首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When cultured human lymphoblasts are starved 3 h for an essential amino acid, rates of purine nucleotide synthesis decrease markedly because of a decrease in the intracellular phosphoribosylpyrophosphate concentration (Boss, G.R., and Erbe, R.W. (1982) J. Biol. Chem. 257, 4242-4247; Boss, G. R. (1984) J. Biol. Chem. 259, 2936-2941). In amino acid-starved cells, glucose transport was not changed, whereas total glucose consumption and lactate production decreased by approximately 25 and 10%, respectively. Carbon flow through the oxidative pentose phosphate pathway, measured by 14CO2 release from [1-14C]glucose, decreased by 18% during amino acid starvation. However, kinetic studies of ribulose-5-phosphate 3-epimerase and phosphoriboisomerase suggested that the ribulose 5-phosphate produced by this pathway is converted mostly to xylulose 5-phosphate instead of to ribose 5-phosphate so that this pathway produces little phosphoribosylpyrophosphate. The activity of the nonoxidative pentose phosphate pathway, measured by high performance liquid chromatography following the incorporation of [1-14C]glucose into phosphoribosylpyrophosphate, ATP, and GTP, decreased by approximately 55% during amino acid starvation. None of the enzymes of either pathway changed in specific activity during amino acid starvation. We conclude that the nonoxidative pentose phosphate pathway is the major source of phosphoribosylpyrophosphate for purine nucleotide synthesis and that this pathway is regulated by a metabolite which changes in concentration during amino acid starvation.  相似文献   

2.
Replication of the bacterial chromosome was studied in two substrains ofLactobacillus acidophilus R-26 during amino acid starvation. According to the hypothesis of Maaløe and Hanawalt (1961), already initiated DNA replication cycles are completed under such conditions, with a corresponding 40% increase in the DNA content; new cycles cannot be initiated in the absence of proteosynthesis. Our findings are considerably at variance with this hypothesis. It was found that the course of DNA synthesis and the size of DNA increments during amino acid starvation were influenced by some low molecular weight substances, in particular by deoxyadenylate and spermidine. In the presence of these substances in media without the essential amino acids, prolonged DNA synthesis accompanied by large DNA increments was observed, suggesting that new DNA replication cycles were initiated. The possibility that deoxyadenylate and spermidine influence the regulation of synthesis of the bacterial chromosome is discussed.  相似文献   

3.
1. Isolated nuclei from starved rats showed a lowered incorporation of [(14)C]UMP into RNA. 2. The Mg(2+)-dependent incorporation was decreased by 30% after 1 day of starvation, but incorporation in the presence of Mn(2+) and ammonium sulphate decreased only after longer periods of starvation. 3. RNA synthesis by nuclei in the presence of excess of added RNA polymerase was unchanged after 1 day of starvation and was inhibited by 20% after 4 days. 4. The capacity of nuclei to bind actinomycin D was unchanged after 1 day and was decreased by 20% after 4 days of starvation.  相似文献   

4.
5.
6.
WI-L2 B lymphoblasts deficient in hypoxanthine-guanine phosphoribosyltransferase (HGPRT) excreted amounts of hypoxanthine two to three times larger than CEM T lymphoblasts deficient in HGPRT, despite similar growth rates. ATP consumption occurred at a higher rate in WI-L2 cells than in CEM cells when cultivated in a glucose-free buffer, because of higher RNA synthesis in WI-L2 cells. The introduction of actinomycin D and azaserine resulted in lower hypoxanthine excretion in WI-L2 cells than in CEM cells, not in parallel with changes of the adenylate pool size. When the energy charge was high, de novo purine synthesis was a major determinant for purine excretion. The adenylate pool ratio (AMP/ATP) change caused by the introduction of oligomycin was greater during ATP depletion and recovery in WI-L2 cells than in CEM cells. WI-L2 cells were observed to have AMP deaminase activity three to four times higher than CEM cells. The major component of AMP deaminase in these cells was liver type. The higher rate of RNA synthesis caused greater changes of (AMP/ATP) and required higher AMP deaminase activity for recovery. When the energy charge was low, AMP deaminase was a major determinant for purine excretion.  相似文献   

