首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper extends the previous study for systems which control intracellular oxidative events in muscle and describes procedures suitable to assay glutathione peroxidase (GSHPx), glutathione reductase (GR), and total glutathione (GSH + GSSG) after fiber typing of individual muscle fibers. In human skeletal muscle, both GR and GSHPx activities were relatively low when compared to those of other tissue. No difference was found among fiber types (I, IIA, and IIB) with regard to GR activity, but in contrast GSHPx activity was significantly lower in type IIB fibers than in the other types. These results suggest that type IIB fibers may have a reduced ability to cope with hydroperoxides generated during oxidative stress, which, in turn, could lead to increased damage to membrane structures by lipid peroxidation or oxidation of sensitive intracellular thiol (-SH) enzymes by hydrogen peroxide. The Km of skeletal muscle GR for GSSG was 27 microM and for NADPH was 22 microM. If one assumes approximately 95% of total glutathione is present in the reduced state, then GSSG concentration would be of the order of 0.3 mmol/kg and under these conditions skeletal muscle GR would be efficient in all muscle fiber types.  相似文献   

2.
For preparationing the polyenzyme antioxidant complex, containing superoxide dismutase (SOD), catalase and horseradish peroxidase (HRP), the different successivities of those enzymes co-immobilization were compared. The optimum successivity is provided by simultaneous co-immobilization of covalently bound HRP with the SOD and catalase. The catalytic enzyme activity and the catalase operational stability was kinetically characterized in various samples. For one sample, the influence of ascorbate, glutathione and ethanol on the catalase kinetic parameters was studied. A possible scheme of different processes at the H2O2 decomposition in the presence of co-immobilized SOD, catalase, HRP and the substrates-reductans was discussed.  相似文献   

3.
4.
The effect of genetically determined glutathione deficiency on the fibroblast content of CuZn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase was investigated. No significant differences between glutathione-deficient and -proficient human fibroblasts were revealed. There was a large variation in the content of the investigated enzymes in fibroblasts grown and analysed on different occasions. Whereas the contents of CuZn superoxide dismutase, catalase and glutathione peroxidase did not deviate much from what has been found in other human cell-lines and tissues, the fibroblasts were found to contain exceptional amounts of Mn superoxide dismutase.  相似文献   

5.
The effects of superoxide dismutase (SOD) and catalase on the autoxidation rate of L-ascorbic acid (ASA) in the absence of metal ion catalysts were examined. The stabilization of ASA by SOD was confirmed, and the enzyme activity of SOD, which scavenges the superoxide anion formed during the autoxidation of ASA, contributed strongly to this stabilization. The stabilization of ASA by catalase was observed for the first time; however, the specific enzyme ability of catalase would not have been involved in the stabilization of ASA. Such proteins as bovine serum albumin (BSA) and ovalbumin also inhibited the autoxidation of ASA, therefore it seems that non-specific interaction between ASA and such proteins as catalase and BSA might stabilize ASA and that the non-enzymatic superoxide anion scavenging ability of proteins might be involved.  相似文献   

6.
Coxiella burnetii was examined for superoxide anion (O2-) production and superoxide dismutase and catalase activities. The organism generated O2- at pH 4.5 but not at pH 7.4. The rickettsia displayed superoxide dismutase activity distinguishable from that of the host cell (L-929 mouse fibroblast). Catalase activity was maximal at pH 7.0 and diminished at pH 4.5. These enzymes may account, in part, for the ability of this obligate intracellular parasite to survive within phagocytes.  相似文献   

7.
A. Puppo  L. Dimitrijevic  J. Rigaud 《Planta》1982,156(4):374-379
Superoxide anion is able to oxidize oxyleghemoglobin prepared from soybean nodules. Furthermore, ferrileghemoglobin is oxidized to leghemoglobin (IV) by hydrogen peroxide and this irreversible reaction leads to a complete inactivation of the hemoprotein. In scavenging O 2 - and H2O2, superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6) are able to limit these oxidations. The occurrence of these enzymes within soybean nodules and their main characteristics are reported here. A general scheme taking into account their roles in leghemoglobin protection in vivo is proposed.Abbreviations Lb leghemoglobin - SOD superoxide dismutase  相似文献   

