首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microorganisms which can degrade and grow on the purified sheath of a sheathed bacterium Sphaerotilus natans were collected from soil and river water. Two bacterial strains were isolated from the soil and designated strains TB and TK. Both strains are rod shaped, negatively stained by gram staining, facultatively anaerobic, and formed ellipsoidal endospores. These characteristics suggested that the isolates belong to the genus Paenibacillus, according to Ash et al. (C. Ash, F. G. Priest, and M. D. Collins, Antonie Leeuwenhoek 64:253-260, 1993). Phylogenetic analysis based on the 16S rDNA supported this possibility. Purification of the sheath-degrading enzyme was carried out from the culture broth of strain TB. The molecular weight of the enzyme was calculated to be 78,000 and 50, 000 by sodium dodecyl sulfate-polyacrylamide electrophoresis and gel filtration chromatography, respectively. Enzyme activity was optimized at pH 6.5 to 7.0 and 30 to 40 degrees C. The reaction was accelerated by the addition of Mg(2+), Ca(2+), Fe(3+), and iodoacetamide, whereas it was inhibited by the addition of Cu(2+), Mn(2+), and dithiothreitol. The enzyme acted on the polysaccharide moiety of the sheath, producing an oligosaccharide the size of which was between the sizes of maltopentaose and maltohexaose. As the reaction proceeded, the absorbance at 235 nm of the reaction mixture increased, suggesting the generation of unsaturated sugars. Incorporation of unsaturated sugars was also suggested by the thiobarbituric acid reaction. It is possible that the enzyme is not a hydrolytic enzyme but a kind of polysaccharide eliminase which acts on the basic polysaccharide.  相似文献   

2.
Invasive serotype 2 (cps2+) strains of Streptococcus suis cause meningitis in pigs and humans. Four case reports of S. suis meningitis in hunters suggest transmission of S. suis through the butchering of wild boars. Therefore, the objective of this study was to investigate the prevalence of potentially human-pathogenic S. suis strains in wild boars. S. suis was isolated from 92% of all tested tonsils (n = 200) from wild boars. A total of 244 S. suis isolates were genotyped using PCR assays for the detection of serotype-specific genes, the hemolysin gene sly, and the virulence-associated genes mrp and epf. The prevalence of the cps2+ genotype among strains from wild boars was comparable to that of control strains from domestic pig carriers. Ninety-five percent of the cps2+ wild boar strains were positive for mrp, sly, and epf*, the large variant of epf. Interestingly, epf* was significantly more frequently detected in cps2+ strains from wild boars than in those from domestic pigs; epf* is also typically found in European S. suis isolates from humans, including a meningitis isolate from a German hunter. These results suggest that at least 10% of wild boars in Northwestern Germany carry S. suis strains that are potentially virulent in humans. Additional amplified fragment length polymorphism analysis supported this hypothesis, since homogeneous clustering of the epf* mrp+ sly+ cps2+ strains from wild boars with invasive human and porcine strains was observed.  相似文献   

3.
We studied the physiological effect of the interconversion between the NAD(H) and NADP(H) coenzyme systems in recombinant Saccharomyces cerevisiae expressing the membrane-bound transhydrogenase from Escherichia coli. Our objective was to determine if the membrane-bound transhydrogenase could work in reoxidation of NADH to NAD+ in S. cerevisiae and thereby reduce glycerol formation during anaerobic fermentation. Membranes isolated from the recombinant strains exhibited reduction of 3-acetylpyridine-NAD+ by NADPH and by NADH in the presence of NADP+, which demonstrated that an active enzyme was present. Unlike the situation in E. coli, however, most of the transhydrogenase activity was not present in the yeast plasma membrane; rather, the enzyme appeared to remain localized in the membrane of the endoplasmic reticulum. During anaerobic glucose fermentation we observed an increase in the formation of 2-oxoglutarate, glycerol, and acetic acid in a strain expressing a high level of transhydrogenase, which indicated that increased NADPH consumption and NADH production occurred. The intracellular concentrations of NADH, NAD+, NADPH, and NADP+ were measured in cells expressing transhydrogenase. The reduction of the NADPH pool indicated that the transhydrogenase transferred reducing equivalents from NADPH to NAD+.  相似文献   

