首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Solar radiation, particularly the UV-B component, negatively affects survival of entomopathogenic fungi in the field. In an effort to identify Beauveria spp. isolates with promise for use in biological control settings with high insolation, we examined 53 Beauveria bassiana isolates, 7 isolates of 4 other Beauveria spp. and Engyodontium albus (=Beauveria alba). The origins of these fungi varied widely as to host/substrate and country, but approximately 30% of these isolates were B. bassiana from ticks in Brazil. A preliminary trial with three B. bassiana isolates (Bb 19, CG 310 and CG 481) at several UV-B dosages indicated that 2h of weighted UV-B irradiance at 978mWm(-2) (providing a total dose of 7.04kJm(-2)) allowed separation of isolates into low, medium or high UV-B tolerance. This dose, therefore, was selected as a single dose to compare UV-B tolerances of all 60 Beauveria spp. isolates. There was high variability in tolerance to UV-B radiation among the B. bassiana isolates, ranging from virtually zero tolerance (e.g., Bb 03) to almost 80% tolerance (e.g., CG 228). In addition, surviving B. bassiana conidia demonstrated delayed germination; and this is likely to reduce virulence. Conidia of the other species were markedly more sensitive to UV-B, with E. albus (UFPE 3138) being the least UV-B tolerant. Among B. bassiana isolates originating from 0 degrees to 22 degrees latitudes, those from lower latitudes demonstrated statistically significant greater UV-B tolerances than those isolates from higher latitudes. Isolates from above 22 degrees , however, were unaffected by latitude of origin. A similar analysis based on host type did not indicate a correlation between original host and UV-B tolerance. The identification in this study of several B. bassiana isolates with relatively high UV-B tolerance will guide the selection of isolates for future arthropod microbial control experiments.  相似文献   

2.
In the first part of this study, four isolates of the fungus Beauveria bassiana (Bals.) Vuillemin (LPP1, LPP2, CG05 and CG24) and one isolate of Metarhizium anisopliae (Metsch.) Sorokin (CG46) were tested against adult foragers of Atta sexdens rubropilosa. Ants were allowed to walk on filter paper discs, inside Petri dishes, previously impregnated with 1 ml of a conidia suspension (2 × 107 conidia ml−1), maintained at 80% RH and 26°C for 24 h and subsequently, transferred to sterile Petri dishes, maintained at 23°C, 80% RH, 24 h dark. The mean values of LT50 for LPP2, LPP1, CG46, CG24 and CG05 were 3.5, 3.7, 3.8, 4.2 and 4.4 days, respectively. Control insects for all tests in this study showed less than 10% mortality. Experiments were carried out to test the toxicity of imidacloprid (IMI) to A. sexdens rubropilosa. Mortality was evaluated 10 days following a 24 h exposure to the insecticide. Percent mortality caused by 500, 200, 100 and 10 ppm IMI was 77.8, 56.7, 45.5 and 5.5 respectively. Insects treated with 10 ppm IMI were observed to have reduced locomotor activity 24 h after exposure to the insecticide. The LC50 of IMI was 154.3 ppm. Subsequent tests were carried out to evaluate the combination of a sub-lethal dose of IMI (10 ppm) and infection by CG24 (1 × 107 conidia ml−1). Mortality due to fungal infection alone was 43.3%. Mortality of insects treated with IMI followed by exposure to the fungus was 64.3%. These results indicate that IMI significantly increases the susceptibility of ants to infection by B. bassiana CG24.  相似文献   

3.
The stem borer, Busseola fusca (Fuller), is an important pest of maize Zea mays L. and sorghum Sorghum bicolor (L.) in eastern and southern Africa. To control this pest, biological control methods including the use of entomopathogenic fungi are being considered. The pathogenicity of one isolate of Metarhizium anisopliae (Metsch.) Sorok. and one isolate of Beauveria bassiana Bals. (Vuill.) were first tested on different developmental stages of B. fusca including eggs, neonate, 2nd and 3rd-instar larvae. Both fungal isolates were pathogenic to all the stages tested. However, differences in mortality were observed among larvae that hatched from treated egg masses. Experiments were conducted thereafter to test whether B. fusca males could serve as a vector for fungal conidia to contaminate B. fusca females and subsequently eggs and larvae. Results demonstrated that B. fusca males successfully transferred inoculum to females during copulation, which in turn transmitted it to the eggs they laid on maize plants, resulting in the decrease of leaf damages.  相似文献   