8.
Superoxide dismutase/catalase mimetics, such as salen Mn complexes and certain metalloporphyrins, catalytically neutralize reactive oxygen and nitrogen species, which have been implicated in the pathogenesis of many serious diseases. Both classes of mimetic are protective in animal models of oxidative stress. However, only AEOL11207 and EUK-418, two uncharged Mn porphyrins, have been shown to be orally bioavailable. In this study, EUK-418 and several new analogs (the EUK-400 series) were synthesized and shown to exhibit superoxide dismutase, catalase, and peroxidase activities in vitro. Some also protected PC12 cells against staurosporine-induced cell death. All EUK-400 compounds were stable in simulated gastric fluid, and most were substantially more lipophilic than the salen Mn complexes EUK-189 and EUK-207, which lack oral activity. Pharmacokinetics studies demonstrate the presence of all EUK-400 series compounds in the plasma of rats after oral administration. These EUK-400 series compounds are potential oral therapeutic agents for cellular damage caused by oxidative stress. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Mimetics of antioxidant enzymes such as superoxide dismutases (SOD) or catalases are reported as potential new drugs able to reduce oxidative stress damage. In particular, manganese(III) complexes of salen-type ligands have been studied as both SOD and catalase mimetics. In this paper, we report the synthesis of two novel conjugates of salen-type ligands with the β-cyclodextrin, the 6-deoxy-6-[(S-cysteamidopropyl(1,2-diamino)N,N′-bis(salicylidene))]-β-cyclodextrin and the 6-deoxy-6-[(S-cysteamidopropyl(1,2-diamino)N,N′-bis(3-methoxysalicylidene))]-β-cyclodextrin, their spectroscopic characterization, and the synthesis and the characterization of their manganese(III) complexes. The SOD-like activity of the metal complexes was investigated by the indirect Fridovich method. The catalase like activity was tested using a Clark-type oxygen electrode. The peroxidase activity was tested using the ABTS (2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)) assay. The glycoconjugation of salen-manganese(III) complexes yields compounds with enhanced SOD activity. These complexes also show catalase and peroxidase activities higher than the simple salen complexes (EUK 113 and EUK 108).  相似文献   

10.
11.
Free radical-mediated damages may play an important role in cancerogenesis. To investigate their relevance in the cancer process, malonyl dialdehyde (MDA) level, superoxide dismutase (SOD), and catalase (CAT) activities were determined in the normal brain tissue and brain tumor tissue. When compared with the normal brain tissue, we have detected: (i) significantly lower MDA concentration in brain tumor tissue (1.63 nmol/mg Pr vs 2.04 nmol/mg Pr; p = 0.03); (ii) SOD activity in brain tumor tissue was significantly lower (3.15 U/mg Pr vs 4.97 U/mg Pr; p = 0.0002); and (iii) CAT activity in brain tumor tissue was 106.3% higher than that in controls.  相似文献   

12.
13.
Abstract The planktonic cyanobacterium Microcystis aeruginosa is particularly sensitive to photoinhibition by visible light, Photosystem II and ribulose 1,5-bisphosphate (RuBP) carboxylase activities being affected. Although the organism contains superoxide dismutase (SOD) and catalase, these protective enzymes are also photoinactivated during the illumination of whole cells by visible light.  相似文献   

14.
The effects of ozone at 0.25, 0.40, and 1.00 ppm on Listeria monocytogenes were evaluated in distilled water and phosphate-buffered saline. Differences in sensitivity to ozone were found to exist among the six strains examined. Greater cell death was found following exposure at lower temperatures. Early stationary-phase cells were less sensitive to ozone than mid-exponential- and late stationary-phase cells. Ozonation at 1.00 ppm of cabbage inoculated with L. monocytogenes effectively inactivated all cells after 5 min. The abilities of in vivo catalase and superoxide dismutase to protect the cells from ozone were also examined. Three listerial test strains were inactivated rapidly upon exposure to ozone. Both catalase and superoxide dismutase were found to protect listerial cells from ozone attack, with superoxide dismutase being more important than catalase in this protection.  相似文献   

