首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The soft, starchy endosperm of the maize (Zea mays L)floury2 mutant is associated with a reduction in zein mRNA and protein synthesis, unique protein body morphology, and enhanced levels of a 70 kDa protein, that has been shown to be the maize homolog of a chaperonin found in the endoplasmic reticulum. We found an unusual α-zein protein of 24 kDa to be consistently associated with the zein fraction from floury2 mutants. Three additional α-zein proteins with molecular weights ranging from ca. 25 to 27 kDa are detected in the storage protein fraction of a high percentage of floury2 kernels and a low percentage of normal kernels in a genetically segregating population. The four proteins can be distinguished from one another by immunostaining on Western blots. Synthesis of the 24 kDa protein is regulated by Opaque2, since the 24 kDa protein is lacking in the storage protein fraction of opaque2/floury2 double mutants. The synthesis of an abnormal a-zein protein in floury2 could explain many features of the mutant, such as the abnormal protein body morphology, induction of the 70 kDa chaperonin, and hypostasis to opaque2 (o2). Although we cannot prove that the accumulation of this protein is responsible for the floury2 phenotype, we were able to detect a restriction fragment length polymorphism (RFLP) linked to the floury2 locus with a 22 kDa α-zein probe. We hypothesize that the unique characteristics of the floury2 mutant could be a response to the accumulation of a defective a-zein protein which impairs secretory protein synthesis.  相似文献   

2.
The reduction potentials of electron transfer proteins are critically determined by the degree of burial of the redox site within the protein and the degree of permanent polarization of the polypeptide around the redox site. Although continuum electrostatics calculations of protein structures can predict the net effect of these factors, quantifying each individual contribution is a difficult task. Here, the burial of the redox site is characterized by a dielectric radius R p (a Born-type radius for the protein), the polarization of the polypeptide is characterized by an electret potential ? p (the average electrostatic potential at the metal atoms), and an electret-dielectric spheres (EDS) model of the entire protein is then defined in terms of R p and ? p. The EDS model shows that for a protein with a redox site of charge Q, the dielectric response free energy is a function of Q 2, while the electret energy is a function of Q. In addition, R p and ? p are shown to be characteristics of the fold of a protein and are predictive of the most likely redox couple for redox sites that undergo different redox couples.  相似文献   

3.
1. Comparisons of the nitrogen content of TMV-infected and uninfected tobacco leaf discs at various times after inoculation show that virus synthesis is associated with a net increase in protein content. This excess protein is due to: (a) TMV, (b) an excess in insoluble protein which develops soon after inoculation and ends about 100 hours before cessation of TMV synthesis, and (c) an excess in soluble non-virus protein, which is variable in size and which only occurs during the time of virus synthesis. A deficiency in non-protein nitrogen occurs during the time when virus appears. 2. Isotope experiments with N15-labelled nutrient show that: (a) The bulk of TMV nitrogen is derived from the free ammonia of the host tissue. (b) Amino acid residues of TMV protein are not derived from the corresponding free amino acids in the host. (c) The appearance of TMV is preceded by the synthesis of an insoluble precursor of the virus which is then converted into TMV or some soluble intermediate protein. This effect is associated with a cell particulate which represents a small fraction of the total insoluble protein. (d) Infected tissue synthesizes de novo small amounts of soluble non-virus protein, which may represent intermediates in TMV synthesis. (e) Infected tissue fails to synthesize a rapidly turned-over soluble protein which is synthesized in comparable uninfected tissue. (f) TMV synthesis is preceded by a temporary enhancement of the metabolic stability of an insoluble protein component. 3. The results lead to the conclusion that TMV formation is due to diversion of some part of the host's protein-synthesizing apparatus from its normal course.  相似文献   

4.
5.
Members of the bacterial genus Caldicellulosiruptor are the most thermophilic cellulolytic microbes described with ability to digest lignocellulosic biomass without conventional pretreatment. The cellulolytic ability of different species varies dramatically and correlates with the presence of the multimodular cellulase CelA, which contains both a glycoside hydrolase family 9 endoglucanase and a glycoside hydrolase family 48 exoglucanase known to be synergistic in their activity, connected by three cellulose-binding domains via linker peptides. This architecture exploits the cellulose surface ablation driven by its general cellulase processivity as well as excavates cavities into the surface of the substrate, revealing a novel paradigm for cellulase activity. We recently reported that a deletion of celA in C. bescii had a significant effect on its ability to utilize complex biomass. To analyze the structure and function of CelA and its role in biomass deconstruction, we constructed a new expression vector for C. bescii and were able, for the first time, to express significant quantities of full-length protein in vivo in the native host. The protein, which contains a Histidine tag, was active and excreted from the cell. Expression of CelA protein with and without its signal sequence allowed comparison of protein retained intracellularly to protein transported extracellularly. Analysis of protein in culture supernatants revealed that the extracellular CelA protein is glycosylated whereas the intracellular CelA is not, suggesting that either protein transport is required for this post-translational modification or that glycosylation is required for protein export. The mechanism and role of protein glycosylation in bacteria is poorly understood and the ability to express CelA in vivo in C. bescii will allow the study of the mechanism of protein glycosylation in this thermophile. It will also allow the study of glycosylation of CelA itself and its role in the structure and function of this important enzyme in biomass deconstruction.  相似文献   