4.
The ATPase of Ilyobacter tartaricus was solubilized from the bacterial membranes and purified. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme revealed the usual subunit pattern of a bacterial F1Fo ATPase. The polypeptides with apparent molecular masses of 56, 52, 35, 16.5, and 6.5 kDa were identified as the α, β, γ, , and c subunits, respectively, by N-terminal protein sequencing and comparison with the sequences of the corresponding subunits from the Na+-translocating ATPase of Propionigenium modestum. Two overlapping sequences were obtained for the polypeptides moving with an apparent molecular mass of 22 kDa (tentatively assigned as b and δ subunits). No sequence could be determined for the putative a subunit (apparent molecular mass, 25 kDa). The c subunits formed a strong aggregate with the apparent molecular mass of 50 kDa which required treatment with trichloroacetic acid for dissociation. The ATPase was inhibited by dicyclohexyl carbodiimide, and Na+ ions protected the enzyme from this inhibition. The ATPase was specifically activated by Na+ or Li+ ions, markedly at high pH. After reconstitution into proteoliposomes, the enzyme catalyzed the ATP-dependent transport of Na+, Li+, or H+. Proton transport was specifically inhibited by Na+ or Li+ ions, indicating a competition between these alkali ions and protons for binding and translocation across the membrane. These experiments characterize the I. tartaricus ATPase as a new member of the family of FS-ATPases, which use Na+ as the physiological coupling ion for ATP synthesis.  相似文献   

5.
The sensitivity of 12 Frankia strains to heavy metals was determined by a growth inhibition assay. In general, all of the strains were sensitive to low concentrations (<0.5 mM) of Ag1+, AsO21−, Cd2+, SbO21−, and Ni2+, but most of the strains were less sensitive to Pb2+ (6 to 8 mM), CrO42− (1.0 to 1.75 mM), AsO43− (>50 mM), and SeO22− (1.5 to 3.5 mM). While most strains were sensitive to 0.1 mM Cu2+, four strains were resistant to elevated levels of Cu2+ (2 to 5 mM and concentrations as high as 20 mM). The mechanism of SeO22− resistance seems to involve reduction of the selenite oxyanion to insoluble elemental selenium, whereas Pb2+ resistance and Cu2+ resistance may involve sequestration or binding mechanisms. Indications of the resistance mechanisms for the other heavy metals were not as clear.  相似文献   

6.
Proline dipeptidase (prolidase) was purified from cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus by multistep chromatography. The enzyme is a homodimer (39.4 kDa per subunit) and as purified contains one cobalt atom per subunit. Its catalytic activity also required the addition of Co2+ ions (Kd, 0.24 mM), indicating that the enzyme has a second metal ion binding site. Co2+ could be replaced by Mn2+ (resulting in a 25% decrease in activity) but not by Mg2+, Ca2+, Fe2+, Zn2+, Cu2+, or Ni2+. The prolidase exhibited a narrow substrate specificity and hydrolyzed only dipeptides with proline at the C terminus and a nonpolar amino acid (Met, Leu, Val, Phe, or Ala) at the N terminus. Optimal prolidase activity with Met-Pro as the substrate occurred at a pH of 7.0 and a temperature of 100°C. The N-terminal amino acid sequence of the purified prolidase was used to identify in the P. furiosus genome database a putative prolidase-encoding gene with a product corresponding to 349 amino acids. This gene was expressed in Escherichia coli and the recombinant protein was purified. Its properties, including molecular mass, metal ion dependence, pH and temperature optima, substrate specificity, and thermostability, were indistinguishable from those of the native prolidase from P. furiosus. Furthermore, the Km values for the substrate Met-Pro were comparable for the native and recombinant forms, although the recombinant enzyme exhibited a twofold greater Vmax value than the native protein. The amino acid sequence of P. furiosus prolidase has significant similarity with those of prolidases from mesophilic organisms, but the enzyme differs from them in its substrate specificity, thermostability, metal dependency, and response to inhibitors. The P. furiosus enzyme appears to be the second Co-containing member (after methionine aminopeptidase) of the binuclear N-terminal exopeptidase family.  相似文献   