4.
The entomopathogenic fungus Metarhizium anisopliae (strain ME1) failed to swell or form germ-tubes in distilled water. However, a period of soaking in distilled water (10–44 h) accelerated the process of germination when a suitable nutrient source was provided. The implications of this novel observation are discussed in terms of mechanisms of germination and the use of parasitic fungi for insect pest control.  相似文献   

5.
The Mediterranean fruit fly, Ceratitis capitata Wiedemann (Diptera: Tephritidae), is the major tephritid pest in the Mediterranean region. This insect may overwinter as pupae inside fruits or in soil. Therefore, infection with entomopathogenic fungi is a potentially useful control technique during the insect’s soil-dwelling stage. Entomopathogenic fungi have an important role in Integrated Pest Management programs as an alternative to conventional chemical control, but they have been usually selected on the basis of laboratory results with little regard to fungal ecology. In this work, we designed several experiments to study the availability and movement of the EF Beauveria bassiana (Balsamo) Vuill. and Metarhizium anisopliae (Metsch.) conidia in 16 soils differing widely in pH, texture, organic matter, and carbonate contents. Experiments of adsorption and drag of conidia by soil particles suspended in CaCl2 solutions of different ionic strength showed B. bassiana conidia to be retained by clay particles, and this effect disappeared with increasing ionic strength. The availability of M. anisopliae conidia in the suspension tended to be lower for sandy than for clayey soils and was not influenced by ionic strength. Regardless of soil properties, over 90% of the added fungal propagules were recovered from the surface layer of columns of packed soils representing model combinations of texture (sandy or clayey) and pH values (acid or alkaline). However, retention of B. bassiana conidia in the surface layer was higher in clayey than in sandy soils, and the retention of M. anisopliae conidia in the surface layer was higher in sandy than in clayey soils. Finally, neither soil texture nor ionic strength affected the infectivity of conidia of both fungal strains to C. capitata puparia.  相似文献   

6.
Termites encounter a diverse array of potentially useful and harmful fungi in their subterranean habitats. These vary from symbiotic to harmful species with varying levels of virulence. How these hemiedaphic insects survive in habitats with infective fungi is not well understood. Possible mediation of olfactory signals in avoiding contact with entomopathogenic fungi has been explored by a number of workers. In the present study, we initially found that Macrotermes michaelseni detected a virulent isolate of Metarhizium anisopliae from some distance and avoided direct physical contact. We hypothesized that there may be a relationship between virulence and repellency of different isolates of M. anisopliae and Beauveria bassiana to the termite. We compared these for selected isolates of the two fungi. Positive correlations between the two parameters for both sets of isolates of the fungi were obtained. The results show an interesting co-evolutionary phenomenon in which the termite's response to either M. anisopliae or B. bassiana is directly related to potential harm these fungi can inflict on the insect and that the virulent strains are more likely to be recognized from some distance and avoided.  相似文献   

7.
Termites, Coptotermes formosanus Shiraki, reared individually, were highly susceptible to entomopathogenic fungi, Paecilomyces fumosoroseus and Beauveria brongniartii and Metarhizium anisopliae, while termites reared in groups were highly resistant. Quantitative assays with an epifluoresent microscope revealed a significant difference in the number of conidia attachments among three entomopathogenic fungi. The conidia of B. brongniartii and P. fumosoroseus bound to termite cuticles more effectively than M. anisopliae conidia. Our results also suggested that self-grooming behavior is less effective, but mutual grooming is very effective in the removal of conidia from cuticles of their nestmates. Statistical analysis of removal rates indicated that conidia of P. fumosoroseus and B. brongniartii were removed more rapidly than M. anisopliae conidia from termite cuticles.  相似文献   