7.
8.
The work is concerned with studying the breakdown of proteins and RNA when a polyauxotrophic Escherichia coli strain is incubated in a salt solution without amino acids, phosphorus, nitrogen and glucose at 43 degrees C as well as the ability of starving bacterial cells to recommence protein and RNA synthesis (also in the course of phage T4 infection) and to reproduce bacteriophages T4, lambda and MS2. Within the first two hours of the incubation, 12% of proteins and 40% of RNA break down to acid-soluble fragments. Then protein degradation stops while RNA decomposition goes on, but at a lower rate. Within 4-6 h of starvation, the rate of protein and RNA synthesis drops down 4-5 times and the survival rate equals 40-60% when the cells are transferred onto a complete medium. The quantitative characteristics of phages T4, lambda and MS2 reproduction fall down in prestarved cells. The authors speculate that E. coli cells die off in the course of starvation not because some unique structure is destroyed, but owing to the fact that the activity of enzymes and ribosomes gradually declines. As a result, the synthetic activity of the cell drops down abruptly and irreversibly because the enzymes are inactivated and RNA breaks down, which eventually causes cell death.  相似文献   

9.
10.
11.
The synthesis of DNA was investigated inLactobacillus acidophilus R-26 during starvation for glutamic acid. The synthesis of RNA and of proteins was also examined. The content of DNA in the cell increased by 150–250%. The results show that new DNA-replication cycles can be initiated without simultaneous synthesis of proteins and of RNA.  相似文献   

12.
On the rate of messenger decay during amino acid starvation   总被引:5,自引:0,他引:5  
In arginine auxotropic strains of Escherichia coli the rate of decay of functional ornithine transcarbamylase messenger is the same in the presence and absence of arginine. The relevance of this observation to the rate of ribosome travel in the presence and absence of arginine is discussed. Data showing the absence of translational repression by arginine are presented.  相似文献   

13.
Alteration of Escherichia coli murein during amino acid starvation.   总被引:7,自引:20,他引:7       下载免费PDF全文
We have studied the mechanisms by which amino acid starvation of Escherichia coli induces resistance against the lytic and bactericidal effects of penicillin. Starvation of E. coli strain W7 of the amino acids lysine or methionine resulted in the rapid development of resistance to autolytic cell wall degradation, which may be effectively triggered in growing bacteria by a number of chemical or physical treatments. The mechanism of this effect in the amino acid-starved cells involved the production of a murein relatively resistant to the hydrolytic action of crude murein hydrolase extracts prepared from normally growing E. coli. Resistance to the autolysins was not due to the covalently linked lipoprotein. Resistance to murein hydrolase developed most rapidly and most extensively in the portion of cell wall synthesized after the onset of amino acid starvation. Lysozymes digests of the autolysin-resistant murein synthesized during the first 10 min of lysine starvation yielded (in addition to the characteristic degradation products) a high-molecular-weight material that was absent from the lysozyme-digests of control cell wall preparations. It is proposed that inhibition of protein synthesis causes a rapid modification of murein structure at the cell wall growth zone in such a manner that attachment of murein hydrolase molecules is inhibited. The mechanism may involve some aspects of the relaxed control system since protection against penicillin-induced lysis developed much slower in amino acid-starved relaxed controlled (relA) cells than in isogenic stringently controlled (relA+) bacteria.  相似文献   

14.
The effect of 5-amino-4-imidazole-carboximide (AI-CA)-riboside on different pathways of purine metabolism (biosynthesis de novo, salvage pathways, adenosine metabolism, ATP catabolism) was studied in human B lymphoblasts (WI-L2). AICA-Riboside markedly decreased intracellular levels of 5-phosphoribosyl-1-pyrophosphate and in consequence affected purine biosynthesis de novo and purine salvage pathways. AICA-riboside inhibited incorporation of glycine into purine nucleotides, but when formate was used as the precursor of purine biosynthesis de novo, a biphasic effect was observed. The incorporation of formate into purine nucleotides was increased by AICA-riboside at concentrations up to 2 mM but decreased at higher concentrations. Salvage of the purine bases adenine, hypoxanthine, and guanine was markedly inhibited and utilization of extracellular adenosine in B lymphoblasts was reduced by AICA-riboside. AICA-riboside increased ribose 1-phosphate concentrations and increased degradation of prelabeled ATP. No effect on the intracellular levels of orthophosphate was found. Proliferation of WI-L2 lymphoblasts was only slightly affected at concentrations of AICA-riboside below 500 microM but markedly inhibited by higher concentrations.  相似文献   

15.
Electron microscopic analysis was used to study cells of Escherichia coli B and K-12 during and after amino acid starvation. The results confirmed our previous conclusion that cell division and initiation of DNA replication occur at a smaller cell volume after amino acid starvation. Although during short starvation periods, the number of constricting cells decreased due to residual division, it appears that during prolonged starvation, cells of E. coli B and K-12 were capable of initiating new constrictions. During amino acid starvation, cell diameter decreased significantly. The decrease was reversed only after two generation times after the resumption of protein synthesis and was larger in magnitude than that previously observed before division (F. J. Trueba and C. L. Woldringh, J. Bacteriol. 142:869-878, 1980). This decrease in cell diameter correlates with synchronization of cell division which has been shown to occur after amino acid starvation.  相似文献   