7.
Two different Cd2+ uptake systems were identified in Lactobacillus plantarum. One is a high-affinity, high-velocity Mn2+ uptake system which also takes up Cd2+ and is induced by Mn2+ starvation. The calculated Km and Vmax are 0.26 μM and 3.6 μmol g of dry cell−1 min−1, respectively. Unlike Mn2+ uptake, which is facilitated by citrate and related tricarboxylic acids, Cd2+ uptake is weakly inhibited by citrate. Cd2+ and Mn2+ are competitive inhibitors of each other, and the affinity of the system for Cd2+ is higher than that for Mn2+. The other Cd2+ uptake system is expressed in Mn2+-sufficient cells, and no Km can be calculated for it because uptake is nonsaturable. Mn2+ does not compete for transport through this system, nor does any other tested cation, i.e., Zn2+, Cu2+, Co2+, Mg2+, Ca2+, Fe2+, or Ni2+. Both systems require energy, since uncouplers completely inhibit their activities. Two Mn2+-dependent L. plantarum mutants were isolated by chemical mutagenesis and ampicillin enrichment. They required more than 5,000 times as much Mn2+ for growth as the parental strain. Mn2+ starvation-induced Cd2+ uptake in both mutants was less than 5% the wild-type rate. The low level of long-term Mn2+ or Cd2+ accumulation by the mutant strains also shows that the mutations eliminate the high-affinity Mn2+ and Cd2+ uptake system.  相似文献   

8.
Some Bacillus subtilis strains, including natto (fermented soybeans) starter strains, produce a capsular polypeptide of glutamate with a γ-linkage, called poly-γ-glutamate (γ-PGA). We identified and purified a monomeric 25-kDa degradation enzyme for γ-PGA (designated γ-PGA hydrolase, PghP) from bacteriophage ΦNIT1 in B. subtilis host cells. The monomeric PghP internally hydrolyzed γ-PGA to oligopeptides, which were then specifically converted to tri-, tetra-, and penta-γ-glutamates. Monoiodoacetate and EDTA both inhibited the PghP activity, but Zn2+ or Mn2+ ions fully restored the enzyme activity inhibited by the chelator, suggesting that a cysteine residue(s) and these metal ions participate in the catalytic mechanism of the enzyme. The corresponding pghP gene was cloned and sequenced from the phage genome. The deduced PghP sequence (208 amino acids) with a calculated Mr of 22,939 was not significantly similar to any known enzyme. Thus, PghP is a novel γ-glutamyl hydrolase. Whereas phage ΦNIT1 proliferated in B. subtilis cells encapsulated with γ-PGA, phage BS5 lacking PghP did not survive well on such cells. Moreover, all nine phages that contaminated natto during fermentation produced PghP, supporting the notion that PghP is important in the infection of natto starters that produce γ-PGA. Analogous to polysaccharide capsules, γ-PGA appears to serve as a physical barrier to phage absorption. Phages break down the γ-PGA barrier via PghP so that phage progenies can easily establish infection in encapsulated cells.  相似文献   

