首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of hematopoiesis/erythropoiesis in thalassemias from multipotent primitive cells to mature erythrocytes is of fundamental importance and clinical relevance. We investigated this process in alpha- and beta-globin hemizygous mice, lacking the two adult tandemly organized genes from either the alpha- or beta-globin locus. Although both mice backcrossed on a homogeneous background exhibited similar reduced red blood cell (RBC) survival, beta-globin hemizygous mice had less severe reticulocyte loss and globin chain imbalance, suggesting an apparently milder thalassemia than for alpha-globin hemizygous mice. In contrast, however, beta-globin hemizygous mice displayed a more marked perturbation of hematologic parameters. Quantification of erythroid precursor subpopulations in marrow and spleen of beta-globin hemizygous mice showed more severely impaired maturation from the basophilic to orthochromatophilic erythroblasts and substantial loss of these late precursors probably as a consequence of a greater susceptibility to an excess of free alpha-chain than beta-chain. Hence, only erythroid precursors exhibiting stochastically moderate chain imbalance would escape death and mature to reticulocyte/RBC stage, leading to survival and minimal loss of reticulocytes in the beta-globin hemizygous mice. Furthermore, in response to the ineffective erythropoiesis in beta-globin hemizygous mice, a dynamic compensatory hematopoiesis was observed at earlier differentiation stage as evidenced by a significant increase of erythroid progenitors (erythroid colony-forming units approximately 100-fold) as well as of multipotent primitive cells (day 12 spleen colony-forming units approximately 7-fold). This early compensatory mechanism was less pronounced in alpha-globin hemizygous mice. The expansion of multipotent primitive and potentially stem cell populations, taken together with ineffective erythropoiesis and increased reticulocyte/RBC destruction could confer major cumulative advantage for gene targeting/bone marrow transplantation. Therefore, this study not only corroborated the strong potential effectiveness of transplantation for thalassemic hematopoietic therapy but also demonstrated the existence of a differential regulatory response for alpha- and beta-thalassemia.  相似文献   

2.
K Nocka  J Buck  E Levi    P Besmer 《The EMBO journal》1990,9(10):3287-3294
The c-kit proto-oncogene encodes a transmembrane tyrosine kinase receptor for an unidentified ligand and is allelic with the murine white-spotting locus (W). W mutations affect melanogenesis, gametogenesis and hematopoiesis during development and in adult life. Cellular targets of W mutations in hematopoiesis include distinct cell populations in the erythroid and mast cell lineages as well as stem cells. In the absence of interleukin-3 (IL-3) mast cells derived from normal mice but not from W mutant mice can be maintained by co-culture with 3T3 fibroblasts. Based on the defective proliferative response of W mast cells in the 3T3 fibroblast co-culture system it had been proposed that fibroblasts produce the c-kit ligand. We have used a mast cell proliferation assay to purify a 30 kd protein, designated KL, from conditioned medium of Balb/3T3 fibroblasts to apparent homogeneity. KL stimulates the proliferation of normal bone marrow derived mast cells but not mast cells from W mice, although both normal and mutant mast cells respond similarly to IL-3. Connective tissue-type mast cells derived from the peritoneal cavity of normal mice were found to express a high level of c-kit protein on their surface and to proliferate in response to KL. The effect of KL on erythroid progenitor cells was investigated as well. In combination with erythropoietin, KL was found to stimulate early erythroid progenitors (BFU-E) from fetal liver and spleen cells but not from bone marrow cells of adult mice and from fetal liver cells of W/W mice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Sustained erythropoiesis and concurrent bone marrow hyperplasia are proposed to be responsible for low bone mass density (BMD) in chronic hemolytic pathologies. As impaired erythropoiesis is also frequent in these conditions, we hypothesized that free heme may alter marrow and bone physiology in these disorders. Bone status and bone marrow erythropoiesis were studied in mice with hemolytic anemia (HA) induced by phenylhydrazine (PHZ) or Plasmodium infection and in bled mice. All treatments resulted in lower hemoglobin concentrations, enhanced erythropoiesis in the spleen and reticulocytosis. The anemia was severe in mice with acute hemolysis, which also had elevated levels of free heme and ROS. No major changes in cellularity and erythroid cell numbers occurred in the bone marrow of bled mice, which generated higher numbers of erythroid blast forming units (BFU-E) in response to erythropoietin. In contrast, low numbers of bone marrow erythroid precursors and BFU-E and low concentrations of bone remodelling markers were measured in mice with HA, which also had blunted osteoclastogenesis, in opposition to its enhancement in bled mice. The alterations in bone metabolism were accompanied by reduced trabecular bone volume, enhanced trabecular spacing and lower trabecular numbers in mice with HA. Taken together our data suggests that hemolysis exerts distinct effects to bleeding in the marrow and bone and may contribute to osteoporosis through a mechanism independent of the erythropoietic stress.  相似文献   