8.
Five strains ofMetarhizium anisopliae (Metsch.) Sorokin and one strain ofMetarhizium flavoviride Gams &; Rozsypal originally isolated in Madagascar were studied. Measurements of conidia and, for the first time, also of blastospores produced in a liquid medium were used for species and variety determination. Blastospores ofM. flavoviride were more homogenous in their size than those ofM. anisopliae. Growth at high temperatures between 25° and 40°C showed that 4 isolates ofM. anisopliae grew at 36°C andM. flavoviride grew at 38°C. Using alternating day/night temperatures (8/16 h) the three strains tested could also tolerate 40°/25°C. In bioassays, fiveMetarhizium spp. isolates were tested against third and fourth instar larvae ofLocusta migratoria (L.) at two alternating day/night temperatures of 30°/25°C and 36°/25°C. In the cooler regime, all strains caused a mortality of 50% within 5.9 to 8.5 days (median lethal time), while in the 36°/25°C treatment only the thermophilicM. flavoviride and oneM. anisopliae strain isolated from a soil sample gave comparable results with median lethal times of 6.8 and 7.3 days, respectively.  相似文献   

9.
Virulence (speed of kill) of a fungal entomopathogen against a particular host insect depends on biological properties of the specific isolate-host combination, together with factors such as fungal dose. How these intrinsic and extrinsic factors affect the actual pattern and extent of fungal growth invivo is poorly understood. In this study we exposed adult house flies (Muscadomestica L.) to surfaces treated with high and low doses of Beauveriabassiana (isolates BbGHA and Bb5344), Metarhiziumanisopliae (strain MaF52) and M.anisopliae var. acridum (isolate Ma189) and used quantitative real-time PCR with species-specific primers to examine the relationship between fungal growth kinetics and virulence. At the highest dose, all fungal isolates killed flies significantly faster than controls, with BbGHA, Bb5344 and MaF52 roughly equivalent in virulence (median survival time (±SE) = 5.0 ± 0.10, 5.0 ± 0.08 and 5.0 ± 0.12 days, respectively) and Ma189 killing more slowly (MST = 8.0 ± 0.20 days). At the lower dose, effective virulence was reduced and only flies exposed to isolates BbGHA and Bb5344 died significantly faster than controls (MST = 12 ± 1.36, 15 ± 0.64, 18 ± 0.86 and 21.0 ± 0.0 days for BbGHA, Bb5344, MaF52 and Ma189, respectively). Real-time PCR assays revealed that flies exposed to surfaces treated with the high dose of spores had greater spore pickup than flies exposed to the low dose for each isolate. After pickup, a general pattern emerged for all isolates in which there was a significant reduction of recovered fungal DNA 48 h after exposure followed by a brief recovery phase, a stable period of little net change in fungal sequence counts, and then a dramatic increase in sequence counts of up to three orders of magnitude around the time of host death. However, while the patterns of growth were similar, there were quantitative differences such that higher final sequence counts were recovered in insects infected with the most lethal isolates and with the higher dose. These results suggest that variation in virulence between isolates, species and doses is determined more by quantitative rather than qualitative differences in fungal growth kinetics.  相似文献   

10.
The effect of fungal infection on the reproductive potential of two-spotted spider mite, Tetranychus urticae, was evaluated as part of the full biocontrol potential of three entomopathogenic fungi by modeling of fecundity probability. Female mites (≤2-day-old) on leaves were exposed to the sprays of Beauveria bassiana, Paecilomyces fumosoroseus and Metarhizium anisopliae at the concentrations of 1.13 × 103, 1.55 × 103 and 0.95 × 103 deposited conidia mm−2 and then individually reared at 25°C and 12:12 L:D for oviposition. Mite mortalities 10 days after spraying were 73.1, 75.4 and 67.9% in the fungal treatments versus 15.5% in control. On average, females infected by the three fungal species survived 5.8, 6.2 and 6.3 days, and laid 3.1, 4.0 and 4.0 eggs per capita, respectively. These were 3–4 fold lower than the control fecundity at 12.3. The cumulative probabilities [P(m ≤ N)] for the counts of infected and non-infected (control) females laying m eggs per capita (m ≤ N) during 10 days fit very well the equation P(m ≤ N) = 1/[1 + exp(a + bm)] (r 2 ≥ 0.98), yielding a solution to the probability for the female mites to achieve a specific fecundity {P(m ≤ N)−P[m ≤ (N − 1)]}. Consequently, the infected mites had 71–78% chance to lay ≤5 eggs per capita but only 5–8% to deposit >10 eggs despite some variation among the tested fungi. In contrast, the chances for the non-infected mites to achieve the low and high fecundities were 23 and 55%. The fitted probabilities provide a full coverage of the fecundity potential of infected versus non-infected mites and are more informative than the mean fecundities.  相似文献   