9.
It was recently found that the cytoplasmic butyryl-coenzyme A (butyryl-CoA) dehydrogenase-EtfAB complex from Clostridium kluyveri couples the exergonic reduction of crotonyl-CoA to butyryl-CoA with NADH and the endergonic reduction of ferredoxin with NADH via flavin-based electron bifurcation. We report here on a second cytoplasmic enzyme complex in C. kluyveri capable of energetic coupling via this novel mechanism. It was found that the purified iron-sulfur flavoprotein complex NfnAB couples the exergonic reduction of NADP+ with reduced ferredoxin (Fdred) and the endergonic reduction of NADP+ with NADH in a reversible reaction: Fdred2− + NADH + 2 NADP+ + H+ = Fdox + NAD+ + 2 NADPH. The role of this energy-converting enzyme complex in the ethanol-acetate fermentation of C. kluyveri is discussed.Clostridium kluyveri is unique in fermenting ethanol and acetate to butyrate, caproate, and H2 (reaction 1) and in deriving a large (30%) portion of its cell carbon from CO2. Both the energy metabolism and the pathways of biosynthesis have therefore been the subject of many investigations (for relevant literature, see references 12 and 27). (1)During growth of C. kluyveri on ethanol and acetate, approximately five ethanol and four acetate molecules are converted to three butyrate molecules and one caproate molecule (reaction 1a), and one ethanol molecule is oxidized to one acetate, one H+, and two H2 (reaction 1b) molecules (23, 31). How exergonic reaction 1a is coupled with endergonic reaction 1b and with ATP synthesis from ADP and Pi (ΔGo′ = +32 kJ/mol) has remained unclear for many years. (1a) (1b)We recently showed (12) that, in Clostridium kluyveri, the exergonic reduction of crotonyl-coenzyme A (crotonyl-CoA) (Eo′ = −10 mV) with NADH (Eo′ = −320 mV) involved in reaction 1a is coupled with the endergonic reduction of ferredoxin (Fdox) (Eo′ = −420 mV) with NADH (Eo′ = −320 mV) involved in reaction 1b via the recently proposed mechanism of flavin-based electron bifurcation (7). The coupling reaction is catalyzed by the cytoplasmic butyryl-CoA dehydrogenase-EtfAB complex (reaction 2) (12): (2)The reduced ferredoxin (Fdred2−) is assumed to be used for rereduction of NAD+ via a membrane-associated, proton-translocating ferredoxin:NAD oxidoreductase (RnfABCDEG) (reaction 3), and the proton motive force thus generated is assumed to drive the phosphorylation of ADP via a membrane-associated F1F0 ATP synthetase (reaction 4): (3) (4)The novel coupling mechanism represented by reactions 2 and 3 allowed for the first time the possibility of formulating a metabolic scheme for the ethanol-acetate fermentation that could account for the observed fermentation products and growth yields and thus for the observed ATP gains (27). One issue, however, remained open, namely, why the formation of butyrate from ethanol and acetate in the fermentation involves both an NADP+- and an NAD+-specific β-hydroxybutyryl-CoA dehydrogenase (16), considering that, in the oxidative part of the fermentation (ethanol oxidation to acetyl-CoA), only NADH is generated (8, 9, 13).The presence of a reduced ferredoxin:NADP+ oxidoreductase was proposed based on results of enzymatic studies performed 40 years ago. Cell extracts of Clostridium kluyveri were found to catalyze the formation of H2 from NADPH in a ferredoxin- and NAD+-dependent reaction (34). The results were interpreted to indicate that C. kluyveri contains a ferredoxin-dependent hydrogenase and an NADPH:ferredoxin oxidoreductase with transhydrogenase activity. H2 formation from NADPH was strictly dependent on the presence of NAD+ and was inhibited by NADH, inhibition being competitive with the presence of NAD+, indicating that ferredoxin reduction with NADPH is under the allosteric control of the NAD+/NADH couple. The cell extracts also catalyzed the NADH-dependent reduction of NADP+ with reduced ferredoxin (21, 34). Purification of the enzyme catalyzing these reactions was not achieved, and no function in the energy metabolism of C. kluyveri was assigned.In this communication, we report on the properties of the recombinant enzyme that catalyzes the NAD+-dependent reduction of ferredoxin with NADPH and the NADH-dependent reduction of NADP+ with reduced ferredoxin and show that the cytoplasmic heterodimeric enzyme couples the exergonic reduction of NADP+ with reduced ferredoxin with the endergonic reduction of NADP+ with NADH in a fully reversible reaction. The transhydrogenation reaction is endergonic, because in vivo the NADH/NAD+ ratio is generally near 0.3 and the NADPH/NADP+ ratio is generally above 1 (2, 30). (5)NADP+ reduction is most probably the physiological function of the enzyme, which is why we chose the abbreviation NfnAB (for NADH-dependent reduced ferredoxin:NADP+ oxidoreductase).  相似文献   

