首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The present study was designed to determine whether the degree and kind of adaptation of a muscle fiber to a functional overload (FO) are determined by properties that are intrinsic to that fiber. The study also addresses the question of the capability of fibers to maintain a normal level of coordination of proteins per fiber as fiber volume changes dramatically. The plantaris muscle of six adult female cats was overloaded for 12 wk by bilateral synergist removal. Plantaris muscle fiber mean size doubled after FO, although some very small fibers that stained dark for adenosinetriphosphatase (ATPase) were observed in some of the FO muscles. There appeared to be no change in total succinate dehydrogenase activity per fiber. A reduction in succinate dehydrogenase activity per unit volume was observed in a substantial number of fibers, reflecting a disproportionate increase in fiber volume relative to mitochondrial volume. In contrast, total alpha-glycerophosphate dehydrogenase activity and actomyosin ATPase activity increased as fiber size increased, whereas there was no change in alpha-glycerophosphate dehydrogenase and ATPase activities per unit volume. Control and FO muscle fibers generally expressed either a fast or slow myosin heavy chain type, but in some cases FO muscle fibers expressed both fast and slow myosin heavy chains. The persistence of variability in fiber sizes and enzyme activities in fibers of overloaded muscles suggests a wide range in the adaptive potential of individual fibers to FO. These data indicate that a severalfold increase in cell size may occur without significant qualitative changes in the coordination of protein regulation associated with metabolic pathways and ATP utilization.  相似文献   

2.
Catalase has been localized immunocytochemically with anti-bovine catalase in long thin filament structures in aerobic type I fibers in the skeletal muscles of normal and genetically dystrophic hamsters. The filaments range in length from 1 to 60 micron, are orientated regularly along the long axis of the fibers, and also seem to surround and project from muscle nuclei. The enzyme thus appears to be more prominent in the sarcoplasmic reticulum than in peroxisomes, and in this situation is suitably placed for destroying toxic hydrogen peroxide which may be continously generated in aerobic fibers.  相似文献   

3.
Catalase activity was detected in homogenates of bovine adrenal cortex and medulla. Analysis by equilibrium density centrifugation in isoosmotic metrizamide-sucrose gradients revealed that 70% of the medullary catalase activity was soluble while most of the remainder was found in a particulate form with a density of 1.175 g/ml. This was distinct from the densities of lysosomes, mitochondria, and chromaffin granules. Catalase activity in adrenal cortex was primarily (90%) soluble with only 6% being particulate, with a density of 1.185 g/ml. d-Amino acid, uric acid, and α-hydroxyacid oxidase activities, often associated with peroxisomes in other tissues, were absent from homogenates and catalase-containing gradient fractions from either cortex or medulla. There was an indication that some catalase activity was associated with chromaffin granules on the basis of density gradient analysis of both medullary homogenates and crude granule preparations. When granule fractions were subjected to osmotic shock, catalase activity distributed between soluble and sedimentable fractions differently from epinephrine and dopamine β-hydroxylase activity. The sedimentable catalase activity remained associated with chromaffin granule membranes upon isopycnic centrifugation. We concluded that catalase activity in both adrenal cortex and medulla was largely cytoplasmic, but that both tissues contained at least some catalase in dense organelles. Catalase activity which may be associated with chromaffin granules represents a small fraction of the total activity in the medulla.  相似文献   

4.
Summary Although thiobiotic meiofauna live under anoxia, they have higher levels of the oxygen-detoxifying enzymes catalase and superoxide dismutase (SOD) than oxybiotic species. Microoxyphilic oxybios have lower enzyme activities than other oxybiotic species. All meiofauna have lower activities than oxybiotic macrofauna. Catalase and SOD activities increased in direct proportion to sulfide tolerance in thiobios and to ambient oxygen concentration in oxybios. All meiofaunal species studied, including oxybios, are usually exposed to lower O2 concentrations than burrow-dwelling macrofauna and so have lower catalase and SOD activities. Enzyme activities in thiobios must be related to sulfide concentration and sulfide metabolism because simple oxygen exposure is an unlikely explanation. Thiobiotic catalase is insensitive to both azide and 3-amino-1,2,4-triazole, similar to a sulfide-insensitive bacterial enzyme called pseudocatalase. Catalase and SOD activities are inversely proportional to light sensitivity in three planarian species, suggesting a photo-protective role for these enzymes in these species.  相似文献   