11.
The detrimental effect of solar radiation on the survival of conidia of the entomopathogenic fungusPaecilomyces fumoroseus was studied by monitoring germinability and ability to form colonies (CFU) of conidia irradiated at two temperatures, 25 and 35 °C, harmless to shaded conidia. There was no apparent effect when spores were exposed to a high level of artificial radiation (0.66 W m–2 UVB). However, at a lower level of irradiance (0.33 W m–2), effects of radiation occurred more quickly at 35 °C than at 25 °C. Under natural solar radiation, the rate of decrease in germinability or viability was doubled at 35 °C as compared to 25 °C, indicating an interaction between temperature and radiation effects under natural conditions. This interaction was not detected in indoor experiments, indicating that the spectral distribution of UV radiation has to be taken in account as well as its irradiance when studying its effects.Abbreviations CFU Colony Forming Units - UTC Universal Time Coordinates - UVB Ultra Violet B radiation (280–320 nm)  相似文献   

12.
Insect-passaged cultures of entomopathogenic fungi grown on potato dextrose agar media have been shown to have altered virulence and profiles of volatile compounds. The present study demonstrated the pathogenic status of FS0 (in vitro) and FS1 and FS2 (insect-passaged cultures grown on PDA) cultures of Metarhizium anisopliae (strains 406 and 02049) and Beauveria bassiana by a non-choice assay, in which filter paper was inoculated with fungal spores at a concentration of 1 × 107 spores/ml. The FS1 and FS2 cultures of M. anisopliae strain 02049 and B. bassiana produced conidia with high virulence, and the volatile profiles of these conidia comprised relatively lower percentages of branched-alkanes than conidia from the FS0 cultures. In contrast, the conidia from an FS0 culture of M. anisopliae strain 406 had somewhat elevated virulence levels, but their volatile profile had <2% branched-alkanes. The FS1 and FS2 cultures of M. anisopliae strain 406 did not gain virulence, and these cultures showed a decline in virulence along with major alteration of their volatile profiles. Their volatile profiles mainly comprised branched-alkanes. The volatile profiles of the FS1 and FS2 cultures lacked n-tetradecane, which was an important component of all the virulent cultures. Four compounds, 2-phenylpropenal, 2,5,5-trimethyl-1-hexene, n-tetradecane and 2,6-dimethylheptadecane, were detected only from the virulent cultures, suggesting that low LT50 values were probably due to the production of these compounds. This is the first report to characterize volatiles from FS0, FS1 and FS2 cultures of entomopathogenic fungi; its utility in different aspects opens an interesting area for further investigations.  相似文献   

