首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acyl glucuronides are reactive metabolites of carboxylate drugs, able to undergo a number of reactions in vitro and in vivo, including isomerization via intramolecular rearrangement and covalent adduct formation with proteins. The intrinsic reactivity of a particular acyl glucuronide depends upon the chemical makeup of the drug moiety. The least reactive acyl glucuronide yet reported is valproic acid acyl glucuronide (VPA-G), which is the major metabolite of the antiepileptic agent valproic acid (VPA). In this study, we showed that both VPA-G and its rearrangement isomers (iso-VPA-G) interacted with bovine brain microtubular protein (MTP, comprised of 85% tubulin and 15% microtubule associated proteins {MAPs}). MTP was incubated with VPA, VPA-G and iso-VPA-G for 2 h at room temperature and pH 7.5 at various concentrations up to 4 mM. VPA-G and iso-VPA-G caused dose-dependent inhibition of assembly of MTP into microtubules, with 50% inhibition (IC50) values of 1.0 and 0.2 mM respectively, suggesting that iso-VPA-G has five times more inhibitory potential than VPA-G. VPA itself did not inhibit microtubule formation except at very high concentrations (≥2 mM). Dialysis to remove unbound VPA-G and iso-VPA-G (prior to the assembly assay) diminished inhibition while not removing it. Comparison of covalent binding of VPA-G and iso-VPA-G (using [14C]-labelled species) showed that adduct formation was much greater for iso-VPA-G. When [14C]-iso-VPA-G was reacted with MTP in the presence of sodium cyanide (to stabilize glycation adducts), subsequent separation into tubulin and MAPs fractions by ion exchange chromatography revealed that 78 and 22% of the covalent binding occurred with the MAPs and tubulin fractions respectively. These experiments support the notion of both covalent and reversible binding playing parts in the inhibition of microtubule formation from MTP (though the acyl glucuronide of VPA is less important than its rearrangement isomers in this regard), and that both tubulin and (perhaps more importantly) MAPs form adducts with acyl glucuronides.  相似文献   

2.
3.
Sun W  Xing LY  Tang YM  Wang X 《生理学报》1998,50(4):444-448
本文用放射免疫法分析了内毒素对降钙素基因相关肽(CGRP)离体免疫测定的影响。高浓度的内毒素(终浓度大于5μg/ml)可通过与CGRP多克隆抗体竞争性结合,影响CGBP的测定,内毒素与CGRP的交叉兔疫比率为5.6×10=6。以C18柱纯化待测样本可以有效地清除混杂的内毒素。结果表明离体实验中高浓度内毒素可干扰CGRP的放射免疫测定,C18柱可清除样本中的内毒素从而避免其对CGRP放射免疫测定的影响。  相似文献   

4.
5.
The ingestion of Bacillus thuringiensis crystal endotoxin by Manduca sexta causes the destruction of both goblet and columnar cells of the midgut. One hour after ingestion, the microvilli show pathological effects. Nearly complete destruction of the goblet and columnar cells has taken place after 4 hr exposure to the toxin.  相似文献   

6.
Structural characterization of microtubules has been the realm of three‐dimensional electron microscopy and thus has evolved hand in hand with the progress of this technique, from the initial 3D reconstructions of stained tubulin assemblies, and the first atomic model of tubulin by electron crystallography of 2D sheets of protofilaments, to the ever more detailed cryoelectron microscopy structures of frozen‐hydrated microtubules. Most recently, hybrid helical and single particle image processing techniques, and the latest detector technology, have lead to atomic models built directly into the density maps of microtubules in different functional states, shading new light into the critical process of microtubule dynamic instability.  相似文献   

