首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells respond to environmental stress with activation of c-Jun N-terminal kinase (JNK) and p38. Recent studies have implicated Gadd45 and two related proteins, MyD118/Gadd45beta and CR6/Gadd45gamma, as initiators of JNK/p38 signaling via their interaction with an upstream kinase MTK1. It was proposed that stress-induced expression of the Gadd45-related proteins leads to MTK1 activation and subsequent JNK/p38 activation. Using embryo fibroblasts from gadd45-null mice, we have addressed the requirement for Gadd45 in mediating JNK/p38 activation during acute stress. Comparison of JNK/p38 activities in response to methyl methanesulfonate, hydrogen peroxide, UVC irradiation, sorbitol, and anisomycin treatment of gadd45(+/+) and gadd45(-/-) fibroblasts revealed no deficiency in JNK/p38 activation in gadd45(-/-) fibroblasts. In addition, in wild type cells, JNK and p38 activation significantly preceded gadd45 induction with all stresses. Examination of myd118/gadd45beta and cr6/gadd45gamma expression in gadd45(+/+) and gadd45(-/-) fibroblasts revealed similar induction patterns in the two cell types, which, like gadd45 expression, was delayed relative to JNK/p38 activation. We conclude that gadd45 expression is not required for activation of JNK/p38 by environmental stresses, nor are stress-induced increases in myd118/gadd45beta and cr6/gadd45gamma expression necessary for kinase activation in response to such insults.  相似文献   

2.
3.
4.
5.
C/EBPalpha regulation of the growth-arrest-associated gene gadd45.   总被引:1,自引:0,他引:1       下载免费PDF全文
CCAAT/enhancer-binding protein alpha (C/EBPalpha) is expressed in postmitotic, differentiated adipocytes and is required for adipose conversion of 3T3-L1 cells in culture. Temporal misexpression of C/EBPalpha in undifferentiated adipoblasts leads to mitotic growth arrest. We report here that growth arrest- and DNA damage-inducible gene 45 (gadd45) is preferentially expressed in differentiated 3T3-L1 adipocytes similar to phenotype-associated genes. Furthermore, C/EBPalpha transactivates a reporter plasmid containing 1.5 kb of the gadd45 promoter region. The proto-oncogene myc, which inhibits adipocyte differentiation, abrogates C/EBPalpha activation of gadd45. gadd45 is known to be a target of the tumor suppressor p53 in a G1 checkpoint activated by DNA damage. Immunoprecipitation of radiolabeled proteins with conformation-specific antibodies revealed that wild-type p53 is expressed throughout 3T3-L1 adipocyte development, including the postmitotic period characterized by the accumulation of gadd45 and C/EBPalpha. A stable 3T3-L1 subline was engineered to express a dominant negative p53, human p53(143ala). The p53(143ala) subline differentiated to adipocytes and showed appropriate developmental expression of gadd45. These findings suggest that postmitotic growth arrest is coupled to adipocyte differentiation via C/EBPalpha stimulation of growth arrest-associated and phenotype-associated genes.  相似文献   

6.
Gadd45 proteins modulate signaling in response to physiological and environmental stressors. Expression of gadd45 genes is rapidly induced by different stressors, including differentiation-inducing cytokines and genotoxic stress. Induction of gadd45 genes at the onset of myeloid differentiation suggested that Gadd45 protein(s) play a role in hematopoiesis, yet no apparent abnormalities were observed in either the bone marrow (BM) or peripheral blood compartments of mice deficient for either gadd45a or gadd45b. However, under conditions of hematological stress, including acute stimulation with cytokines, myelo-ablation and inflammation, both gadd45a-deficient and gadd45b-deficient mice exhibited deficiencies. This is discussed within the context of what is known about Gadd45 proteins in stress signaling, hematopoietic development and the innate immune response. Furthermore, myeloid enriched BM cells from gadd45a and gadd45b deficient mice were observed to be more sensitive to ultraviolet radiation (UVC), VP-16 and daunorubicin (DNR) induced apoptosis compared to wild-type (WT) cells, displaying defective G2/M arrest following exposure to UVC and VP-16, but not to DNR. Novel mechanisms that mediate the pro-survival functions of Gadd45 in hematopoietic cells following UV irradiation were demonstrated, involving activation of the Gadd45a-p38-NF-kappaB survival pathway and Gadd45b mediated inhibition of the stress response MKK4-JNK apoptotic pathway. The ramifications regarding the pathogenesis of different leukemias and the response of normal and malignant hematopoietic cells to chemo- and radiation-therapy, as well as other challenges to the hematopoietic compartment, are discussed.  相似文献   