13.
Factors affecting the occurrence and distribution of entomopathogenic fungi in 244 soil samples collected from natural and cultivated areas in Spain were studied using an integrated approach based on univariate and multivariate analyses. Entomopathogenic fungi were isolated from 175 of the 244 (71.7 %) soil samples, with only two species found, Beauveria bassiana and Metarhizium anisopliae. Of the 244 soil samples, 104 yielded B. bassiana (42.6 %), 18 yielded M. anisopliae (7.3 %), and 53 soil samples (21.7 %) harboured both fungi. Log-linear models indicated no significant effect of habitat on the occurrence of B. bassiana, but a strong association between M. anisopliae and soils from cultivated habitats, particularly field crops. Also, irrespective of habitat type, B. bassiana predominated over M. anisopliae in soils with a higher clay content, higher pH, and lower organic matter content. Logistic regression analyses showed that pH and clay content were predictive variables for the occurrence of B. bassiana, whereas organic matter content was the predictive variable for M. anisopliae. Also, latitude and longitude predicted the occurrence of these same species, but in opposite directions. Altitude was found to be predictive for the occurrence of B. bassiana. Using principal component analysis, four factors (1 to 4) accounted for 86 % of the total variance; 32.8, 22.9, 19.6 and 10.4 % of the cumulative variance explained, respectively. Factor 1 was associated with high positive weights for soil clay and silt content and high negative weights for soil sand content. Factor 2 was associated with high positive weights for soil organic matter content and high negative weights for soil pH. Factor 3 was associated with high positive weights for latitude and longitude of the sampled localities and factor 4, had high positive weights only for the altitude. Bi-plot displays representing soil samples were developed for different factor combinations and indicated that, irrespective of geographical location, absence of both fungal species was determined by alkaline sandy soils with low organic matter content, whereas heaviness of soil texture, acidity and increasing organic matter content led to progressively higher percentages of samples harbouring entomopathogenic fungi. These results could aid decision-making as to whether or not a particular cultivated or natural soil is suitable for using entomopathogenic fungi as a pest control measure and for selecting the fungal species best suited to a particular soil.  相似文献   

14.
In this study, we assessed the stability provided by different formulations to aerial conidia or biomasses (conidia, blastospores, and mycelia) of Beauveria brongniartii and Metarhizium anisopliae subjected to lyophilization. First, the impact of the freezing and drying processes on spore survival was evaluated. Whereas unprotected B. brongniartii spores showed high cryosensitivity, those of M. anisopliae were markedly harmed by the drying process. Then, the protective efficiency of 14 excipients was systematically evaluated and optimized regarding required concentrations. Fructose, glucose, and saccharose significantly enhanced viabilities for B. brongniartii and M. anisopliae spores following lyophilization, especially as a result of their cryoprotective effects. In addition, the effect of various bulking agents on spore survival was studied and dextran 4 was selected to enhance the physical properties of the lyophilized products. The combination of fructose and dextran 4 was further applied to prepare lyophilized biomasses of both fungi. In comparison to freshly harvested biomasses, the lyophilized products showed similar growth rates and a comparable production of virulent secondary metabolites such as destruxin A, destruxin B, or oosporein, suggesting their applicability as biological control agents.  相似文献   

15.
Growth and development of B. bassiana was followed in four liquid media: peptone, peptone-glucose, glucose and glucose-peptone-yeast extract. Six developmental stages were defined: (I) the unswollen conidium, (II) the swollen conidium, (III) emergence of the germ tube, (IV) elongation of the germ tube and formation of the first septum, (V) polar and bipolar elongation (growth) of the resulting mycelium and initiation of a blastospore and, (VI) seccession of that blastospore. Conidia of B. bassiana produced germ tubes in all liquid media. Blastospores were produced in all liquid media except glucose. In peptone-glucose, the yield of blastospores was four-fold higher than in glucose-peptone-yeast extract. However, biomass production was highest in peptone-glucose-yeast extract.  相似文献   

16.
Twenty isolates of four species of entomopathogenic hypocrealean fungi (Beauveria bassiana, Beauveria brongniartii, Isaria farinosa, and Metarhizium anisopliae) were found to be pathogenic to adults of the Asian longhorned beetle, Anoplophora glabripennis. Survival times for 50% of the beetles tested (ST50) ranged from 5.0 (M. anisopliae ARSEF 7234 and B. brongniartii ARSEF 6827) to 24.5 (I. farinosa ARSEF 8411) days. Screening studies initially included strains of B. brongniartii, which is registered as a microbial control agent in Europe, Asia and South America but not in North America. At that time, we could not confirm that this fungal species is native to North America which added uncertainty regarding future registration of this species for pest control in the USA. Therefore, subsequent bioassays documented median survival times for three M. anisopliae isolates (5–6 days to death) and two of these isolates are suggested for further development because they are already registered for pest control in the USA. An erratum to this article can be found at  相似文献   

