首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The Mga virulence regulon: infection where the grass is greener   总被引:3,自引:0,他引:3  
Co-ordinate regulation of virulence gene expression in response to different host environments is central to the success of the group A streptococcus (GAS, Streptococcus pyogenes) as an important human pathogen. Mga represents a ubiquitous stand-alone virulence regulator that controls genes (Mga regulon) whose products are necessary for adherence, internalization and host immune evasion. Mga highly activates a core set of virulence genes, including its own gene, by directly binding to their promoters. Yet, Mga also influences expression of over 10% of the GAS genome, primarily genes and operons involved in metabolism and sugar utilization. Expression of the Mga regulon is influenced by conditions that signify favourable growth conditions, presumably allowing GAS to take advantage of promising new niches in the host. The ability of Mga to respond to growth signals clearly involves regulation of mga expression via global regulatory networks such as RALPs, Rgg/RopB and the catabolite control protein CcpA. However, the presence of predicted PTS regulatory domains (PRDs) within Mga suggests an intriguing model whereby phosphorylation of Mga by the PTS phosphorelay might link growth and sugar utilization with virulence in GAS. As Mga homologues have been found in several important Gram-positive pathogens, the Mga regulon could provide a valuable paradigm for increasing our understanding of global virulence networks in bacteria.  相似文献   

7.
8.
9.
In addition to beta-haemolytic streptococci belonging to Lancefield group A (Streptococcus pyogenes, GAS), human isolates of group C (GCS) and group G (GGS) streptococci (S. dysgalactiae subsp. equisimilis) have been implicated as causative agents in outbreaks of purulent pharyngitis, of wound infections and recently also of streptococcal toxic shock-like syndrome. Very little is known about the organisation of the genomic region in which the emm gene of GCS and GGS is located. We have investigated the genome sequences flanking the emm gene in GCS by sequencing neighbouring fragments obtained by inverse PCR. Our sequence data for GCS strains 25287 and H46A revealed two types of arrangement in the emm region, which differ significantly from the known types of mga regulon in GAS. We named this segment of the genome mgrC (for multigene regulon-like segment in group C streptococci). In strains belonging to the first mgrC type (prototype strain 25287) the emm gene is flanked up-stream by mgc, a gene that is 61% identical to the mga gene of GAS. A phylogenetic analysis of the deduced protein sequences showed that Mgc is related to Mga proteins of various types of GAS but forms a distinct cluster. Downstream of emm, the mgrC sequence region is bordered by rel. This gene encodes a protein that functions in the synthesis and degradation of guanosine 3',5' bipyrophosphate (ppGpp) during the stringent regulatory response to amino acid deprivation. In the second mgrC type (prototype strain H46A), the genes mgc and emm are arranged as in type 1. But an additional ORF (orf) is inserted in opposite orientation between emm and rel. This orf shows sequence homology to cpdB, which is present in various microorganisms and encodes 2',3' cyclo-nucleotide 2'-phosphodiesterase. PCR analysis showed that these two mgrC arrangements also exist in GGS. Our sequence and PCR data further showed that both types of mgrC region in GCS and GGS are linked via rel to the streptokinase region characterised recently in strain H46A. A gene encoding C5a peptidase, which is present at the 3' end of the mga regulon in GAS, was not found in the mgrC region identified in the GCS and GGS strains investigated here.  相似文献   

10.
11.
12.
The M protein of group A streptococcus (GAS) is considered to be a major virulence factor because it renders GAS resistant to phagocytosis and allows bacterial growth in human blood. There are more than 80 known serotypes of M proteins, and protective opsonic antibodies produced during disease in humans are serotype specific. M proteins also mediate bacterial adherence to epithelial cells of skin and pharynx. GAS strains vary in the genomic organization of the mga regulon, which contains the genes encoding M and M-like proteins and other virulence factors. This diversity of organization makes it difficult to assess virulence of M proteins of different serotypes, unless they can be expressed in an isogenic background. Here, we express M proteins of different serotypes in the M protein- and protein F1-deficient GAS strain, SAM2, which also lacks M-like proteins. Genes encoding M proteins of different serotypes (emmXs) have been integrated into the SAM2 chromosome in frame with the emm6.1 promoter and its mga regulon, resulting in similar levels of emmX expression. Although SAM2 exhibits a very low level of adherence to and invasion of HEp-2 and HaCaT cells, a SAM2-derived strain expressing M6 protein adheres to and invades both cell types. In contrast, the isogenic strain expressing M18 protein adheres to both cell types, but invades with a very low efficiency. A strain expressing M3 protein adheres to both types of cells, but its invasion of HEp-2 cells is serum dependent. A GAS strain expressing M6 protein does not compete with the isogenic strain expressing M18 protein for adherence to or invasion of HaCaT cells. We conclude that M proteins of different serotypes recognize different repertoires of receptors on the surfaces of eukaryotic cells.  相似文献   