5.
The muscle fiber types and sizes in the M. stapedius (middle ear muscle) of the domestic chicken, Gallus gallus were determined histochemically on the basis of their reactions to myofibrillar adenosine triphosphatase (mATPase), succinic dehydrogenase and NADH diaphorase. Only type II fibers were identified at pH 9.4 and 4.2. At pH 4.6 three levels of activity were seen: high, intermediate and low. With the staining techniques three subtypes of fibers for oxidative enzymes, Types II1 (highly glycolytic), II12 (intermediately glycolytic and lipolytic) and II123 (highly lipolytic) were identified. Fiber diameter was also measured for the different fiber types. The average fiber diameter was around 20 micron for each fiber type. Although similar in size, the fiber types were markedly different in their histochemical properties. These findings plus those of earlier physiological studies suggest that the M. stapedius of G. gallus is a fast twitch, muscle with fibers of similar diameter showing mainly fatigue resistance characteristics.  相似文献   

6.
Catalase in hemolysates of normal, heterozygous hypocatalasemic and acatalasemic Japanese was immunotitrated with an anti-human blood catalase rabbit serum. Equivalence points were calculated from the regression lines between catalase activity added and catalase activity remaining in the supernatant. Catalase activities at the equivalence points of Japanese normal, hypocatalasemia and acatalasemia were similar. The results indicate that the specific activities of catalase in the normal and of the variant bloods are identical. Catalase in hemolysates of normal and variant mice was immunotitrated with an anti-mouse liver catalase rabbit serum. In contrast to Japanese acatalasemic subject, the equivalence points of catalase in heterozygous hypocatalasemic, homozygous hypocatalasemic, acatalasemic and normal hemolysates were different, and the ratios of specific activity in these variant mice to that in normal were 0.72, 0.46 and 0.21, respectively. The differences in catalase activities at equivalence points were also supported by the statistical analysis on parameters of regression lines of catalase activities remaining in the supernatant on catalase activities added in the immunotitration. These findings suggest that the molecular properties of residual catalase of Japanese acatalasemia and those of mouse acatalasemia are entirely different.  相似文献   

7.
Age-associated changes in hypothalamic catalase activity and level, and Cu/Zn superoxide dismutase (Cu/Zn SOD) activity were examined in Ames dwarf mice with growth hormone (GH) deficiency and prolonged lifespan, in PEPCK-hGH transgenic mice with overexpression of GH and reduced lifespan, and compared to values measured in normal controls. Hypothalami from young (3-4 months), middle-aged (9-10 months), and old (19-23 months) male mice were examined using spectrophotometric assay and Western blot. In dwarf mice, Cu/Zn SOD and catalase activities declined with age, and were higher than the corresponding normal values in young and middle-aged groups. Catalase levels also declined with age, but were similar to values in normal controls. In GH transgenic mice, age-associated decline of both catalase and Cu/Zn SOD occurred earlier than in normal animals. Catalase levels and activities in transgenic animals were similar to controls, whereas Cu/Zn SOD activity was higher in transgenics than in normal mice. The present results suggest that dwarf mice, during early life, have enhanced hypothalamic free radical defenses, which may contribute to their extended lifespan. However, from the present results in GH transgenic mice, it is impossible to conclude whether early decline of hypothalamic catalase and Cu/Zn SOD in these animals represents a correlate of accelerated aging, or contributes to their reduced lifespan.  相似文献   

