首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth and Differentiation Factor 1 (GDF-1) has been implicated in left-right patterning of the mouse embryo but has no other known function. Here, we demonstrate a genetic interaction between Gdf1 and Nodal during anterior axis development. Gdf1-/-;Nodal+/- mutants displayed several abnormalities that were not present in either Gdf1-/- or Nodal+/- single mutants, including absence of notochord and prechordal plate, and malformation of the foregut; organizing centers implicated in the development of the anterior head and branchial arches, respectively. Consistent with these deficits, Gdf1-/-;Nodal+/- mutant embryos displayed a number of axial midline abnormalities, including holoprosencephaly, anterior head truncation, cleft lip, fused nasal cavity, and lack of jaws and tongue. The absence of these defects in single mutants indicated a synergistic interaction between Nodal and GDF-1 in the node, from which the axial mesendoderm that gives rise to the notochord, prechordal plate, and foregut endoderm originates, and where the two factors are co-expressed. This notion was supported by a severe downregulation of FoxA2 and goosecoid in the anterior primitive streak of double mutant embryos. Unlike that in the lateral plate mesoderm, Nodal expression in the node was independent of GDF-1, indicating that both factors act in parallel to control the development of mesendodermal precursors. Receptor reconstitution experiments indicated that GDF-1, like Nodal, can signal through the type I receptors ALK4 and ALK7. However, analysis of compound mutants indicated that ALK4, but not ALK7, was responsible for the effects of GDF-1 and Nodal during anterior axis development. These results indicate that GDF-1 and Nodal converge on ALK4 in the anterior primitive streak to control the formation of organizing centers that are necessary for normal forebrain and branchial arch development.  相似文献   

2.
Nodal signals, a subclass of the TGFbeta superfamily of secreted factors, induce formation of mesoderm and endoderm in vertebrate embryos. We have examined the possible dorsoventral and animal-vegetal patterning roles for Nodal signals by using mutations in two zebrafish nodal-related genes, squint and cyclops, to manipulate genetically the levels and timing of Nodal activity. squint mutants lack dorsal mesendodermal gene expression at the late blastula stage, and fate mapping and gene expression studies in sqt(-/-); cyc(+/+) and sqt(-/-); cyc(+/-) mutants show that some dorsal marginal cells inappropriately form hindbrain and spinal cord instead of dorsal mesendodermal derivatives. The effects on ventrolateral mesendoderm are less severe, although the endoderm is reduced and muscle precursors are located nearer to the margin than in wild type. Our results support a role for Nodal signals in patterning the mesendoderm along the animal-vegetal axis and indicate that dorsal and ventrolateral mesoderm require different levels of squint and cyclops function. Dorsal marginal cells were not transformed toward more lateral fates in either sqt(-/-); cyc(+/-) or sqt(-/-); cyc(+/+) embryos, arguing against a role for the graded action of Nodal signals in dorsoventral patterning of the mesendoderm. Differential regulation of the cyclops gene in these cells contributes to the different requirements for nodal-related gene function in these cells. Dorsal expression of cyclops requires Nodal-dependent autoregulation, whereas other factors induce cyclops expression in ventrolateral cells. In addition, the differential timing of dorsal mesendoderm induction in squint and cyclops mutants suggests that dorsal marginal cells can respond to Nodal signals at stages ranging from the mid-blastula through the mid-gastrula.  相似文献   

3.
4.
5.
Recent work has identified LDL receptor-related family members, Lrp5 and Lrp6, as co-receptors for the transduction of Wnt signals. Our analysis of mice carrying mutations in both Lrp5 and Lrp6 demonstrates that the functions of these genes are redundant and are essential for gastrulation. Lrp5;Lrp6 double homozygous mutants fail to establish a primitive streak, although the anterior visceral endoderm and anterior epiblast fates are specified. Thus, Lrp5 and Lrp6 are required for posterior patterning of the epiblast, consistent with a role in transducing Wnt signals in the early embryo. Interestingly, Lrp5(+/-);Lrp6(-/-) embryos die shortly after gastrulation and exhibit an accumulation of cells at the primitive streak and a selective loss of paraxial mesoderm. A similar phenotype is observed in Fgf8 and Fgfr1 mutant embryos and provides genetic evidence in support of a molecular link between the Fgf and Wnt signaling pathways in patterning nascent mesoderm. Lrp5(+/-);Lrp6(-/-) embryos also display an expansion of anterior primitive streak derivatives and anterior neurectoderm that correlates with increased Nodal expression in these embryos. The effect of reducing, but not eliminating, Wnt signaling in Lrp5(+/-);Lrp6(-/-) mutant embryos provides important insight into the interplay between Wnt, Fgf and Nodal signals in patterning the early mouse embryo.  相似文献   