4.
In this study, the influence of 2450 MHz CW microwave radiation on hematopoiesis in pregnant mice was examined. Dams (mice CD-1 strain) were irradiated during Days 1-6 or 6-15 of pregnancy. The animals were irradiated for a total of 8 hr per day (two 4-hr exposures in 9 hr) at an average power density of 30 mW/cm2. Peripheral blood and bone marrow samples were obtained on Day 18 of pregnancy. The total leukocyte and differential leukocyte counts of peripheral blood samples were not affected by either exposure regimen. In addition, no effects were noted in either the erythroid or myeloid mitotic indices of bone marrow samples. Exposure of pregnant mice to microwave radiation under the conditions of these experiments had no effects on the investigated aspects of hematopoiesis.  相似文献   

5.
Lymphoblastic lymphoma in a colony of N:NIH(S)-bg-nu-xid mice.   总被引:1,自引:0,他引:1  
During a 1-year period, 28 animals from a breeding colony of N:NIH(S)-bg-nu-xid mice were discovered to have rapidly enlarging subcutaneous swellings in the ventral, cervical, and axillary regions. Five of the mice also had hind limb paresis. Twenty-two of the mice were heterozygous nude females, five were homozygous nude males, and one was a homozygous nude female. All of the above mice were homo- or hemizygous for the beige and X-linked immunodeficiency mutations. The average age of the mice was 8.3 months. Generalized enlargement of the peripheral and internal lymph nodes was present at the time of necropsy examination. Other lesions commonly noted at necropsy included splenomegaly (15 mice), pale and thickened ventral lumbar spinal musculature (11 mice), and opaque, thickened meninges of the brain (10 mice). Histologic examination consistently disclosed infiltrates of neoplastic lymphoblasts in multiple tissues including lymph nodes, spleen, bone marrow, and meninges of the brain and spinal cord. The cells were positive for IgG on immunofluorescent staining, suggesting that the tumors were of B cell origin. The neoplasms observed in these mice have several similarities to tumors found in immunodeficient humans, suggesting that these mice may serve as useful animal models of lymphoma.  相似文献   

6.
We have explored the functional implications of inducible alpha4 integrin deletion during adult hematopoiesis by generating a conditional-knockout mouse model, and we show that alpha4 integrin-deficient hematopoietic progenitor cells accumulate in the peripheral blood soon after interferon-induced gene deletion. Although their numbers gradually stabilize at a lower level, progenitor cell influx into the circulation continues at above-normal levels for more than 50 weeks. Concomitantly, a progressive accumulation of progenitors occurs within the spleen. In addition, the regeneration of erythroid and myeloid progenitor cells is delayed during stress hematopoiesis induced by phenylhydrazine or by 5-fluorouracil, suggesting impairment in early progenitor expansion in the absence of alpha4 integrin. Moreover, in transplantation studies, homing of alpha4(-/-) cells to the bone marrow, but not to the spleen, is selectively impaired, and short-term engraftment is critically delayed in the early weeks after transplantation. Thus, conditional deletion of alpha4 integrin in adult mice is accompanied by a novel hematopoietic phenotype during both homeostasis and recovery from stress, a phenotype that is distinct from the ones previously described in alpha4 integrin-null chimeras and beta1 integrin-conditional knockouts.  相似文献   