7.
Cortactin and WASP activate Arp2/3-mediated actin filament nucleation and branching. However, different mechanisms underlie activation by the two proteins, which rely on distinct actin-binding modules and modes of binding to actin filaments. It is generally thought that cortactin binds to "mother" actin filaments, while WASP donates actin monomers to Arp2/3-generated "daughter" filament branches. Interestingly, cortactin also binds WASP in addition to F-actin and the Arp2/3 complex. However, the structural basis for the role of cortactin in filament branching remains unknown, making interpretation difficult. Here, electron microscopy and 3D reconstruction were carried out on F-actin decorated with the actin-binding repeating domain of cortactin, revealing conspicuous density on F-actin attributable to cortactin that is located on a consensus-binding site on subdomain-1 of actin subunits. Strikingly, the binding of cortactin widens the gap between the two long-pitch filament strands. Although other proteins have been found to alter the structure of the filament, the cortactin-induced conformational change appears unique. The results are consistent with a mechanism whereby alterations of the F-actin structure may facilitate recruitment of the Arp2/3 complex to the "mother" filament in the cortex of cells. In addition, cortactin may act as a structural adapter protein, stabilizing nascent filament branches while mediating the simultaneous recruitment of Arp2/3 and WASP.  相似文献   

8.
Isolated melanophores of the angelfish, Pterophyllum scalare, have been used in a morphometric analysis and a quantitative study of their microtubule system. Using transverse sections spaced at regular intervals, the changes associated with the process of pigment aggregation have been determined. Upon the concentration of pigment granules in the central cell region, almost half of the cytoplasmic portion is also withdrawn from the peripheral cell regions. Counts of microtubules within a cell sector in cells with pigment aggregated and dispersed, respectively, reveal (a) a constancy of the number of microtubules in this sector regardless of the distance from the cell center, and (b) a reduction of microtubule number in cells with pigment aggregated by about 58%. On the basis of these counts, the total number of microtubules has been calculated. In the dispersed state, about 2,400 microtubules extend between the center and the periphery of the cell, while their number is about 1,000 in the aggregated state. Using a 13-protofilament model of a microtubule and relevant data on size and molecular weight of microtubule subunits, the amount of tubulin present as microtubules is calculated. In the average, the cells contain 1.95·108 monomers corresponding to 1.78·10?8 mg tubulin. A tentative estimation of the concentration of tubulin inside a melanophore yields values of 6.1 mg/ml for the whole cell and 16.5 mg/ml for the cytoplasm alone (excluding membrane-bound organelles). Based on this estimation, a comparison, with microtubule assembly in vitro is made.  相似文献   

9.
P. A. Vesk  D. G. Rayns  M. Vesk 《Protoplasma》1994,182(1-2):71-74
Summary High resolution scanning electron microscopy was used to obtain images of cortical microtubules and associated structures in onion root tips. Specimens were prepared using a modified quick-freeze deep-etch technique utilising cytosolic extraction with saponin and conductive staining with osmium.Abbreviations DMSO dimethylsulfoxide - HRSEM high resolution scanning electron microscope/microscopy - MTSB microtubule stabilising buffer - TEM transmission electron microscope/microscopy  相似文献   

10.
During experiments studying dietary effects on phosphorylation/dephosphorylation of MAP-2 we found that incubation of microtubules with alkaline phosphatase resulted in extensive proteolysis of MAP-2 but not of tubulin or Tau proteins. In the absence of tubulin, when microtubule-associated proteins (MAPs) were incubated with alkaline phosphatase, MAP-2 was not proteolyzed. This suggests that binding to tubulin induces a conformational change in MAP-2 which makes it more susceptible to proteolysis. The proteolysis of MAP-2 by alkaline phosphatase was prevented by inhibitors of serine proteases, suggesting that the commercial preparation of the enzyme is contaminated by a serine protease and/or that the enzyme also has a weaker proteolytic activity. In addition, selective proteolysis of MAP-2 can be obtained with the metalloprotease collagenase. Brain homogenates are shown to contain a Ca2+-dependent protease which selectively degrades MAP-2 bound to tubulin. These results suggest that selective proteolysis of tubulin-bound MAP-2 could play a role in the regulation of microtubule dynamics in response to extracellular signals.  相似文献   