15.
16.
The relationship between the endogenous cytoplasmic levels of the enzymes superoxide dismutase and catalase and the inhibition of cell proliferation by radiation has been studied in 11 mouse cell lines. The resistance of these mouse cell lines to radiation was found to vary by over 25-fold. No correlation was found between the cytoplasmic level of CuZn-superoxide dismutase or catalase and the resistance to radiation as measured by extrapolation number (EN), quasi-threshold dose (Dq), or DO. None of the cell lines had detectable cytoplasmic Mn-superoxide dismutase. The apparent Ki of potassium cyanide for mouse CuZn-superoxide dismutase was determined (Ki = 6.5 mumol dm-3).  相似文献   

17.
Glutathione peroxidase (GSH-Px; glutathione: hydrogen peroxide oxidoreductase; EC 1.11.1.9), catalase (H2O2: H2O2 oxidoreductase; EC 1.11.1.6) and superoxide dismutase (superoxide: superoxide oxidoreductase; EC 1.15.1.1) were coisolated from human erythrocyte lysate by chromatography on DEAE-cellulose. Glutathione peroxidase was separated from superoxide dismutase and catalase by thiol-disulfide exchange chromatography and then purified to approximately 90% homogeneity by gel permeation chromatography and dye-ligand affinity chromatography. Catalase and superoxide dismutase were separated from each other and purified further by gel permeation chromatography. Catalase was then purified to approximately 90% homogeneity by ammonium sulfate precipitation and superoxide dismutase was purified to apparent homogeneity by hydrophobic interaction chromatography. The results for glutathione peroxidase represent an improvement of approximately 10-fold in yield and 3-fold in specific activity compared with the established method for the purification of this enzyme. The yields for superoxide dismutase and catalase were high (45 mg and 232 mg, respectively, from 820 ml of washed packed cells), and the specific activities of both enzymes were comparable to values found in the literature.  相似文献   

18.
19.
The catalase level of Bacteroides distasonis (ATCC 8503, type strain) varied with the amount of hemin supplied to the medium when the cells were grown in either a prereduced medium containing 0.5% peptone, 0.5% yeast extract, and 1% glucose or in a prereduced, defined heme-deficient medium. The effect of hemin on catalase production could not be duplicated by ferrous sulfate or ferrous ammonium citrate. Catalase activity reached peak values in late log phase, whereas superoxide dismutase specific activity remained constant throughout the culture growth cycle. The catalase was a nondialyzable, cyanide and azide-sensitive, heat-labile protein that coeluted with bovine erythrocyte catalase from Sepharose 6 B. Analysis of polyacrylamide gels stained for catalase activity and for heme showed a correspondence between the single catalytic activity band and one of three heme-protein bands. These data suggest a heme-protein of approximately 250,000 molecular weight. The superoxide dismutase was a cyanide-insensitive protein of approximately 40,000 molecular weight that migrated electrophoretically on acrylamide gels as a single band of activity.  相似文献   

20.
Increased cellular generation of partially reduced species of oxygen mediates the toxicity of hyperoxia to cultured endothelial cells and rats exposed to 95-100% oxygen. Liposomal entrapment and intracellular delivery of superoxide dismutase (SOD) to cultured porcine aortic endothelial cells increased the specific activity of cellular SOD up to 15-fold. The liposome-mediated augmentation of SOD activity persisted in cell monolayers and rendered these cells resistant to oxygen-induced injury in a cell SOD activity-dependent manner. Addition of free SOD to culture medium had no effect on cell SOD activity or resistance to oxygen toxicity. SOD and catalase-containing liposomes injected i.v. into rats increased lung-associated enzyme specific activities two- to fourfold. Liposome entrapment of both SOD and catalase significantly increased the circulating half-lives of these enzymes and was critical for prevention of in vivo oxygen toxicity. Free SOD and catalase injected i.v. in the absence or presence of control liposomes did not increase corresponding lung enzyme activities or survival time in 100% oxygen. These studies show that O2- and H2O2 are important mediators of oxygen toxicity and that intracellular delivery of oxygen protective enzymes can reduce tissue injury owing to overproduction of partially reduced oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号