6.
We have isolated a covalent DNA-protein complex from bacteriophage φ29 particles. Polyacrylamide gel electrophoresis and tryptic peptide analysis showed that the protein present in the complex is very similar or identical to p3, an early induced protein essential for viral DNA replication.When the DNA-protein complex is treated with the restriction endonuclease EcoRI, the protein is specifically associated to the two terminal fragments, A and C. The protein is probably linked to the 5′ termini of the DNA since proteinase K-treated DNA is resistant to phosphorylation with polynucleotide kinase, even after treatment with alkaline phosphatase, while it is sensitive to exonuclease III. By electron microscopy the protein is visualized as a dot located at the ends of unit length DNA molecules.Mixed infection of Bacillus subtilis, at 42 °C, with ts2 mutants in cistrons 2 and 3 only produces ts 2 progeny. This finding suggests that an inactive protein p3 bound to the DNA of the ts 3 mutant is not replaced by a functional protein and, as a consequence, replication of the ts 3 DNA does not occur.  相似文献   

7.
The pecS regulatory locus is responsible for the down-expression of many virulence genes in Erwinia chrysanthemi. This locus consists of two genes, pecS and pecM, divergently transcribed. Genetic evidence indicates that the PecM protein modulates the regulatory activity of PecS. Purification and characterization of PecS, expressed either from E. coli, from the wild-type E. chrysanthemi strain or from a pecM mutant, showed that the PecS protein produced in these three genetic backgrounds displays the same biochemical properties. Band-shift assay analysis with the three PecS isoforms confirmed the involvement of the PecM protein in modulating the PecS DNA-binding capacity. Moreover, determination of the Kdapp for operator regions of the PecS protein, produced either by the wild-type E. chrysanthemi or by E. coli, reveals similar affinities. Thus, in E. coli, there is likely to be at least one other PecM-like protein able to cross-react with the E. chrysanthemi PecS protein.  相似文献   

8.
《Gene》1998,207(1):53-60
The N-ethylmaleimide-sensitive fusion protein (NSF) is required for vesicular membrane fusion in multiple cellular functions. We have cloned a cDNA encoding the Dictyostelium discoideum homolog of the NSF protein. This cDNA hybridizes with a single fragment in Southern blots suggesting that NSF is encoded by a single gene in the amoeba. It is expressed constitutively during vegetative growth and throughout the differentiation cycle. The encoded gene product comprises 738 aa with a predicted molecular mass of 82 kDa. It shows the characteristic three-domain structure of NSF proteins. A more divergent amino-terminal part is followed by two highly conserved ATP-binding domains featuring Walker A and B signature sequences. The D. discoideum protein presents an overall aa sequence identity of 44% when compared to known NSF homologs. The monoclonal antibody 2E5 directed against Cricetellus griseus NSF recognizes a protein with a molecular weight of approx. 80 000 in a D. discoideum crude extract and the recombinant D. discoideum His6-NSF expressed in Escherichia coli.  相似文献   

9.
10.
We isolated a 38 kDa ssDNA-binding protein from the unicellular cyanobacterium Synechococcus sp. strain PCC 6301 and determined its N-terminal amino acid sequence. A genomic clone encoding the 38 kDa protein was isolated by using a degenerate oligonucleotide probe based on the amino acid sequence. The nucleotide sequence and predicted amino acid sequence revealed that the 38 kDa protein is 306 amino acids long and homologous to the nuclear-encoded 370 amino acid chloroplast ribosomal protein CS1 of spinach (48% identity), therefore identifying it as ribosomal protein (r-protein) S1. Cyanobacterial and chloroplast S1 proteins differ in size from Escherichia coli r-protein S1 (557 amino acids). This provides an additional evidence that cyanobacteria are closely related to chloroplasts. The Synechococcus gene rps1 encoding S1 is located 1.1 kb downstream from psbB, which encodes the photosystem 11 P680 chlorophyll a apoprotein. An open reading frame encoding a potential protein of 168 amino acids is present between psbB and rps1 and its deduced amino acid sequence is similar to that of E. coli hypothetical 17.2 kDa protein. Northern blot analysis showed that rps1 is transcribed as a monocistronic mRNA.  相似文献   