8.
This paper extends the previous study for systems which control intracellular oxidative events in muscle and describes procedures suitable to assay glutathione peroxidase (GSHPx), glutathione reductase (GR), and total glutathione (GSH + GSSG) after fiber typing of individual muscle fibers. In human skeletal muscle, both GR and GSHPx activities were relatively low when compared to those of other tissue. No difference was found among fiber types (I, IIA, and IIB) with regard to GR activity, but in contrast GSHPx activity was significantly lower in type IIB fibers than in the other types. These results suggest that type IIB fibers may have a reduced ability to cope with hydroperoxides generated during oxidative stress, which, in turn, could lead to increased damage to membrane structures by lipid peroxidation or oxidation of sensitive intracellular thiol (-SH) enzymes by hydrogen peroxide. The Km of skeletal muscle GR for GSSG was 27 microM and for NADPH was 22 microM. If one assumes approximately 95% of total glutathione is present in the reduced state, then GSSG concentration would be of the order of 0.3 mmol/kg and under these conditions skeletal muscle GR would be efficient in all muscle fiber types.  相似文献   

9.
A histochemical study, using myosin-adenosine triphosphatase activity at pH 9.4, was conducted in soleus and plantaris muscles of adult rats, after bilateral crushing of the sciatic nerve at the sciatic notch. The changes in fiber diameter and per cent composition of type I and type II fibers plus muscle weights were evaluated along the course of denervation-reinnervation curve at 1, 2, 3, 4 and 6 weeks postnerve crush. The study revealed that in the early denervation phase (up to 2 weeks postcrush) both the slow and fast muscles, soleus and plantaris, resepctively, atrophied similarly in muscle mass. Soleus increased in the number of type II fibers, which may be attributed to "disuse" effect. During the same period, the type I fibers of soleus atrophied as much or slightly more than the type II fibers; whereas the type II fibers of plantaris atrophied significantly more than the type I fibers, reflecting that the process of denervation, in its early stages, may affect the two fiber types differentially in the slow and fast muscles. It was deduced that the type I fibers of plantaris may be essentially different in the slow (soleus) and fast (plantaris) muscles under study. The onset of reinnervation, as determined by the increase in muscle weight and fiber diameter of the major fiber type, occurred in soleus and plantaris at 2 and 3 weeks postcrush, respectively, which confirms the earlier hypotheses that the slow muscles are reinnervated sooner than the fast muscles. It is suggested that the reinnervation of muscle after crush injury may be specific to the muscle type or its predominant fiber type.  相似文献   

10.
To assess the effect of severe chronic obstructive pulmonary disease (COPD) on the ability of human diaphragmatic myofibers to aerobically generate ATP relative to ATP utilization, we obtained biopsy specimens of the costal diaphragm from seven patients with severe COPD (mean +/- SE; age 56 +/- 1 yr; forced expiratory volume in 1 s 23 +/- 2% predicted; residual volume 267 +/- 30% predicted) and seven age-matched control subjects. We categorized all fibers in these biopsies by using standard techniques, and we carried out the following quantitative histochemical measurements by microdensitometry: 1) succinate dehydrogenase (SDH) activity as an indicator of mitochondrial oxidative capacity and 2) calcium-activated myosin ATPase (mATPase) activity, the ATPase that represents a major portion of ATP consumption by contracting muscle. We noted the following: 1) COPD diaphragms had a larger proportion of type I fibers, a lesser proportion of type IIax fibers, and the same proportion of type IIa fibers as controls. 2) SDH activities of each of the fiber types were higher in COPD than control diaphragms (P < 0.0001); the mean increases (expressed as percent of control values) in types I, IIa, and IIax were 84, 114, and 130%, respectively. 3) COPD elicited no change in mATPase activity of type I and IIa fibers, but mATPase decreased in type IIax fibers (P = 0.02). 4) Mitochondrial oxidative capacity relative to ATP demand (i.e., SDH/mATPase) was higher (P = 0.03) in each of the fiber types in COPD diaphragms than in controls. These results demonstrate that severe COPD elicits an increase in aerobic ATP generating capacity relative to ATP utilization in all diaphragmatic fiber types as well as the previously described fast-to-slow fiber type transformation (Levine S, Kaiser L, Leferovich J, and Tikunov B, N Engl J Med 337: 1799-1806, 1997).  相似文献   