17.
Metarhizium spp. is an important worldwide group of entomopathogenic fungi used as an interesting alternative to chemical insecticides in programs of agricultural pest and disease vector control. Metarhizium conidia are important in fungal propagation and also are responsible for host infection. Despite their importance, several aspects of conidial biology, including their proteome, are still unknown. We have established conidial and mycelial proteome reference maps for Metarhizium acridum using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF MS). In all, 1130±102 and 1200±97 protein spots were detected in ungerminated conidia and fast-growing mycelia, respectively. Comparison of the two protein-expression profiles reveled that only 35% of the protein spots were common to both developmental stages. Out of 94 2-DE protein spots (65 from conidia, 25 from mycelia and two common to both) analyzed using mass spectrometry, seven proteins from conidia, 15 from mycelia and one common to both stages were identified. The identified protein spots exclusive to conidia contained sequences similar to known fungal stress-protector proteins (such as heat shock proteins (HSP) and 6-phosphogluconate dehydrogenase) plus the fungal allergen Alt a 7, actin and the enzyme cobalamin-independent methionine synthase. The identified protein spots exclusive to mycelia included proteins involved in several cell housekeeping biological processes. Three proteins (HSP 90, 6-phosphogluconate dehydrogenase and allergen Alt a 7) were present in spots in conidial and mycelial gels, but they differed in their locations on the two gels.  相似文献   

18.
Formulation matrices can play an important role in improving the storage survival and biocontrol efficacy of microorganisms used for the control of pest insects. In this study, liquid culture-produced blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus were formulated with different inert and organic materials prior to air-drying. Paecilomyces fumosoroseus blastospores were produced in two different liquid media, a basal salts medium supplemented with Casamino acids and glucose (LM1) and a medium containing peptone of collagen and glucose (LM2). Blastospores produced in the two test media were formulated with various supports. The formulation supports were cornstarch, rice flour, talc powders, Mexican lime, calcined kaolin clay, and diatomaceous earth. Several of the supports were tested at different concentrations. The initial and long-term (after storage at 4 and 28 °C) survival of the formulated, air-dried blastospores were evaluated. Initial blastospore viabilities were affected by the formulation material and by the blastospore production medium. Medium composition, drying support and storage temperature had an impact on the long-term survival of the blastospores. Under the conditions of the study, LM1 produced higher concentrations of blastospores that not only survived drying better than blastospores produced in LM2 but also maintained viability longer during storage in the formulation supports tested. The nature of the drying supports was shown to have a significant impact on the storage stability of all blastospores, particularly those produced in LM1. Under the production, drying and storage conditions used in the study, calcined kaolin clay formulations stored at 4 °C had the best storage stability. In all formulations tested, spore survival over time was reduced for blastospore formulations stored at 28 °C rather than 4 °C.  相似文献   

19.
Laboratory soil bioassays were performed at economic field rates for in-furrow (3.85 x 10(6)spores/g dry soil) and broadcast (3.85 x 10(5)spores/g dry soil) applications with three isolates of Metarhizium anisopliae (F52, ATCC62176, and ARSEF5520) and one isolate of Beauveria bassiana (GHA). All isolates tested were infective to second instar Delia radicum (L.). The conditionally registered M. anisopliae isolate (F52) performed best killing an average of 85 and 72% of D. radicum larvae at the high and low concentration, respectively. The mean LC50 and LC95 of F52 against second instar D. radicum was 2.7 x 10(6) and 1.8 x 10(8)spores/g dry soil, respectively. The use of F52 in an integrated management program is discussed.  相似文献   

20.
Susceptibility of the white grub Cyclocephala signaticollis Burmeister (Coleoptera: Scarabaeidae: Dynastinae) larvae to seven isolates of Beauveria bassiana (Balsamo) Vuillemin, five of Metarhizium anisopliae (Metschnikoff) Sorokin and two of Paecilomyces lilacinus (Thom) Samson (Deuteromycotina: Hyphomycetes) was investigated. Among 14 fungal isolates screened the most virulent was a B. bassiana isolate (Bb 53) that caused 70% mortality of third instar larvae in 40 days after inoculation at 1 × 108 conida/ml. Strains of M. anisopliae and P. lilacinus showed low efficacy or no virulence to the target host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号