11.
Avian myeloblastosis virus (AMV) is an oncogenic retrovirus that rapidly causes myeloblastic leukemia in chickens and transforms myeloid cells in culture. AMV carries an oncogene, v-myb, that is derived from a cellular gene, c-myb, found in the genomes of vertebrate species. We constructed a plasmid vector that allows expression of a portion of the coding region for v-myb in a procaryotic host. We then used the myb-encoded protein produced in bacteria to immunize rabbits. The antisera obtained permitted identification of the proteins encoded by both v-myb and chicken c-myb. The molecular weights of the products of v-myb and c-myb (45,000 and 75,000 respectively) indicate that the v-myb protein is an appreciably truncated version of the c-myb protein.  相似文献   

12.
13.
The cytochrome bc1-cytochrome aa3 complexes together comprise one of the major branches of the bacterial aerobic respiratory chain. In actinobacteria, the cytochrome bc1 complex shows a number of unusual features in comparison to other cytochrome bc1 complexes. In particular, the Rieske iron-sulfur protein component of this complex, QcrA, is a polytopic rather than a monotopic membrane protein. Bacterial Rieske proteins are usually integrated into the membrane in a folded conformation by the twin arginine protein transport (Tat) pathway. In this study, we show that the activity of the Streptomyces coelicolor M145 cytochrome bc1 complex is dependent upon an active Tat pathway. However, the polytopic Rieske protein is still integrated into the membrane in a ΔtatC mutant strain, indicating that a second protein translocation machinery also participates in its assembly. Difference spectroscopy indicated that the cytochrome c component of the complex was correctly assembled in the absence of the Tat machinery. We show that the intact cytochrome bc1 complex can be isolated from S. coelicolor M145 membranes by affinity chromatography. Surprisingly, a stable cytochrome bc1 complex containing the Rieske protein can be isolated from membranes even when the Tat system is inactive. These findings strongly suggest that the additional transmembrane segments of the S. coelicolor Rieske protein mediate hydrophobic interactions with one or both of the cytochrome subunits.  相似文献   

14.
Carbon storage regulator (CsrA) is a eubacterial RNA-binding protein that acts as a global regulator of many functionally diverse chromosomal genes. Here, we reveal that CsrA represses expression from an extrachromosomal element of Escherichia coli, the lysis gene (cel) of the ColE7 operon (cea-cei-cel). This operon and colicin expression are activated upon SOS response. Disruption of csrA caused ∼5-fold increase of the lysis protein. Gel mobility shift assays established that both the single-stranded loop of the T1 stem–loop distal to cei, and the putative CsrA binding site overlapping the Shine–Dalgarno sequence (SD) of the cel gene are important for CsrA binding. Substitution mutations at SD relieved CsrA-dependent repression of the cel gene in vivo. Steady-state levels and half-life of the cel mRNA were not affected by CsrA, implying that regulation is mediated at the translational level. Levels of CsrB and CsrC sRNAs, which bind to and antagonize CsrA, were drastically reduced upon induction of the SOS response, while the CsrA protein itself remained unaffected. Thus, CsrA is a trans-acting modulator that downregulates the expression of lysis protein, which may confer a survival advantage on colicinogenic E. coli under environment stress conditions.  相似文献   

15.
Under most conditions of growth, the most abundant protein in the outer membrane of most strains of Escherichia coli is a protein designated as “protein 1” or “matrix protein”. In E. coli B, this protein has been shown to be a single polypeptide with a molecular mass of 36,500 and it may account for more than 50% of the total outer membrane protein. E. coli K-12 contains a very similar, although probably not identical, species of protein 1. Some pathogenic E. coli strains contain very little protein 1 and, in its place, make a protein designated as protein 2 which migrates faster on alkaline polyacrylamide gels containing sodium dodecyl sulfate and which gives a different spectrum of CNBr peptides. An E. coli K-12 strain which had been mated with a pathogenic strain was found to produce protein 2, and a temperate bacteriophage was isolated from this K-12 strain after induction with UV light. This phage, designated as PA-2, is similar in morphology and several other properties to phage lambda. When strains of E. coli K-12 are lysogenized by phage PA-2, they produce protein 2 and very little protein 1. Adsorption to lysogenic strains grown under conditions where they produce little protein 1 and primarily protein 2 is greatly reduced as compared to non-lysogenic strains which produce only protein 1. However, when cultures are grown under conditions of catabolite repression, protein 2 is reduced and protein 1 is increased, and lysogenic and non-lysogenic cultures grown under these conditions exhibit the same rate of adsorption. Phage PA-2 does not adsorb to E. coli B, which appears to have a slightly different protein 1 from K-12. These results suggest that protein 1 is the receptor for PA-2, and that protein 2 is made to reduce the superinfection of lysogens.  相似文献   