11.
《Biomarkers》2013,18(7):473-479
Inhaled endotoxin (lipopolysaccharide, LPS) initiates an inflammatory response and leads to the expression of CR3 (CD11b/CD18) receptors on polymorphonuclear leukocytes (PMNs). We determined if PMN activation in nasal lavage fluid (NLF) is a possible biomarker of occupational endotoxin exposure. Seven subjects exposed to endotoxin provided NLF samples that were split into three aliquots (negative control – 1?M nicotinamide; sham; positive control – 11 ηg of exogenous LPS) and PMN activation was measured using a chemiluminometer. Differences in mean PMN activation were apparent, negative control: 548?±?15.65 RLU 100 μl?1; sham: 11469?±?2582 RLU 100 μl?1; positive control: 42026?±?16659 RLU 100 μl (n?=?7; p <0.05). This technique shows promise as a diagnostic method for measuring upper airway LPS exposure.  相似文献   

12.
13.
Taxol, a microtubule stabilizing agent, has been used to study changes in spindle microtubule organization during mitosis. PtK1 cells have been treated with 5 μg/ml taxol for brief periods to determine its effect on spindle architecture. During prophase taxol induces microtubules to aggregate, particularly evident in the region between the nucleus and cell periphery. Taxol induces astral microtubule formation in prometaphase and metaphase cells concomitant with a reduction in spindle length. At anaphase taxol induces an increase in length in astral microtubules and reduces microtubule length in the interzone. Taxol-treated telophase cells show a reduction in the rate of furrowing and astral microtubules lack a discrete focus and are arranged more diffusely on the surface of the nuclear envelope. In summary, taxol treatment of cells prior to anaphase produces an increase in astral microtubules, a reduction in kinetochore microtubules and a decrease in spindle length. Brief taxol treatments during anaphase through early G1 promotes stabilization of microtubules, an increase in the length of astral microtubules and a delayed rate of cytokinesis.  相似文献   

14.
Endotoxins are the major contributors to the pyrogenic response caused by contaminated pharmaceutical products, formulation ingredients, and medical devices. Recombinant biopharmaceutical products are manufactured using living organisms, including Gram-negative bacteria. Upon the death of a Gram-negative bacterium, endotoxins (also known as lipopolysaccharides) in the outer cell membrane are released into the lysate where they can interact with and form bonds with biomolecules, including target therapeutic compounds. Endotoxin contamination of biologic products may also occur through water, raw materials such as excipients, media, additives, sera, equipment, containers closure systems, and expression systems used in manufacturing. The manufacturing process is, therefore, in critical need of methods to reduce and remove endotoxins by monitoring raw materials and in-process intermediates at critical steps, in addition to final drug product release testing. This review paper highlights a discussion on three major topics about endotoxin detection techniques, upstream processes for the production of therapeutic molecules, and downstream processes to eliminate endotoxins during product purification. Finally, we have evaluated the effectiveness of endotoxin removal processes from a perspective of high purity and low cost.  相似文献   

15.
In examining the effects of corticosteroids on hematopoiesis in vitro, we observed that results were highly dependent on the lot of commercial fetal calf serum (FCS) utilized. We hypothesized that this variability correlated with the picogram (pg) level of endotoxin contaminating the FCS. Randomly obtained commercial lots of FCS contained 0.39 to 187 pg/ml of lipopolysaccharide (LPS). Standard FCS concentrations in hematopoietic precursor proliferation assays (granulocyte-marcrophage colony forming units [CFU-GM]) resulted in final LPS levels as high as 40 pg/ml. LPS (2–5 pg/ml) added to essentially endotoxin-free cultures, induced human mononuclear cell release of interleukin (IL)-1, IL-6 and granulocyte colony stimulating factor (G-CSF). Lots of FCS induced the release of IL-1, IL-6, and G-CSF from human mononuclear cells and the release of these factors correlated with the level of contaminating LPS. Human bone marrow CFU-GM proliferation, in response to granulocyte-macrophage colony stimulating factor (GM-CSF), positively correlated with the level of LPS contaminating the FCS and the FCS-induced release of IL-6 from mononuclear cells. CFU-GM proliferation of human bone marrow cluster of differentiation (CD) 34+CD14-cells were not affected by the presence of endotoxin. These data suggest that LPS at 2–5 pg/ml may induce bone marrow accessory cell release of hematopoietic growth factors, thus altering proliferative response of hematopoietic precursors and confounding the study of exogenously added cytokines to culture systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Recent space-flight experiments performed by Tabony's team provided further evidence that a microgravity environment strongly affects the spatio-temporal organization of microtubule assemblies. Characteristic time and length scales were found that govern the organization of oriented bundles under Earth's gravitational field (GF). No such organization has been observed in a microgravity environment. This paper discusses physical mechanisms resulting in pattern formation under gravity and its disappearance in microgravity. The subtle interplay between chemical kinetics, diffusion, gravitational drift, thermal fluctuations, electrostatic interactions and liquid crystalline characteristics provides a plausible scenario.  相似文献   