7.
Pinworm parasites commonly infect laboratory mice with high prevalence even in well-managed animal colonies. Although often considered as irrelevant, these parasites if undetected may significantly interfere with the experimental settings and alter the interpretation of final results. There are a few reports documenting the effects of pinworms on research and the effects of pinworms on the host hematopoiesis have not yet been investigated. In this study we examined the changes within various hematopoietic cell lineages in the bone marrow, spleen, peripheral blood and peritoneal space during naturally acquired Syphacia obvelata infection in inbred CBA mice. The data obtained showed significant hematopoietic alterations, characterized by increased myelopoiesis and erythropoiesis in S. obvelata-infected animals. In order to additionally evaluate if this pinworm infection modifies hematopoietic cells' reactivity, we examined the effect of murine interleukin-17, T cell-derived cytokine implicated in the regulation of hematopoiesis and inflammation, on the growth of bone marrow progenitor cells and demonstrated that bone marrow myeloid and erythroid progenitors from S. obvelata-infected mice displayed altered sensitivity to IL-17 when compared to non-infected controls. Taken together the alterations presented pointed out that this rodent pinworm is an important environmental agent that might significantly modify the hosts' hematopoietic response, and therefore interfere with the experimental settings and alter the interpretation of the final results. However, the results obtained also contributed new data concerning the activity of IL-17 on bone marrow hematopoietic cells, supporting our previous reports that depending on physiological/pathological status of the organism IL-17 exerts differential effects on the growth of progenitor cells.  相似文献   

8.
9.
This report presents the results of an investigation of changes in the number of erythroid and granulocyte-macrophage colony-forming cells (GM-CFC) that had occurred in tissues of normal B6D2F1 mice 20 h after administration of a radioprotective dose (150 ng) of human recombinant interleukin-1 (rIL-1). Neutrophilia in the peripheral blood and changes in the tissue distribution of GM-CFC demonstrated that cells were mobilized from the bone marrow in response to rIL-1 injection. For example, 20 h after rIL-1 injection marrow GM-CFC numbers were 80% of the numbers in bone marrow from saline-injected mice. Associated with this decrease there was a twofold increase in the number of peripheral blood and splenic GM-CFC. Also, as determined by hydroxyurea injection, there was an increase in the number of GM-CFC in S phase of the cell cycle in the spleen, but not in the bone marrow. Data in this report suggest that when compared to the spleen, stimulation of granulopoiesis after rIL-1 injection is delayed in the bone marrow. Also, the earlier recovery of GM-CFC in the bone marrow of irradiated mice is not dependent upon an increase in the number of GM-CFC at the time of irradiation.  相似文献   