6.
Heterozygous deletions encompassing the ZIC1;ZIC4 locus have been identified in a subset of individuals with the common cerebellar birth defect Dandy-Walker malformation (DWM). Deletion of Zic1 and Zic4 in mice produces both cerebellar size and foliation defects similar to human DWM, confirming a requirement for these genes in cerebellar development and providing a model to delineate the developmental basis of this clinically important congenital malformation. Here, we show that reduced cerebellar size in Zic1 and Zic4 mutants results from decreased postnatal granule cell progenitor proliferation. Through genetic and molecular analyses, we show that Zic1 and Zic4 have Shh-dependent function promoting proliferation of granule cell progenitors. Expression of the Shh-downstream genes Ptch1, Gli1 and Mycn was downregulated in Zic1/4 mutants, although Shh production and Purkinje cell gene expression were normal. Reduction of Shh dose on the Zic1(+/-);Zic4(+/-) background also resulted in cerebellar size reductions and gene expression changes comparable with those observed in Zic1(-/-);Zic4(-/-) mice. Zic1 and Zic4 are additionally required to pattern anterior vermis foliation. Zic mutant folial patterning abnormalities correlated with disrupted cerebellar anlage gene expression and Purkinje cell topography during late embryonic stages; however, this phenotype was Shh independent. In Zic1(+/-);Zic4(+/-);Shh(+/-), we observed normal cerebellar anlage patterning and foliation. Furthermore, cerebellar patterning was normal in both Gli2-cko and Smo-cko mutant mice, where all Shh function was removed from the developing cerebellum. Thus, our data demonstrate that Zic1 and Zic4 have both Shh-dependent and -independent roles during cerebellar development and that multiple developmental disruptions underlie Zic1/4-related DWM.  相似文献   

7.
During vertebrate embryogenesis, a left-right axis is established. The heart, associated vessels and inner organs adopt asymmetric spatial arrangements and morphologies. Secreted growth factors of the TGF-beta family, including nodal, lefty-1 and lefty-2, play crucial roles in establishing left-right asymmetries [1] [2] [3]. In zebrafish, nodal signalling requires the presence of one-eyed pinhead (oep), a member of the EGF-CFC family of membrane-associated proteins [4]. We have generated a mutant allele of cryptic, a mouse EGF-CFC gene [5]. Homozygous cryptic mutants developed to birth, but the majority died during the first week of life because of complex cardiac malformations such as malpositioning of the great arteries, and atrial-ventricular septal defects. Moreover, laterality defects, including right isomerism of the lungs, right or left positioning of the stomach and splenic hypoplasia were observed. Nodal gene expression in the node was initiated in cryptic mutant mice, but neither nodal, lefty-2 nor Pitx2 were expressed in the left lateral plate mesoderm. The laterality defects observed in cryptic(-/-) mice resemble those of mice lacking the type IIB activin receptor or the homeobox-containing factor Pitx2 [6] [7] [8] [9], and are reminiscent of the human asplenic syndrome [10]. Our results provide genetic evidence for a role of cryptic in the signalling cascade that determines left-right asymmetry.  相似文献   

8.
Yeo C  Whitman M 《Molecular cell》2001,7(5):949-957
Nodal ligands are essential for the patterning of chordate embryos. Genetic evidence indicates that EGF-CFC factors are required for Nodal signaling, but the molecular basis for this requirement is unknown. We have investigated the role of Cripto, an EGF-CFC factor, in Nodal signaling. We find that Cripto interacts with the type I receptor ALK4 via the conserved CFC motif in Cripto. Cripto interaction with ALK4 is necessary both for Nodal binding to the ALK4/ActR-IIB receptor complex and for Smad2 activation by Nodal. We also find that Nodal can inhibit BMP signaling by a Cripto-independent mechanism. Inhibition appears to be mediated by heterodimerization between Nodal and BMPs, indicating that antagonism between Nodal and BMPs can occur at the level of dimeric ligand production.  相似文献   