11.
Sarcoplasmic reticulum vesicles (FSR) were isolated from relatively homogeneous muscle samples representative of type I, IIA, and IIB fibers and Ca2+ uptake (Vmax and total capacity) determined. Crude homogenates of these same fiber populations were also assayed for Ca2+ uptake and the results compared to the FSR values. Both techniques produced qualitatively similar results and demonstrated distinct fiber type differences in both the rate and extent of Ca2+ uptake. The results obtained support the contention that the crude homogenate technique accurately reflects the activity of the sarcoplasmic reticulum.  相似文献   

12.
The size, distribution, and content of catalase-reactive microperoxisomes were studied cytochemically in slow-twitch oxidative (SO), fast-twitch oxidative glycolytic (FOG), and fast-twitch glycolytic (FG) fibers of soleus and extensor digitorum longus (EDL) rat muscles. Fiber types were classified on the basis of mitochondrial content and distribution, Z-band widths, and myofibril size and shape. Microperoxisomes were generally located between myofibrils at the I-bands. The absence of crystalloid inclusions prevented positive identification of microperoxisomes in nonreacted and aminotriazole-inhibited muscles. EDL and soleus SO fibers possessed the largest microperoxisomes, whereas FOG and FG fibers of the EDL contained small- to medium-sized microperoxisomes. Comparing either microperoxisome number per muscle fiber area or microperoxisome area per fiber area revealed significant differences between fiber types with this ranking: soleus SO greater than EDL SO greater than EDL FOG greater than EDL FG. The present observations demonstrate that the content of catalase-positive microperoxisomes is greatest in the oxidative muscle fiber types. These cytochemical findings account for the higher catalase activity in homogenates of soleus muscles as compared to that of EDL muscles, because the soleus contains more oxidative fibers than EDL.  相似文献   

13.
Histochemical analysis of five muscles from the water monitor, Varanus salvator, identified three major classes of fibers based on histochemical activities of the enzymes myosin ATPase (mATPase), succinic dehydrogenase (SDH), and alpha-glycerophosphate dehydrogenase (alpha GPDH). Fast-twitch, glycolytic (FG) fibers were the most abundant fiber type and exhibited the following reaction product intensities: mATPase, dark; SDH, light; alpha GPDH, moderate to dark. Fast-twitch, oxidative, glycolytic (FOG) fibers were characteristically mATPase, dark; SDH, light; alpha GPDH, moderate to dark. The third class of fibers had the following histochemical characteristics: mATPase, light; SDH, moderate to dark; alpha GPDH, light. These fibers were considered to be either slow twitch, or tonic, and oxidative (S/O). Pyruvate kinase (PK), alpha GPDH, and citrate synthase (CS) activities were measured in homogenates of the same muscles studied histochemically. There was a positive relationship between both PK and alpha GPDH activities and the percentage of glycolytic fiber types within a muscle. Likewise, CS activities were greater in muscles high in FOG and S/O content. Based on CS activities, Varanus S/O fibers were eight-fold more oxidative than FG fibers within the same muscle. PK/CS ratios suggested that FG fibers possess high anaerobic capacity, similar to the iguanid lizard Dipsosaurus. The fiber type composition of the gastrocnemius muscle, relative to that of other lizard species, suggests that varanid lizards may possess a greater proportion of FOG and S/O fibers than other lizards.  相似文献   

14.
AIMS: Staphylococcus carnosus, used as starter culture in fermented meat products, decreases the level of volatiles arising from lipid oxidation. To analyse its antioxidant capacities, catalase and superoxide dismutase (SOD) were characterized. METHODS AND RESULTS: Catalase and SOD activities were measured with spectrophotometric methods and visualized on non-denaturing polyacrylamide gels. The corresponding sod gene was identified by PCR. Southern hybridizations and enzymatic analyses showed that there was a single catalase and a single SOD in Staph. carnosus 833 strain. The gene encoding the Staph. carnosus SOD was found to encode a protein closely related to SOD requiring manganese. Catalase and SOD levels increased in mid-log phase. Only catalase was induced by oxygen, nitrate or nitrite while glucose induced neither enzyme. Metal ion limitation increased catalase and decreased SOD activities. CONCLUSION: Staph. carnosus synthesizes both enzymes in conditions encountered in sausage manufacturing. These results could explain the antioxidant properties of Staph. carnosus starter culture. SIGNIFICANCE AND IMPACT OF THE STUDY: The knowledge of the antioxidant properties of Staphylococci will allow a more rational use of these starters in meat fermented products.  相似文献   