10.
11.
12.
目的 明确人促血液血管细胞生成素 (HAPO)对骨髓抑制小鼠的造血重建作用。方法 研究HAPO、G-CSF对骨髓抑制小鼠的促造血作用,以700 cGy 137Csγ射线全身照射的Balb/c小鼠为模型,观察照射后小鼠的生存率;检查血常规;计数内源性脾结节;计数骨髓细胞数;采用半固体培养基进行集落培养检测骨髓细胞的高增殖潜能;取小鼠骨髓细胞接种于96孔培养板,分别在照射前或照射后加HAPO、G-CSF培养72hr,MTT方法测定活细胞数;取小鼠骨髓细胞,分别在照射后加HAPO,培养3周后观察各组小鼠骨髓细胞的生长情况。结果 HAPO、G-CSF均可明显提高放射后的小鼠的生存率;使内源性的脾集落增加。照射后的各组小鼠外周血白细胞变化较为明显,HAPO组白细胞恢复快于PBS组,也可高于G-CSF组。各组小鼠骨髓细胞数虽然14天时G-CSF组最为明显,但32天时HAPO组骨髓细胞数超过G-CSF组,至42天时基本恢复正常;而G-CSF组在32天、42天时骨髓细胞数仍低于正常值。在7天、14天、32天时取各组小鼠骨髓细胞高增殖潜能检测试验,HAPO组生成的GEMM-CFU数均最多。在照射前与HAPO、G-CSF孵育的骨髓细胞,HAPO组活细胞数量比对照组明显增高,而G-CSF组与对照组无明显差异。骨髓细胞被照射后培养72hr时,MTT测定显示不同剂量HAPO、G-CSF均能促进放射后骨髓细胞的增殖。骨髓细胞被照射后继续培养3周,HAPO组均有造血岛生成,细胞sca-1、CD31呈阳性,周围CD31阳性的内皮细胞增多。而PBS组则未出现造血岛,基质细胞中极少有CD31阳性细胞的内皮细胞,未发现sca-1阳性细胞。结论 体内、外实验表明,人促血液血管细胞生成素HAPO对放射损伤的Balb/c小鼠有明显的促造血重建作用,提高小鼠的生存率,促进其造血干细胞的增殖与生长。  相似文献   

13.
The effects of long-term internal contamination with 13.3 kBq kg-1 239Pu injected intravenously were studied in 10-week-old ICR (SPF) female mice. Radiosensitivity of spleen colony-forming units (CFU-S) and 125IUdR incorporating into proliferating cells of vertebral bone marrow and spleens were determined in plutonium-treated and control animals one year after nuclide injection. The CFU-S in 239Pu-treated mice were more sensitive to X-rays (D0 = 0.52 +/- 0.01 Gy) than in controls (D0 = 0.84 +/- 0.02 Gy). 125IUdR incorporation into bone marrow and spleen cells was reduced after plutonium contamination. At one year following plutonium injection, the occurrence of chromosome aberrations was evaluated in metaphase figures of femoral bone marrow cells. The frequency of aberrations increased early after plutonium treatment, at later intervals it tended to decrease but not below the control level. While the relative numbers of vertebral marrow CFU-S decreased significantly, but only to 86 per cent of normal, cellularity of vertebral bone marrow, peripheral blood counts and survival of 239Pu-treated mice did not differ from the control data.  相似文献   

14.
ITAM-bearing transmembrane signaling adaptors such as DAP12 and FcRγ are important players in bone homeostasis, but their precise role and functions are still unknown. It has been shown that osteoclast differentiation results from the integration of the RANK and of the DAP12 and FcRγ signaling pathways. DAP12-deficient mice suffer from a mild osteopetrosis and culture of their bone marrow cells in the presence of M-CSF and RANKL, fails to give rise to multinucleated osteoclasts. Here, we report that mice overexpressing human DAP12 have an osteopenic bone phenotype due to an increased number of osteoclasts on the surface of trabecular and cortical bone. This enhanced number of osteoclasts is associated with an increased number of proliferating myeloid progenitors in Tg-hDAP12 mice. It is concomitant with an arrest of B cell development at the Pre-Pro B/Pre B stage in the bone marrow of Tg-hDAP12 mice and important decrease of follicular and marginal B cells in the spleen of these animals. Our data show that the overexpression of DAP12 results in both increased osteoclastogenesis and impaired hematopoiesis underlining the relationship between bone homeostasis and hematopoiesis.  相似文献   