9.
10.
11.
Activin, Nodal, and Vg1, members of the transforming growth factor beta (TGFbeta) superfamily, transduce signal through type I receptors ALK4 or ALK7 and play important roles in mesoderm induction and patterning during vertebrate embryogenesis. However, the timing and magnitude of the ALK4/ALK7-mediated maternal TGFbeta signals are not clear. SB-431542 is identified as an inhibitor of the ALK4/ALK5/ALK7-mediated TGFbeta signals and its specificity in vertebrate embryos has not been reported. We demonstrate that SB-431542 is able to specifically and reproducibly block the Smad2/3-mediated TGFbeta signals in zebrafish embryo. Embryos exposed to SB-431542 exhibit various defects phenocopying Nodal-deficient mutants. SB-431542 treatments starting at different cell cycles before the midblastula transition lead to different degrees of developmental defects in mesoderm induction and patterning, suggesting that maternal TGFbeta signals are activated right after fertilization and required for mesoderm formation and patterning.  相似文献   

12.
13.
The location, timing and intensity of Nodal signalling are all critical for proper patterning of the vertebrate embryo. Genetic evidence from mouse and zebrafish indicates that EGF-CFC family members are essential for Nodal ligands to signal. However, the Xenopus EGF-CFC, FRL1, has been implicated in Wnt signalling and in activation of Erk MAP kinase. Here, we identify two additional Xenopus EGF-CFCs, XCR2 and XCR3. We have focused on the role of XCR1/FRL1 and XCR3, which are both expressed at gastrula stages when Nodal signalling is active. We demonstrate spatial and temporal regulation of XCR1 protein expression, whereas XCR3 appears to be expressed ubiquitously. Using gain and loss of function approaches, we show that XCR1 and XCR3 are required for Nodal-related ligands to signal during early Xenopus development. Moreover, different Nodal-related ligands require different XCRs to signal. When both XCR1 and XCR3 are knocked down, activation of the Nodal intracellular signal transducer, Smad2, is severely inhibited and neither gastrulation nor mesendoderm formation occurs. Together our results indicate that the XCRs are important for modulation of the timing and intensity of Nodal signalling in Xenopus embryos.  相似文献   

14.
During vertebrate embryogenesis, members of the Lefty subclass of Transforming Growth Factor-beta (TGFbeta) proteins act as extracellular antagonists of the signaling pathway for Nodal, a TGFbeta-related ligand essential for mesendoderm formation and left-right patterning. Genetic and biochemical analyses have shown that Nodal signaling is mediated by activin receptors but also requires EGF-CFC coreceptors, such as mammalian Cripto or Cryptic. Misexpression experiments in zebrafish and frogs have suggested that Lefty proteins can act as long-range inhibitors for Nodal, possibly through competition for binding to activin receptors. Here we demonstrate two distinct and unexpected mechanisms by which Lefty proteins can antagonize Nodal activity. In particular, using a novel assay for Lefty activity in mammalian cell culture, we find that Lefty can inhibit signaling by Nodal but not by Activin or TGFbeta1, which are EGF-CFC independent. We show that Lefty can interact with Nodal in solution and thereby block Nodal from binding to activin receptors. Furthermore, Lefty can also interact with EGF-CFC proteins and prevent their ability to form part of a Nodal receptor complex. Our results provide mechanistic insights into how Lefty proteins can achieve efficient and stringent regulation of a potent signaling factor.  相似文献   

15.
Nodal factors play crucial roles during embryogenesis of chordates. They have been implicated in a number of developmental processes, including mesoderm and endoderm formation and patterning of the embryo along the anterior-posterior and left-right axes. We have analyzed the function of the Nodal signaling pathway during the embryogenesis of the sea urchin, a non-chordate organism. We found that Nodal signaling plays a central role in axis specification in the sea urchin, but surprisingly, its first main role appears to be in ectoderm patterning and not in specification of the endoderm and mesoderm germ layers as in vertebrates. Starting at the early blastula stage, sea urchin nodal is expressed in the presumptive oral ectoderm where it controls the formation of the oral-aboral axis. A second conserved role for nodal signaling during vertebrate evolution is its involvement in the establishment of left-right asymmetries. Sea urchin larvae exhibit profound left-right asymmetry with the formation of the adult rudiment occurring only on the left side. We found that a nodal/lefty/pitx2 gene cassette regulates left-right asymmetry in the sea urchin but that intriguingly, the expression of these genes is reversed compared to vertebrates. We have shown that Nodal signals emitted from the right ectoderm of the larva regulate the asymmetrical morphogenesis of the coelomic pouches by inhibiting rudiment formation on the right side of the larva. This result shows that the mechanisms responsible for patterning the left-right axis are conserved in echinoderms and that this role for nodal is conserved among the deuterostomes. We will discuss the implications regarding the reference axes of the sea urchin and the ancestral function of the nodal gene in the last section of this review.  相似文献   