15.
To determine the level of coordination in succinate dehydrogenase (SDH) activity between plantaris motoneurons and muscle fibers, the soleus and gastrocnemius muscles were bilaterally excised in four cats to subject the plantaris to functional overload (FO). Five normal cats served as controls. Twelve weeks after surgery the right plantaris in each cat was injected with horseradish peroxidase to identify plantaris motoneurons. SDH activity then was measured in a population of plantaris motoneurons and muscle fibers in each cat. Control motoneurons and muscle fibers had similar mean SDH activities and a similar relationship between cell size and SDH activity. After FO, muscle fiber size doubled and mean muscle fiber SDH activity halved. Motoneuron mean SDH activity and size were unaffected by FO. Total SDH activity was unchanged in both the motoneurons and muscle fibers after FO. These changes suggest a selective increase in contractile proteins with little or no modulation of mitochondrial proteins in the muscle fibers, because total SDH activity was unchanged in muscle fibers after FO. These data demonstrate that although mean SDH activities were similar in control motoneurons and muscle fibers, mean SDH activities in these two cell types can change independently.  相似文献   

16.
Single human muscle fibers were analysed using a combination of histochemical and biochemical techniques. Routine myofibrillar adenosine triphosphatase (mATPase) histochemistry revealed a continuum of staining intensities between the fast fiber types IIA and IIB (type IIAB fibers) after preincubation at pH 4.6. Electrophoretic analysis of single, histochemically-identified fibers demonstrated a correlation between the staining intensity and the myosin heavy chain (MHC) composition. All fibers classified as type I contained exclusively MHCI and all type IIA fibers contained only MHCIIa. Type IIAB fibers displayed variable amounts of both MHCIIa and MHCIIb; the greater the staining intensity of these fibers after preincubation at pH 4.6, the greater the percentage of MHCIIb. Those fibers histochemically classified as type IIB contained either entirely MHCIIb or, in addition to MHCIIb, a small amount of MHCIIa. These data establish a correlation between the mATPase activity and MHC content in single human muscle fibers.  相似文献   

17.
The influence of spaceflight on the distribution of succinate dehydrogenase (SDH) activity throughout the cross section of fibers in the soleus was studied in five male rats and in five rats maintained under ground-based simulated flight conditions (control). The flight (COSMOS 1887) was 12.5 days in duration, and the animals were killed approximately 2 days after return to 1 G. Fibers were classified as slow-twitch oxidative or fast-twitch oxidative-glycolytic in histochemically prepared tissue sections. The distribution of SDH activity throughout the cross section of 20-30 fibers (each type) was determined using quantitative histochemical and computer-assisted image analysis techniques. In all the fibers, the distribution of SDH activity was significantly higher in the subsarcolemmal than in intermyofibrillar region. After spaceflight the entire regional distribution of SDH activity was significantly altered in the slow-twitch oxidative fibers. The fast-twitch oxidative-glycolytic fibers of the spaceflight muscles exhibited a significantly lower SDH activity only in their subsarcolemmal region. These data suggest that when determining the influence of spaceflight on muscle fiber oxidative metabolism enzymes, it is important to consider the location of the enzyme throughout the cross section of a fiber. Furthermore the functional properties of the soleus that depend on the metabolic support of mitochondria in the subsarcolemmal region may be primarily affected by exposure to microgravity.  相似文献   