17.
Our previous study has reported that ethanol (ETOH) partially inhibited the endotoxin (LPS)-induced tissue factor (TF)-activation in monocytes including blood peripheral monocytes as well as cultured leukemic U937 and THP-1 cells. The present study shows a strong correlation (r=0·92; p<0·01) between TF-activation and depression in LPS binding blocked by ETOH in U937 cells. The antagonism by ETOH of LPS binding was not due to a direct extracellular blockade, since ETOH did not affect the affinity of fluorescein isothiocyanate (FITC)-LPS or -anti CD14 mAb on U937 cells. After U937 cells were treated with 2 per cent (v/v) ETOH for 3 h, LPS binding was however drastically inhibited as shown by immunostaining with FITC-LPS which was viewed on a confocal laser scanning microscope. The results imply that cellular events of the ETOH effect mediate this inhibition of LPS binding. Anti-CD14 mAb (UCHM-1) inhibited LPS binding in a dose-dependent fashion, revealing a competitive specific binding to the LPS receptor. The results suggest that CD14 plays an important role in the recognition of LPS. FITC-UCHM-1 binding was significantly reduced in the cells pretreated with 2 per cent (v/v) ETOH for 3 h, indicating that ETOH modulates the ability to express CD14. CD14 expression was upregulated by priming with LPS which was offset by ETOH. Acetaldehyde, a possible metabolite of ETOH, was tested with no effect on CD14 expression. Taken together, our results show that ETOH downregulates the recognition of LPS, and suggest that the inhibitory action is likely to be mediated by the depression in CD14 expression which was also accompanied by a significantly altered membrane fluidity. Thus, the antagonism by ETOH of the binding of LPS results in a depression in the LPS-induced TF-activation. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
The presence of cytochalasin A inhibits the self-assembly of beef brain tubulin and rabbit muscle G-actin in vitro and also decreases the colchicine binding of tubulin. Prior reaction of cytochalasin A with 2-mercaptoethanol destroys its inhibitory effects. It is shown that cytochalasin A exerts its actions by reacting with sulfhydryl groups, possibly causing irreversible structural changes in the proteins. Cytochalasin B does not affect the tubulin assembly reaction.  相似文献   

19.
A study was made of the in vitro interactions of virions and the coat protein (CP) of the potato virus X (PVX) with microtubules (MT). Both virions and CP cosedimented with taxol-stabilized MT. In the presence of PVX CP, tubulin polymerized to produce structures resistant to chilling. Electron microscopy revealed the aberrant character of the resulting tubulin polymers (protofilaments and their sheets), which differed from MT assembled in the presence of cell MAP2. In contrast, PVX virions induced the assembly of morphologically normal MT sensitive to chilling. Virions were shown to compete with MAP2 for MT binding, suggesting an overlap for the MT sites interacting with MAP2 and with PVX virions. It was assumed that PVX virions interact with MT in vivo and that, consequently, cytoskeleton elements participate in intracellular compartmentalization of the PVX genome.  相似文献   

20.
Endotoxins (lipopolysaccharides) are the main components of Gram-negative bacterial outer membranes. A quick and simple way to isolate their lipid region (lipid A) directly from whole bacterial cells was devised. This method using hot ammonium-isobutyrate solvent was applied to small quantities of cells and proved to be indispensable when a rapid characterization of lipid A structure by mass spectrometry was required. Biological activities of endotoxins are directly related to the lipid A structures, which vary greatly with cell growth conditions. This method is suitable for rough- and smooth-type bacteria and very efficient for screening variations in lipid A structures. Data are acquired in a few hours and avoid the use of phenol in extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号