13.
14.
15.
16.
17.
18.
The M protein has been postulated to be a major group A streptococcal (GAS) virulence factor because of its contribution to the bacterial resistance to opsono-phagocytosis. Direct evidence of this was only provided for GAS strains which expressed a single M protein. The majority of GAS express additional, structurally similar M-related proteins, Mrp and Enn, which have been described as IgG- and IgA-binding proteins. To determine the involvement of Mrp and M protein in phagocytosis resistance, the mrp and emm genes from serotypes M2, M4, and M49 as well as from M-untypeable strain 64/14 were insertionally inactivated. The mrp and emm mutants were subjected to direct bactericidal assays. As judged by numbers of surviving colony-forming units, all mutant strains with the exception of the mrp 4 mutant exhibited reduced multiplication factors as compared to the isogenic wild-type strains. Subsequent analysis of phagocytosis by flow cytometry, measuring association of BCECF/AM-labelled bacteria and granulocytes, paralleled the results from direct bactericidal assays regardless of whether isolated granulocytes or whole blood were utilized. Resistant wild-type GAS strains bound to less than 24% of granulocytes, whereas phagocytosis-sensitive controls attached to more than 90% of the white blood cells. 40 to 60% of the granulocytes associated with the mrp and emm mutants within 1 h of co-incubation. Kinetic data suggested that attachment to granulocytes proceeds faster for emm mutants than for corresponding mrp mutants. By adding a dihydro-rhodamine123 stain and measuring fluorescence induced by oxidative burst, the experimental data suggested that bacteria bound to granulocytes were also engulfed and integrated into phagolysosomes. Thus, these data indicated that, if present, both mrp and emm gene products contribute to phagocytosis resistance by decreasing bacterial binding to granulocytes.  相似文献   

19.
20.
Group A streptococcus (GAS) causes diseases ranging from benign to severe infections such as necrotizing fasciitis (NF). The reasons for the differences in severity of streptococcal infections are unexplained. We developed the polymorphic-tag-lengths-transposon-mutagenesis (PTTM) method to identify virulence genes in vivo. We applied PTTM on an emm14 strain isolated from a patient with NF and screened for mutants of decreased virulence, using a mouse model of human soft-tissue infection. A mutant that survived in the skin but was attenuated in its ability to reach the spleen and to cause a lethal infection was identified. The transposon was inserted into a small open reading frame (ORF) in a locus termed sil, streptococcal invasion locus. sil contains at least five genes (silA-E) and is highly homologous to the quorum-sensing competence regulons of Streptococcus pneumoniae. silA and silB encode a putative two-component system whereas silD and silE encode two putative ABC transporters. silC is a small ORF of unknown function preceded by a combox promoter. Insertion and deletion mutants of sil had a diminished lethality in the animal model. Virulence of a deletion mutant of silC was restored when injected together with the avirulent emm14-deletion mutant, but not when these mutants were injected into opposite flanks of a mouse. DNA transfer between these mutants occurred in vivo but could not account for the complementation of virulence. DNA exchange between the emm14-deletion mutant and mutants of sil occurred also in vitro, at a frequency of approximately 10-8 for a single antibiotic marker. Whereas silC and silD mutants exchanged markers with the emm14 mutant, silB mutant did not. Thus, we identified a novel locus, which controls GAS spreading into deeper tissues and could be involved in DNA transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号