16.
Sd phage were incubated in 1 m-O-methylhydroxylamine. At various time-intervals, samples of modified phage were isolated and disrupted either by heating or by treatment with detergent. Changes in viscosity and buoyant density of disrupted preparations took place in the course of modification. Three transient synchronous drops in viscosity and buoyant density levels were observed with minima at five minutes, one and three hours of modification. The specific viscosity of the preparations at minima was 10 to 20% that of the disrupted unmodified phage.Properties of the phage preparation isolated during the third period of decreased viscosity were studied in more detail. This preparation, subjected to thermal disruption, gives a single DNA-containing band in Cs2SO4 gradient centrifugation corresponding to a buoyant density of 1.37 g/cm3 (cf. 1.39, 1.29 and 1.43 g/cm3 for whole phage, phage ghosts and native phage DNA, respectively).The band contains practically all the 35S label that was present in the starting phage, suggesting that it corresponds to a complex of phage DNA with protein. Electron microscopy revealed complexes as thick strands of 50 to 300 Å diameter bonded to globular particles of varying size.In four hours of modification, the viscosity and buoyant density of disrupted phage returned to values characteristic of unmodified preparations. The DNA band contained no 35S label. Electron microscopy of the substance of this band revealed fibres of 20 Å diameter.A possible explanation of the results is based on the assumption of pre-existing non-covalent interaction of C(4)—NH2 moieties of cytidine residues with nucleophilic groupings of coating protein within the virion. It is assumed that it is this interaction that holds DNA in “non-native” conformation within intact phage particles and thus explains its peculiar properties discovered earlier. In the present case, the interaction determines the formation of DNA-protein crosslinks under O-methylhydroxylamine treatment via the earlier postulated intermediate product of cytosine modification. Restoration of “normal” physical properties of disrupted phage after more prolonged modification is explained by cleavage of the DNA-protein cross-links due to reaction of the postulated intermediate with O-methylhydroxylamine affording N(4)-methoxy-6-methoxy-amino-5,6-dihydrocytidine residues.  相似文献   

17.
18.
The uptake of nucleosides and the synthesis of RNA in Tetrahymena thermophila were examined following amino acid starvation. Omission of leucine, phenylalanine, or arginine from the medium resulted in a rapid decrease in the incorporation of [3H]uridine into the acid-soluble pool and acid-insoluble material (RNA). Amino acid starvation inhibited the uptake of all ribo- and deoxyribonucleosides tested but did not affect the uptake of amino acids or glucose. In addition, under the conditions used, the omission of an amino acid did not result in a large decrease in amino acid incorporation into total protein. Treatment of cells with cycloheximide or emetine gave results similar to the effects of amino acid starvation, but in these experiments the inhibition of protein synthesis was essentially complete. Nucleotide pool sizes were also measured following amino acid starvation. ATP and UTP levels were essentially unchanged, but the dTTP pool size was decreased by 40%. The decrease in RNA synthesis in vivo in the absence of an essential amino acid was reflected in the endogenous RNA synthetic activity of isolated nuclei. However, when solubilized RNA polymerase activity was measured with calf thymus DNA as template, no significant difference was observed between control and amino acid-starved cells.  相似文献   

19.
20.
Changes in the cell content and rate of synthesis of mRNA were studied in auxotrophs of Escherichia coli recovering from a period of amino acid deprivation. Parallel studies were carried out on bacterial strains inhibited with trimethoprim, when glycine and methionine were added to relieve an amino acid deficiency. In the latter case, protein synthesis was still severely inhibited through a lack of N-formylmethionyl-tRNA(fMet) for chain initiation, so that fewer ribosomes were attached to mRNA chains. (1) In RC(str) strains recovering from amino acid starvation, there was a transient oversynthesis of mRNA, but the amounts returned to normal after about a 15-min period of recovery. RC(rel) strains did not show this effect; any extra mRNA accumulated during the previous starvation period was rapidly lost, but no oversynthesis occurred during the resumption of growth. (2) In trimethoprim-inhibited cultures supplemented with glycine and methionine, mRNA was produced at the same rate, relative to stable RNA species, as during normal growth. The evidence implied that decreased rates of ribosome attachment had no effect on the functional or chemical lifetime of the mRNA fraction. This suggests that mRNA stability does not depend on the frequency of translation by ribosomes. (3) Changes in the mRNA contents of trimethoprim-inhibited RC(str) and RC(rel) cultures were noted soon after supplementation with glycine and methionine. These closely followed those observed in cultures recovering from simple amino acid withdrawal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号