16.
17.
The rightward looping of the primary heart tube is dependent upon upstream patterning events that establish the vertebrate left-right axis. In Xenopus, a left-sided Vg1 signaling pathway has been implicated in instructing cells to adopt a 'left-sided identity'; however, it is not known whether 'right-sided identity' is acquired by a default pathway or by antagonism of Vg1 signaling. Here, we propose that an antagonistic, BMP/ALK2/Smad-mediated signaling pathway is active on the right side of the Xenopus embryo. Truncated ALK2 receptor expression on the right side of the blastula elicits heart reversals and altered nodal expression. Consistent with these findings, constitutively active ALK2 (CA-ALK2) receptor expression on the left side of the blastula also elicits heart reversals and altered nodal expression. Coexpression of CA-ALK2 with mature Vg1 ligand results in predominantly left-sided nodal expression patterns and normal heart looping, demonstrating that the ALK2 pathway can 'rescue' left-right reversals that otherwise occur following right-sided misexpression of mature Vg1 ligand alone. Results with chimeric precursor proteins indicate that the mature domain of BMP ligands can mimic the ability of the ALK2 signaling pathway to antagonize the Vg1 pathway. Consistent with the observed antagonism between BMP and Vg1 ligands, left-sided ectopic expression of Xolloid results in heart reversals. Moreover, ectopic expression of Smad1 or Smad7 identified two downstream modulators of the BMP/ALK2 signaling pathway that also can regulate cardiac orientation. Collectively, these results define a BMP/ALK2-mediated pathway on the right side of the Xenopus embryo and, moreover, suggest that left-right patterning preceding cardiac morphogenesis involves the activation of two distinct and antagonistic, left- and right-sided TGF(beta)-related signaling pathways.  相似文献   

18.
During vertebrate development, signaling by the TGFbeta ligand Nodal is critical for mesoderm formation, correct positioning of the anterior-posterior axis, normal anterior and midline patterning, and left-right asymmetric development of the heart and viscera. Stimulation of Alk4/EGF-CFC receptor complexes by Nodal activates Smad2/3, leading to left-sided expression of target genes that promote asymmetric placement of certain internal organs. We identified Ttrap as a novel Alk4- and Smad3-interacting protein that controls gastrulation movements and left-right axis determination in zebrafish. Morpholino-mediated Ttrap knockdown increases Smad3 activity, leading to ectopic expression of snail1a and apparent repression of e-cadherin, thereby perturbing cell movements during convergent extension, epiboly and node formation. Thus, although the role of Smad proteins in mediating Nodal signaling is well-documented, the functional characterization of Ttrap provides insight into a novel Smad partner that plays an essential role in the fine-tuning of this signal transduction cascade.  相似文献   

19.
Growth differentiation factor 11 (GDF11) contributes to regionalize the mouse embryo along its anterior-posterior axis by regulating the expression of Hox genes. The identity of the receptors that mediate GDF11 signalling during embryogenesis remains unclear. Here, we show that GDF11 can interact with type I receptors ALK4, ALK5 and ALK7, but predominantly uses ALK4 and ALK5 to activate a Smad3-dependent reporter gene. Alk5 mutant embryos showed malformations in anterior-posterior patterning, including the lack of expression of the posterior determinant Hoxc10, that resemble defects found in Gdf11-null mutants. A heterozygous mutation in Alk5, but not in Alk4 or Alk7, potentiated Gdf11(-/-)-like phenotypes in vertebral, kidney and palate development in an Acvr2b(-/-) background, indicating a genetic interaction between the two receptor genes. Thus, the transforming growth factor-beta (TGF-beta) receptor ALK5, which until now has only been associated with the biological functions of TGF-beta1 to TGF-beta3 proteins, mediates GDF11 signalling during embryogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号