10.
A modified 3-hydroxypropionate cycle has been proposed as the autotrophic CO2 fixation pathway for the thermoacidophilic crenarchaeon Metallosphaera sedula. The cycle requires the reductive conversion of 3-hydroxypropionate to propionyl-coenzyme A (propionyl-CoA). The specific activity of the 3-hydroxypropionate-, CoA-, and MgATP-dependent oxidation of NADPH in autotrophically grown cells was 0.023 μmol min−1mg protein−1. The reaction sequence is catalyzed by at least two enzymes. The first enzyme, 3-hydroxypropionyl-CoA synthetase, catalyzes the following reaction: 3-hydroxypropionate + ATP + CoA → 3-hydroxypropionyl-CoA + AMP + PPi. The enzyme was purified 95-fold to a specific activity of 18 μmol min−1 mg protein−1 from autotrophically grown M. sedula cells. An internal peptide sequence was determined and a gene encoding a homologous protein identified in the genome of Sulfolobus tokodaii; similar genes were found in S. solfataricus and S. acidocaldarius. The gene was heterologously expressed in Escherichia coli, and the His-tagged protein was purified. Both the native enzyme from M. sedula and the recombinant enzyme from S. tokodaii not only activated 3-hydroxypropionate to its CoA ester but also activated propionate, acrylate, acetate, and butyrate; however, with the exception of propionate, the affinities for these substrates were reduced. 3-Hydroxypropionyl-CoA synthetase is up-regulated eightfold in autotrophically versus heterotrophically grown M. sedula, supporting its proposed role during CO2 fixation in this archaeon and possibly other members of the Sulfolobaceae family.  相似文献   

11.
(6R)-2,2,6-Trimethyl-1,4-cyclohexanedione (levodione) reductase was isolated from a cell extract of the soil isolate Corynebacterium aquaticum M-13. This enzyme catalyzed regio- and stereoselective reduction of levodione to (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone (actinol). The relative molecular mass of the enzyme was estimated to be 142,000 Da by high-performance gel permeation chromatography and 36,000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme required NAD+ or NADH as a cofactor, and it catalyzed reversible oxidoreduction between actinol and levodione. The enzyme was highly activated by monovalent cations, such as K+, Na+, and NH4+. The NH2-terminal and partial amino acid sequences of the enzyme showed that it belongs to the short-chain alcohol dehydrogenase/reductase family. This is the first report of levodione reductase.  相似文献   

12.

Background

Recently we and others have identified CD8 and CD4 T cell epitopes within the highly expressed M. tuberculosis protein TB10.4. This has enabled, for the first time, a comparative study of the dynamics and function of CD4 and CD8 T cells specific for epitopes within the same protein in various stages of TB infection.

Methods and Findings

We focused on T cells directed to two epitopes in TB10.4; the MHC class I restricted epitope TB10.4 3–11 (CD8/10.4 T cells) and the MHC class II restricted epitope TB10.4 74–88 (CD4/10.4 T cells). CD4/10.4 and CD8/10.4 T cells displayed marked differences in terms of expansion and contraction in a mouse TB model. CD4/10.4 T cells dominated in the early phase of infection whereas CD8/10.4 T cells were expanded after week 16 and reached 5–8 fold higher numbers in the late phase of infection. In the early phase of infection both CD4/10.4 and CD8/10.4 T cells were characterized by 20–25% polyfunctional cells (IL-2+, IFN-γ+, TNF-α+), but whereas the majority of CD4/10.4 T cells were maintained as polyfunctional T cells throughout infection, CD8/10.4 T cells differentiated almost exclusively into effector cells (IFN-γ+, TNF-α+). Both CD4/10.4 and CD8/10.4 T cells exhibited cytotoxicity in vivo in the early phase of infection, but whereas CD4/10.4 cell mediated cytotoxicity waned during the infection, CD8/10.4 T cells exhibited increasing cytotoxic potential throughout the infection.

Conclusions/Significance

Our results show that CD4 and CD8 T cells directed to epitopes in the same antigen differ both in their kinetics and functional characteristics throughout an infection with M. tuberculosis. In addition, the observed strong expansion of CD8 T cells in the late stages of infection could have implications for the development of post exposure vaccines against latent TB.  相似文献   