16.
The fungal pathogen Candida albicans switches from a yeast-like to a filamentous mode of growth in response to a variety of environmental conditions. We examined the morphogenetic behavior of C. albicans yeast cells lacking the BCY1 gene, which encodes the regulatory subunit of protein kinase A. We cloned the BCY1 gene and generated a bcy1 tpk2 double mutant strain because a homozygous bcy1 mutant in a wild-type genetic background could not be obtained. In the bcy1 tpk2 mutant, protein kinase A activity (due to the presence of the TPK1 gene) was cyclic AMP independent, indicating that the cells harbored an unregulated phosphotransferase activity. This mutant has constitutive protein kinase A activity and displayed a defective germinative phenotype in N-acetylglucosamine and in serum-containing medium. The subcellular localization of a Tpk1-green fluorescent protein (GFP) fusion protein was examined in wild-type, tpk2 null, and bcy1 tpk2 double mutant strains. The fusion protein was observed to be predominantly nuclear in wild-type and tpk2 strains. This was not the case in the bcy1 tpk2 double mutant, where it appeared dispersed throughout the cell. Coimmunoprecipitation of Bcy1p with the Tpk1-GFP fusion protein demonstrated the interaction of these proteins inside the cell. These results suggest that one of the roles of Bcy1p is to tether the protein kinase A catalytic subunit to the nucleus.  相似文献   

17.
The firefly luciferase complementation assay is widely used as a bioluminescent reporter technology to detect protein-protein interactions in vitro, in cellulo, and in vivo. Upon the interaction of a protein pair, complemented firefly luciferase emits light through the adenylation and oxidation of its substrate, luciferin. Although it has been suggested that kinetics of light production in the firefly luciferase complementation assay is different from that in full length luciferase, the mechanism behind this is still not understood. To quantitatively understand the different kinetics and how changes in affinity of a protein pair affect the light emission in the assay, a mathematical model of the in vitro firefly luciferase complementation assay was constructed. Analysis of the model finds that the change in kinetics is caused by rapid dissociation of the protein pair, low adenylation rate of luciferin, and increased affinity of adenylated luciferin to the enzyme. The model suggests that the affinity of the protein pair has an exponential relationship with the light detected in the assay. This relationship causes the change of affinity in a protein pair to be underestimated. This study underlines the importance of understanding the molecular mechanism of the firefly luciferase complementation assay in order to analyze protein pair affinities quantitatively.  相似文献   

18.
The present results show that the catalytic subunit of cyclic AMP-dependent protein kinase phosphorylates the 50 kDa protein of rat liver phospholipid methyltransferase at one single site on a serine residue. Phosphorylation of this site is stimulated 2- to 3-fold by S-adenosylmethionine. S-adenosylmethionine-dependent protein phosphorylation is time- and dose-dependent and occurs at physiological concentrations. S-adenosylhomocysteine has no effect on protein phosphorylation but inhibits S-adenosylmethionine-dependent protein phosphorylation. S-AdenosylmethionineS-adenosylhomocysteine ratios varying from 0 to 5 produce a dose-dependent stimulation of the phosphorylation of the 50 kDa protein. In conclusion, these results show, for the first time, that the ratio S-adenosylmethionineS-adenosylhomocysteine can modulate phosphorylation of a specific protein.  相似文献   

19.
20.
The length of Chlamydomonas flagella is tightly regulated. Mutations in four genes—LF1, LF2, LF3, and LF4—cause cells to assemble flagella up to three times wild-type length. LF2 and LF4 encode protein kinases. Here we describe a new gene, LF5, in which null mutations cause cells to assemble flagella of excess length. The LF5 gene encodes a protein kinase very similar in sequence to the protein kinase CDKL5. In humans, mutations in this kinase cause a severe form of juvenile epilepsy. The LF5 protein localizes to a unique location: the proximal 1 μm of the flagella. The proximal localization of the LF5 protein is lost when genes that make up the proteins in the cytoplasmic length regulatory complex (LRC)—LF1, LF2, and LF3—are mutated. In these mutants LF5p becomes localized either at the distal tip of the flagella or along the flagellar length, indicating that length regulation involves, at least in part, control of LF5p localization by the LRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号