18.
The influence of prolonged nutritional deprivation on the succinate dehydrogenase (SDH) activity and cross-sectional areas of individual fibers in the rat diaphragm and deep portion of the medial gastrocnemius (MGr) muscles was determined. Fatigue resistance of the diaphragm was measured by means of an in vitro nerve-muscle strip preparation. Fiber SDH activity and cross-sectional area were quantified by means of an image processing system. Diaphragm fatigue resistance was significantly improved in the nutritionally deprived (ND) group. In both muscles, nutritional deprivation resulted in a significant decrease in fiber cross-sectional area (both type I and II), type II fibers showing greater atrophy. The SDH activities of type I and II fibers in the diaphragm were not affected by nutritional deprivation. This contrasted with a significant decrease in the SDH activity of both type I and II fibers in the MGr of ND animals. An assessment of the interrelationships between fiber atrophy and fiber SDH activity revealed a greater effect of malnutrition on those diaphragm type II fibers that had the lowest relative SDH activities and the largest cross-sectional areas. By comparison, the effect of malnutrition on type I and II fibers in the MGr was nonselective with regard to fiber SDH activity. We conclude that the enhanced diaphragm fatigue resistance in the ND animals does not result from an increase in the oxidative capacity of muscle fibers and is best explained by the pattern of diaphragm muscle fiber atrophy.  相似文献   

19.
Do muscle fiber properties commonly associated with fiber types in adult animals and the population distribution of these properties require normal activation patterns to develop? To address this issue, the activity of an oxidative [succinic dehydrogenase (SDH)] and a glycolytic [alpha-glycerophosphate dehydrogenase (GPD)] marker enzyme, the characteristics of myosin adenosinetriphosphatase (myosin ATPase, alkaline preincubation), and the cross-sectional area of single fibers were studied. The soleus and medial gastrocnemius of normal adult cats were compared with cats that 6 mo earlier had been spinally transected at T12-T13 at 2 wk of age. In control cats, SDH activity was higher in dark than light ATPase fibers in the soleus and higher in light than dark ATPase fibers in the medial gastrocnemius. After transection, SDH activity was similar to control in both muscles. GPD activity appeared to be elevated in some fibers in each fiber type in both muscles after transection. The cross-sectional areas most affected by spinal transection were light ATPase fibers of the soleus and dark ATPase fibers of the medial gastrocnemius, the predominant fiber type in each muscle. These data demonstrate that although the muscle fibers of cats spinalized at 2 wk of age presumably were never exposed to normal levels of activation, the activity of an oxidative marker enzyme was maintained or elevated 6 mo after spinal transection. Furthermore, although the absolute enzyme activities in some fibers were elevated by transection, three functional protein systems commonly associated with fiber types, i.e., hydrolysis of ATP by myosin ATPase and glycolytic (GPD) and oxidative (SHD) metabolism, developed in a coordinated manner typical of normal adult muscles.  相似文献   

20.
Contusion injuries are a very common form of both athletic and non-athletic injury, that effect muscle function. Treatments to augment the normal repair and regeneration processes are important for a wide variety of patients. Therapeutic ultrasound has been claimed to promote tissue repair, especially by enhancing cell proliferation and protein synthesis. The present study aimed to investigate the effect of therapeutic pulsed ultrasound (TPU) on parameters of oxidative stress, namely thiobarbituric acid-reactive substances (TBARS), protein carbonyl content and the activities of antioxidant enzymes, catalase and superoxide dismutase (SOD), in skeletal muscle after injury. Wistar rats were submitted to an animal model of muscle (gastrocnemius) laceration. TPU was used once a day. One, three or five days after muscle laceration, the animals were killed by decapitation and oxidative stress parameters were evaluated. Serum CK levels were increased in muscle-injured animals, indicating that the laceration animal model was successful. TBARS were not altered after muscle injury, when compared to the sham group. Protein carbonyl content was increased after muscle laceration. Catalase and SOD activities were increased 1 day after muscle injury and not altered at days 3 and 5. TPU decreased TBARS levels after muscle laceration when compared to injured muscle animals without treatment. Protein carbonyl content evaluation presented similar results. It is tempting to speculate that TPU seems to protect the tissue from oxidative injury. TPU diminished catalase and SOD activities, especially on the first day following muscle laceration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号