15.
Extramedullary hematopoiesis has been shown to contribute to the pathogenesis of a variety of diseases including cardiovascular diseases. In this process, the spleen is seeded with mobilized bone marrow cells that augment its hematopoietic ability. It is unclear whether these immigrant cells that are produced/reprogrammed in spleen are similar or different from those found in the bone marrow. To begin to understand this, we investigated the relative potency of adult splenocytes per se to repopulate bone marrow of lethally-irradiated mice and its functional consequences in atherosclerosis. The splenocytes were harvested from GFP donor mice and transplanted into myeloablated wild type recipient mice without the inclusion of any bone marrow helper cells. We found that adult splenocytes repopulated bone marrow of myeloablated mice and the transplanted cells differentiated into a full repertoire of myeloid cell lineages. The level of monocytes/macrophages in the bone marrow of recipient mice was dependent on the cell origin, i.e., the donor splenocytes gave rise to significantly more monocytes/macrophages than the donor bone marrow cells. This occurred despite a significantly lower number of hematopoietic stem cells being present in the donor splenocytes when compared with donor bone marrow cells. Atherosclerosis studies revealed that donor splenocytes displayed a similar level of atherogenic and atheroprotective activities to those of donor bone marrow cells. Cell culture studies showed that the phenotype of macrophages derived from spleen is different from those of bone marrow. Together, these results demonstrate that splenocytes can seed bone marrow of myeloablated mice and modulate atherosclerosis. In addition, our study shows the potential of splenocytes for therapeutic interventions in inflammatory disease.  相似文献   

16.
Hemopoietic changes in male C57BL/6Cum BR mice engrafted with Lewis lung carcinoma (3LL) were evaluated between day 7, when palpable tumors were present, to day 30 postengraftment. All experimental animals demonstrated decreasing hematocrits (down 40% by day 30) with concurrent leukocytosis which by day 30 postengraftment had reached levels 13.4 times normal. The myelocytic/erythrocytic ratio for normal animals was 1:3 (bone marrow: spleen). The ratio for engrafted animals ranged between 10:1 and 40:1. This apparent shift in production priorities is even more significant in light of the fact that femoral bone marrow cellularity had decreased by 33% on day 17. Splenomegaly, evident by day 7, was seven times control by day 17. Clonogenic analysis of erythroprogenitor cell concentrations revealed an inverse relationship between bone marrow and spleen. 27 days after engraftment, splenic populations demonstrated significant increases in colony forming unit-erythroid (115-fold), burst forming unit-erythroid (7.4-fold), whereas bone marrow concentrations had decreased (6-fold). This report suggests that initiation of 3LL tumor in mice results in a change in the degree of hematopoietic priorities and participation of erythroid organs.  相似文献   

17.
Spleen colonies produced by sublethally irradiated mouse bone marrow cells were compared to those produced by unirradiated marrow cells in lethally irradiated mice. Sublethally irradiated marrow cells gave rise to many fewer spleen colonies. At seven days of colony age, the ratio of erythroid colonies to granuloid colonies was lower (< 1) than for colonies formed by unirradiated marrow (2 to 3 or more). Delay of harvest of colonies to day 10 or 12 resulted in 6 to 11 fold increase in the ratio of erythroid to granuloid colonies due largely to the belated appearance of erythroid colonies.  相似文献   

18.
Smad3基因剔除对小鼠造血功能的影响   总被引:1,自引:0,他引:1  
研究Smad3基因剔除对小鼠造血功能的影响。实验小鼠分为 5组 ,每组有Smad3基因剔除小鼠(Smad3 - - )和其同窝孪生的野生型小鼠 (Smad3 + + )各 1只。小鼠的造血功能用 14天形成的脾结节 (CFU S1 4 )、多系祖细胞 (CFU GEMM)、粒 单系祖细胞 (CFU GM)、红系祖细胞 (BFU E)测定及外周血象、骨髓象等实验血液学指标来确定。每组小鼠取尾血作白细胞、红细胞和血小板计数 ,涂片作白细胞分类计数。将一侧股骨的骨髓冲出 ,制成单细胞悬液 ,计数其中有核细胞数 ,测定CFU GM、BFU E、CFU GEMM值。将每只小鼠的 4× 10 4个骨髓有核细胞 ,经尾静脉注入 3只 8~ 10周经致死量射线照射的同系雌性小鼠体内 ,测定 14天的CFU S。取一部分胸骨、肝脏、脾脏固定做病理切片 ,其余胸骨冲出骨髓 ,涂片作分类计数。结果Smad3 - - 小鼠外周血白细胞和血小板计数明显高于Smad3 + + 小鼠 ,红细胞数无显著差异。外周血白细胞分类结果也表明粒细胞显著增高。骨髓有核细胞数无显著差异 ,CFU GM显著增高 ,BFU E无显著差异 ,CFU GEMM明显减少 ,CFU S显著减少。病理形态学观察发现骨髓增生极度活跃 ,以粒系为主 ,肝脾无显著差别。骨髓涂片分类表明粒系增多 ,粒系 :红系比例增高。因此得出结论Smad3基因剔除使小鼠造血干祖细胞数目  相似文献   