13.
The presence or absence of two DNA modification systems, XorI and XorII, in 195 strains of Xanthomonas oryzae pv. oryzae collected from different major rice-growing countries of Asia was assessed. All four possible phenotypes (XorI+ XorII+, XorI+ XorII, XorI XorII+ and XorI XorII) were detected in the population at a ratio of approximately 1:2:2:2. The XorI+ XorII+ and XorI XorII+ phenotypes were observed predominantly in strains from southeast Asia (Philippines, Malaysia, and Indonesia), whereas strains with the phenotypes XorI XorII and XorI+ XorII were distributed in south Asia (India and Nepal) and northeast Asia (China, Korea, and Japan), respectively. Based on the prevalence and geographic distribution of the XorI and XorII systems, we suggest that the XorI modification system originated in northeast Asia and was later introduced to southeast Asia, while the XorII system originated in southeast Asia and moved to northeast Asia and south Asia. Genomic DNA from all tested strains of X. oryzae pv. oryzae that were resistant to digestion by endonuclease XorII or its isoschizomer PvuI also hybridized with a 7.0-kb clone that contained the XorII modification system, whereas strains that were digested by XorII or PvuI lacked DNA that hybridized with the clone. Size polymorphisms were observed in fragments that hybridized with the 7.0-kb clone. However, a single hybridization pattern generally was found in XorII+ strains within a country, indicating clonal maintenance of the XorII methyltransferase gene locus. The locus was monomorphic for X. oryzae pv. oryzae strains from the Philippines and all strains from Indonesia and Korea.  相似文献   

14.
The influence of extracytoplasmic proteases on the resistance of Escherichia coli to the antimicrobial peptide protamine was investigated by testing strains with deletions in the protease genes degP, ptr, and ompT. Only ΔompT strains were hypersusceptible to protamine. This effect was abolished by plasmids carrying ompT. Both at low and at high Mg2+ concentrations, ompT+ strains cleared protamine from the medium within a few minutes. By contrast, at high Mg2+ concentrations, protamine remained present for at least 1 h in the medium of an ompT strain. These data indicate that OmpT is the protease that degrades protamine and that it exerts this function at the external face of the outer membrane.  相似文献   

15.
An alkaliphilic bacterium, Bacillus sp. strain K-1, produces extracellular xylanolytic enzymes such as xylanases, β-xylosidase, arabinofuranosidase, and acetyl esterase when grown in xylan medium. One of the extracellular xylanases that is stable in an alkaline state was purified to homogeneity by affinity adsorption-desorption on insoluble xylan. The enzyme bound to insoluble xylan but not to crystalline cellulose. The molecular mass of the purified xylan-binding xylanase was estimated to be approximately 23 kDa. The enzyme was stable at alkaline pHs up to 12. The optimum temperature and optimum pH of the enzyme activity were 60°C and 5.5, respectively. Metal ions such as Fe2+, Ca2+, and Mg2+ greatly increased the xylanase activity, whereas Mn2+ strongly inhibited it. We also demonstrated that the enzyme could hydrolyze the raw lignocellulosic substances effectively. The enzymatic products of xylan hydrolysis were a series of short-chain xylooligosaccharides, indicating that the enzyme was an endoxylanase.  相似文献   

16.
Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe2+ medium (pH 2.5) supplemented with 6 μM Hg2+. In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 μM Hg2+. When incubated for 3 h in a salt solution (pH 2.5) with 0.7 μM Hg2+, resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe2+ was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30°C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe2+-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 μM Hg2+ and 1 mM Fe2+, plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe2+-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe2+-dependent mercury volatilization activity of the plasma membrane.  相似文献   

17.
Laccase is a copper-containing phenoloxidase, involved in lignin degradation by white rot fungi. The laccase substrate range can be extended to include nonphenolic lignin subunits in the presence of a noncatalytic cooxidant such as 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), with ABTS being oxidized to the stable cation radical, ABTS·+, which accumulates. In this report, we demonstrate that the ABTS·+ can be efficiently reduced back to ABTS by physiologically occurring organic acids such as oxalate, glyoxylate, and malonate. The reduction of the radical by oxalate results in the formation of H2O2, indicating the formation of O2·− as an intermediate. O2·− itself was shown to act as an ABTS·+ reductant. ABTS·+ reduction and H2O2 formation are strongly stimulated by the presence of Mn2+, with accumulation of Mn3+ being observed. Additionally, 4-methyl-O-isoeugenol, an unsaturated lignin monomer model, is capable of directly reducing ABTS·+. These data suggest several mechanisms for the reduction of ABTS·+ which would permit the effective use of ABTS as a laccase cooxidant at catalytic concentrations.  相似文献   

18.

