydrogenase (6PGDH) were both found in cytosolic extracts in all treatments; only 6PGDH was present in the organellar fraction.The enzyme activities monitored in seeds at 20° C remained relatively constant over the course of the investigation except in the case of cytosolic 6PGDH where it is suggested an inhibitor of the enzyme accumulated. This inhibitor was removed by the partial purification procedure. Increases in the activities of the enzymes occurred during stratification, the major increase coinciding exactly with dormancy breakage but prior to the initiation of germination. The marked increase in G6PDH and 6PGDH concurrent with the change in germination potential of the chilled seed may have considerable biochemical significance in breaking down the dormant state.Abbreviations G6P glucose-6-phosphate - G6PDH glucose-6 phosphate dehydrogenase - NADP nicotinamide adenine dinucleotide phosphate - 6 PGDH 6-phosphogluconic acid dehydrogenase - PPP pentose phosphate pathway  相似文献   

18.
Ulusu NN  Tandogan B  Tezcan FE 《Biochimie》2005,87(2):187-190
Glucose-6-phosphate dehydrogenase is the key regulatory enzyme of the pentose phosphate pathway and one of the products of this enzyme; NADPH has a critical role in the defence system against the free radicals. In this study, glucose-6-phosphate dehydrogenase from lamb kidney cortex kinetic properties is examined. The purification procedure is composed of two steps after ultracentrifugation for rapid and easy purification: 2', 5'-ADP Sepharose 4B affinity and DEAE Sepharose Fast Flow anion exchange chromatography. Previously, we used this procedure for the purification of glucose-6-phosphate dehydrogenase from bovine lens. The double reciprocal plots and product inhibition studies showed that the enzyme obeys 'Ordered Bi Bi' mechanism: K(m NADP+)K(m G-6-P) and K(i G-6-P) (dissociation constant of the enzyme--G-6-P complex) were found to be 0.018 +/- 0.002, 0.039 +/- 0.006 and 0.029 +/- 0.005 mM, respectively, by using nonlinear regression analysis. The enzyme was stable at 4 degrees C for a week.  相似文献   

19.
The quantity of translatable mRNA of glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ 1-oxidoreductase, EC 1.1.1.49) in primary cultures of adult rat hepatocytes subjected to different hormonal conditions was determined with a reticulocyte-lysate, cell-free system. The level of glucose-6-phosphate dehydrogenase mRNA was about 5-fold higher in the presence of insulin than in its absence. This increase of glucose-6-phosphate dehydrogenase mRNA reached a maximum 12 h after the addition of insulin. The maximum level of induction of glucose-6-phosphate dehydrogenase mRNA required 10(-8) M insulin. Glucagon and triiodothyronine had no effect on the glucose-6-phosphate dehydrogenase mRNA level. The increase of glucose-6-phosphate dehydrogenase activity correlated with the increase in level of mRNA of this enzyme. This suggests that the changes in glucose-6-phosphate dehydrogenase activity in response to the above hormonal changes are primarily due to changes in the amount of mRNA coding for this enzyme.  相似文献   

20.
Phenylketonuria is a recessive autosomal disorder that is caused by a deficiency in the activity of phenylalanine-4-hydroxylase, which converts phenylalanine to tyrosine, leading to the accumulation of phenylalanine and its metabolites phenyllactic acid, phenylacetic acid, and phenylpyruvic acid in the blood and tissues of patients. Phenylketonuria is characterized by severe neurological symptoms, but the mechanisms underlying brain damage have not been clarified. Recent studies have shown the involvement of oxidative stress in the neuropathology of hyperphenylalaninemia. Glucose-6-phosphate dehydrogenase plays an important role in antioxidant defense because it is the main source of reduced nicotinamide adenine dinucleotide phosphate (NADPH), providing a reducing power that is essential in protecting cells against oxidative stress. Therefore, the present study investigated the in vitro effect of phenylalanine (0.5, 1, 2.5, and 5?mM) and its metabolites phenyllactic acid, phenylacetic acid, and phenylpyruvic acid (0.2, 0.6, and 1.2?mM) on the activity of enzymes of the pentose phosphate pathway, which is involved in the oxidative phase in rat brain homogenates. 6-Phosphogluconate dehydrogenase activity was not altered by any of the substances tested. Phenylalanine, phenyllactic acid, and phenylacetic acid had no effect on glucose-6-phosphate dehydrogenase activity. Phenylpyruvic acid significantly reduced glucose-6-phosphate dehydrogenase activity without pre-incubation and after 1?h of pre-incubation with the homogenates. The inhibition of glucose-6-phosphate dehydrogenase activity caused by phenylpyruvic acid could elicit an impairment of NADPH production and might eventually alter the cellular redox status. The role of phenylpyruvic acid in the pathophysiological mechanisms of phenylketonuria remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号