7.
GADD45, MyD118, and CR6 (also termed GADD45alpha, beta, and gamma) comprise a family of genes that encode for related proteins playing important roles in negative growth control, including growth suppression. Data accumulated suggest that MyD118/GADD45/CR6 serve similar but not identical functions along different apoptotic and growth suppressive pathways. It is also apparent that individual members of the MyD118/GADD45/CR6 family are differentially induced by a variety of genetic and environmental stress agents. The MyD118, CR6, and GADD45 proteins were shown to predominantly localize within the cell nucleus. Recently, we have shown that both MyD118 and GADD45 interact with proliferating cell nuclear antigen (PCNA), a protein that plays a central role in DNA replication, DNA repair, and cell cycle progression, as well as with the universal cyclin-dependent kinase inhibitor p21. In this work we show that also CR6 interacts with PCNA and p21. Moreover, it is shown that CR6 interacts with PCNA via a domain that also mediates interaction of both GADD45 and MyD118 with PCNA. Importantly, evidence has been obtained that interaction of CR6 with PCNA impedes the function of this protein in negative growth control, similar to observations reported for MyD118 and GADD45.  相似文献   

8.
MyD118 and Gadd45 are related genes encoding for proteins that play important roles in negative growth control, including growth suppression and apoptosis. MyD118 and Gadd45 are related proteins that previously were shown to interact with proliferating cell nuclear antigen (PCNA), implicated in DNA replication, DNA repair, and cell cycle progression. To establish the role of MyD118 and Gadd45 interactions with PCNA, in this work we sought to identify the interacting domains and analyze the significance of this interaction in negative growth control. Using complementary in vivo and in vitro interaction assays the N-terminal (1-46) and middle (100-127) regions of PCNA were identified as harboring MyD118- and Gadd45 interacting domains, whereas PCNA interacting domains within MyD118 and Gadd45 were localized to the C termini of these proteins (amino acids 114-156 and 137-165, respectively). These findings provide first evidence that similar domains within MyD118 and Gadd45 mediate interactions with PCNA. Importantly, ectopic expression of MyD118 or Gadd45 N-terminal peptides, lacking the PCNA interacting domain, was found to suppress colony formation or induce apoptosis more efficiently than the full-length proteins. These findings suggest that interaction of MyD118 or Gadd45 with PCNA, in essence, serves to impede negative growth control.  相似文献   

9.
10.
Oncostatin M (OSM) is a member of the IL-6 family cytokines that use gp130 as a common signal transducer and exhibits both growth stimulatory as well as growth inhibitory activity depending on the cells. To analyze the mechanism of OSM function, we isolated immediate early responsive genes upon OSM stimulation. Here we describe the novel OSM-inducible gene OIG37 that is related to MyD118 and GADD45. The MyD118 gene has been described as an immediate early gene induced by IL-6 in M1 monocytic cells, and GADD45 was identified as a gene induced by UV or gamma-ray irradiation. Both are considered to function in growth arrest and/or DNA repair. Although the expression of OIG37, MyD118, and GADD45 was rather ubiquitous, it was differentially regulated. As the gp130 mutant defective for activating the STAT3 pathway showed the reduced induction of OIG37 by cytokine stimulation and expression of dominant negative STAT3 inhibited the induction of OIG37 by OSM, STAT3 is involved in OIG37 induction by IL-6 family cytokines. To examine the function of OIG37, we expressed it in NIH3T3 and IL-3-dependent BaF3 cells and found that OIG37 suppressed cell growth without any evidence of apoptosis. Whereas both MyD118 and OIG37 suppressed cell growth in both cell lines, suppression by OIG37 was more efficient than by MyD118. Immunoprecipitation experiments indicated that OIG37 associates with p21, a cyclin-dependent kinase inhibitor, and proliferating cell nuclear antigen.  相似文献   

11.
The herpes simplex virus (HSV) virulence factor ICP34.5, the mouse myeloid differentiation protein MyD116, and the hamster growth arrest and DNA damage protein GADD34 share a 63-amino-acid carboxyl domain which has significant homologies to otherwise divergent proteins. Here we report that both ICP34.5 and its cellular homolog MyD116 complex through the conserved domain with proliferating cell nuclear antigen. In addition, HSV infection induces a novel 70-kDa cellular protein detectable by antisera to both ICP34.5 and GADD34, demonstrating that this novel protein possesses homology with the 63-amino-acid conserved domain.  相似文献   