19.
Erythroid colony formation in agar cultures of CBA bone marrow cells was stimulated by the addition of pokeweed mitogen-stimulated spleen conditioned medium (SCM). Optimal colony numbers were obtained when cultures contained 20% fetal calf serum and concentrated spleen conditioned medium. By 7 days of incubation, large burst or unicentric erythroid colonies occurred at a maximum frequency of 40–50 per 105 bone marrow cells. In CBA mice the cells forming erythroid colonies were also present in the spleen, peripheral blood, and within individual spleen colonies. A marked strain variation was noted with CBA mice having the highest levels of erythroid colony-forming cells. In CBA mice erythroid colony-forming cells were mainly non-cycling (12.5% reduction in colony numbers after incubation with hydroxyurea or 3H-thymidine). Erythroid colony-forming cells sedimented with a peak of 4.5 mm/hr, compared with CFU-S, which sedimented at 4.25 mm/hr. The addition of erythropoietin (up to 4 units) to cultures containing SCM did not alter the number or degree of hemoglobinisation of erythroid colonies. Analysis of the total number of erythroid colony-forming cells and CFU-S in 90 individual spleen colonies gave a correlation coefficient of r = 0.93 for these two cell types. In addition to benzidine-positive erythroid cells, up to 40% of the colonies contained, in addition, varying proportions of neutrophils, macrophages, eosinophils, and megakaryocytes. Taken together with the close correlation between the numbers of CFU-S in different adult hemopoietic tissues, including individual spleen colonies, the data indicate that the erythroid colony-forming cells expressing multiple hemopoietic differentiation are members of the hemopoietic multipotential stem cell compartment.  相似文献   

20.
The characteristic progression and specificity of Friend virus for the erythroid lineage have allowed for the identification of a number of host-encoded loci that are required for disease progression. Several of these loci, including the Friend virus susceptibility gene 2 (Fv2), dominant white spotting gene (W), and Steel gene (Sl), regulate the initial polyclonal expansion of infected erythroid progenitor cells. W and Sl encode the Kit receptor tyrosine kinase and its ligand, stem cell factor, respectively. W mutant mice are severely anemic, and earlier work suggested that this defect in erythroid differentiation is the cause for the resistance to Friend virus-induced erythroleukemia. Here we show that in bone marrow, W/W(v) mice have near normal numbers of target cells and the initial infection of bone marrow occurs normally in vivo. In contrast, spleen cells from W/W(v) mice infected both in vitro and in vivo with Friend virus failed to give rise to erythropoietin-independent colonies at any time following Friend virus infection, suggesting that mutation of the Kit receptor specifically affects target cells in the spleen, rendering the mutant mice resistant to the development of Friend virus-induced erythroleukemia. In addition, we show that the Kit+ pathogenic targets of Friend virus in the spleen are distinct from the pathogenic targets in bone marrow and this population of spleen target cells is markedly decreased in W/W(v) mice and these cells fail to express Sf-Stk. These results also underscore the unique nature of the spleen microenvironment in its role in supporting the progression of acute leukemia in Friend virus-infected mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号