Background

The high costs of pyridine nucleotide cofactors have limited the applications of NAD(P)-dependent oxidoreductases on an industrial scale. Although NAD(P)H regeneration systems have been widely studied, NAD(P)+ regeneration, which is required in reactions where the oxidized form of the cofactor is used, has been less well explored, particularly in whole-cell biocatalytic processes.

Methodology/Principal Findings

Simultaneous overexpression of an NAD+ dependent enzyme and an NAD+ regenerating enzyme (H2O producing NADH oxidase from Lactobacillus brevis) in a whole-cell biocatalyst was studied for application in the NAD+-dependent oxidation system. The whole-cell biocatalyst with (2R,3R)-2,3-butanediol dehydrogenase as the catalyzing enzyme was used to produce (3R)-acetoin, (3S)-acetoin and (2S,3S)-2,3-butanediol.

Conclusions/Significance

A recombinant strain, in which an NAD+ regeneration enzyme was coexpressed, displayed significantly higher biocatalytic efficiency in terms of the production of chiral acetoin and (2S,3S)-2,3-butanediol. The application of this coexpression system to the production of other chiral chemicals could be extended by using different NAD(P)-dependent dehydrogenases that require NAD(P)+ for catalysis.  相似文献   

19.
It is possible that the low levels of production of exopolysaccharides (EPSs) by lactic acid bacteria could be improved by altering the levels of enzymes in the central metabolism that influence the production of precursor nucleotide sugars. To test this hypothesis, we identified and cloned the galU gene, which codes for UDP glucose pyrophosphorylase (GalU) in Streptococcus thermophilus LY03. Homologous overexpression of the gene led to a 10-fold increase in GalU activity but did not have any effect on the EPS yield when lactose was the carbon source. However, when galU was overexpressed in combination with pgmA, which encodes phosphoglucomutase (PGM), the EPS yield increased from 0.17 to 0.31 g/mol of carbon from lactose. A galactose-fermenting LY03 mutant (Gal+) with increased activities of the Leloir enzymes was also found to have a higher EPS yield (0.24 g/mol of carbon) than the parent strain. The EPS yield was further improved to 0.27 g/mol of carbon by overexpressing galU in this strain. However, the highest EPS yield, 0.36 g/mol of carbon, was obtained when pgmA was knocked out in the Gal+ strain. Measurements of the levels of intracellular metabolites in the cultures revealed that the Gal+ strains had considerably higher glucose 1-phosphate levels than the other strains, and the strain lacking PGM activity had threefold-higher levels of glucose 1-phosphate than the other Gal+ strains. These results show that it is possible to increase EPS production by altering the levels of enzymes in the central carbohydrate metabolism.  相似文献   

20.
The HNH motif was originally identified in the subfamily of HNH homing endonucleases, which initiate the process of the insertion of mobile genetic elements into specific sites. Several bacteria toxins, including colicin E7 (ColE7), also contain the 30 amino acid HNH motif in their nuclease domains. In this work, we found that the nuclease domain of ColE7 (nuclease-ColE7) purified from Escherichia coli contains a one-to-one stoichiometry of zinc ion and that this zinc-containing enzyme hydrolyzes DNA without externally added divalent metal ions. The apo-enzyme, in which the indigenous zinc ion was removed from nuclease-ColE7, had no DNase activity. Several divalent metal ions, including Ni2+, Mg2+, Co2+, Mn2+, Ca2+, Sr2+, Cu2+ and Zn2+, re-activated the DNase activity of the apo-enzyme to various degrees, however higher concentrations of zinc ion inhibited this DNase activity. Two charged residues located at positions close to the zinc-binding site were mutated to alanine. The single-site mutants, R538A and E542A, showed reduced DNase activity, whereas the double-point mutant, R538A + E542A, had no observable DNase activity. A gel retardation assay further demonstrated that the nuclease-ColE7 hydrolyzed DNA in the presence of zinc ions, but only bound to DNA in the absence of zinc ions. These results demonstrate that the zinc ion in the HNH motif of nuclease-ColE7 is not required for DNA binding, but is essential for DNA hydrolysis, suggesting that the zinc ion not only stabilizes the folding of the enzyme, but is also likely to be involved in DNA hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号