12.
13.
14.
15.
16.
To better understand the immediate early genetic response of myeloid cells to terminal differentiation and growth inhibitory stimuli, complementary DNA clones of myeloid differentiation primary response (MyD) genes have recently been isolated. In this study, a set of known (junB, c-jun, ICAM-1, H1(0), and H3.3 histone variants) and novel (MyD88, MyD116) MyD genes were used as immediate early molecular markers to further dissect the primary genetic response of myeloid cells to various differentiation and growth inhibitory stimuli. Expression of all of these MyD genes was highly induced in autonomously replicating differentiation inducible M1D+ myeloblasts following induction of terminal differentiation and growth inhibition by interleukin 6. Expression of all MyD genes except MyD88 was induced upon inhibition of M1D+ cell growth and induction of early, but not late, differentiation markers by interleukin 1 and lipopolysaccharide. In sharp contrast, only expression of H1(0) and H3.3 histone variants was increased following inhibition of M1D+ cell growth by interferon beta or gamma, which did not induce any differentiation associated properties. No increase in the expression of any of these MyD genes was seen in a clone of WEHI-3B D- myelomonocytic cells following stimulation with interleukin 6, which neither induced it for differentiation nor inhibited its growth. 12-O-Tetradecanoylphorbol-13-acetate, known to be a potent inducer of jun expression in many cell types, failed to induce high or stable expression of junB and c-jun in M1D+ cells, where it did not induce differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Cell numbers are regulated by a balance among proliferation, growth arrest, and programmed cell death. A profound example of cell homeostasis, controlled throughout life, is the complex process of blood cell development, yet little is understood about the intracellular mechanisms that regulate blood cell growth arrest and programmed cell death. In this work, using transforming growth factor beta 1 (TGF beta 1)-treated M1 myeloid leukemia cells and genetically engineered M1 cell variants, the regulation of growth arrest and apoptosis was dissected. Blocking of early expression of MyD118, a novel differentiation primary response gene also shown to be a primary response gene induced by TGF beta 1, delayed TGF beta 1-induced apoptosis, demonstrating that MyD118 is a positive modulator of TGF beta 1-mediated cell death. Elevated expression of bcl-2 blocked the TGF beta 1-induced apoptotic pathway but not growth arrest induced by TGF beta 1. Deregulated expression of either c-myc or c-myb inhibited growth arrest and accelerated apoptosis, demonstrating for the first time that c-myb plays a role in regulating apoptosis. In all cases, the apoptotic response was correlated with the level of MyD118 expression. Taken together, these findings demonstrate that the primary response gene MyD118 and the c-myc, c-myb, and bcl-2 proto-oncogenes interact to modulate growth arrest and apoptosis of myeloid cells.  相似文献   

18.
Gadd45a (Gadd45), Gadd45b (MyD118), and Gadd45g (CR6) constitute a family of evolutionarily conserved, small, acidic, nuclear proteins, which have been implicated in terminal differentiation, growth suppression, and apoptosis. How Gadd45 proteins function in negative growth control is not fully understood. Recent evidence has implicated Gadd45a in inhibition of cdc2/cyclinB1 kinase and in G2/M cell cycle arrest. Yet, whether Gadd45b and/or Gadd45g function as inhibitors of cdc2/cyclinB1 kinase and/or play a role in G2/M cell cycle arrest has not been fully established. In this work, we show that Gadd45b and Gadd45g specifically interact with the Cdk1/CyclinB1 complex, but not with other Cdk/Cyclin complexes, in vitro and in vivo. Data also has been obtained that Gadd45b and Gadd45g, as well as GADD45a, interact with both Cdk1 and cyclinB1, resulting in inhibition of the kinase activity of the Cdk1/cyclinB1 complex. Inhibition of Cdk1/cyclinB1 kinase activity by Gadd45b and Gadd45a was found to involve disruption of the complex, whereas Gadd45g did not disrupt the complex. Moreover, using RKO lung carcinoma cell lines, which express antisense Gadd45 RNA, data has been obtained, which indicates that all three Gadd45 proteins are likely to cooperate in activation of S and G2/M checkpoints following exposure of cells to UV irradiation.  相似文献   

19.
Regulation of the gadd45beta promoter by NF-kappaB   总被引:9,自引:0,他引:9  
  相似文献   

20.
The effect of ionizing radiation on the expression of two DNA-damage-inducible genes, designated gadd45 and gadd153, was examined in cultured human cells. These genes have previously been shown to be strongly and coordinately induced by UV radiation and alkylating agents in human and hamster cells. We found that the gadd45 but not the gadd153 gene is strongly induced by X rays in human cells. The level of gadd45 mRNA increased rapidly after X rays at doses as low as 2 Gy. After 20 Gy of X rays, gadd45 induction, as measured by increased amounts of mRNA, was similar to that produced by the most effective dose of the alkylating agent methyl methanesulfonate. No induction was seen after treatment of either human or hamster cells with 12-O-tetradecanoylphorbol-13-acetate, a known activator of protein kinase C (PKC). Therefore, gadd45 represents the only known mammalian X-ray-responsive gene whose induction is not mediated by PKC. However, induction was blocked by the protein kinase inhibitor H7, indicating that induction is mediated by some other kinase(s). Sequence analysis of human and hamster cDNA clones demonstrated that this gene has been highly conserved and encodes a novel 165-amino-acid polypeptide which is 96% identical in the two species. This gene was localized to the short arm of human chromosome 1 between p12 and p34. When induction in lymphoblast lines from four normal individuals was compared with that in lines from four patients with ataxia telangiectasia, induction by X rays of gadd45 mRNA was less in the cell lines from this cancer-prone radiosensitive disorder. Our results provide evidence for the existence of an X-ray stress response in human cells which is independent of PKC and which is abnormal in taxia telangiectasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号