首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When cultured human lymphoblasts are starved 3 h for an essential amino acid, rates of purine nucleotide synthesis decrease markedly because of a decrease in the intracellular phosphoribosylpyrophosphate concentration (Boss, G.R., and Erbe, R.W. (1982) J. Biol. Chem. 257, 4242-4247; Boss, G. R. (1984) J. Biol. Chem. 259, 2936-2941). In amino acid-starved cells, glucose transport was not changed, whereas total glucose consumption and lactate production decreased by approximately 25 and 10%, respectively. Carbon flow through the oxidative pentose phosphate pathway, measured by 14CO2 release from [1-14C]glucose, decreased by 18% during amino acid starvation. However, kinetic studies of ribulose-5-phosphate 3-epimerase and phosphoriboisomerase suggested that the ribulose 5-phosphate produced by this pathway is converted mostly to xylulose 5-phosphate instead of to ribose 5-phosphate so that this pathway produces little phosphoribosylpyrophosphate. The activity of the nonoxidative pentose phosphate pathway, measured by high performance liquid chromatography following the incorporation of [1-14C]glucose into phosphoribosylpyrophosphate, ATP, and GTP, decreased by approximately 55% during amino acid starvation. None of the enzymes of either pathway changed in specific activity during amino acid starvation. We conclude that the nonoxidative pentose phosphate pathway is the major source of phosphoribosylpyrophosphate for purine nucleotide synthesis and that this pathway is regulated by a metabolite which changes in concentration during amino acid starvation.  相似文献   

2.
1. The metabolism of xanthine and hypoxanthine in excised shoot tips of tea was studied with micromolar amounts of [2(-14)C]xanthine or [8(-14)C]hypoxanthine. Almost all of the radioactive compounds supplied were utilized by tea shoot tips by 30 h after their uptake. 2. The main products of [2(-14)C]xanthine and [8(-14)C]hypoxanthine metabolism in tea shoots were urea, allantoin and allantoic acid. There was also incorporation of the label into theobromine, caffeine and RNA purine nucleotides. 3. The results indicate that tea plants can catabolize purine bases by the same pathways as animals. It is also suggested that tea plants have the ability to snythesize purine nucleotides from glycine by the pathways of purine biosynthesis de novo and from hypoxanthine and xanthine by the pathway of purine salvage. 4. The results of incorporation of more radioactivity from [8(-14)C]hypoxanthine than from [2(-14)C]xanthine into RNA purine nucleotides and caffeine suggest that hypoxanthine is a more effective precursor of caffeine biosynthesis than xanthine. The formation of caffeine from hypoxanthine is a result of nucleotide synthesis via the pathway of purine salvage.  相似文献   

3.
Alterations in the pattern of purine nucleotide synthesis and degradation were investigated during programmed cell death (PCD) of tobacco BY-2 cells, induced by a simultaneous increase in the endogenous levels of nitric oxide (NO) and hydrogen peroxide. The de novo synthesis of purine nucleotides was estimated by following the metabolic fate of the [8-14C]5-aminoimidazole-4-carboxamide-1-β- d -ribofuranoside (AICAR), the salvage synthesis was investigated using [8-14C]adenine and adenosine, and the degradation pathway was studied by following the incorporation of [8-14C]inosine. The results indicated that specific changes in purine metabolism occurred during the death programme of tobacco cells. During the early phases of PCD, increases in the salvage activity of adenine and adenosine were observed, and these were related to the high activity of the two major salvage enzymes: adenine phosphoribosyltransferase (APRT) and adenosine kinase (ARK). During the following stages, a large fraction of purine nucleotide was also produced through the de novo pathway, suggesting a tight regulation between salvage and de novo synthesis. These changes were strictly associated with PCD, as they did not occur if NO or hydrogen peroxide was increased individually, or if actinomycin, which inhibits the death programme, was added to the medium in the presence of NO and hydrogen peroxide. These changes in purine nucleotide synthesis represent an early metabolic switch which may be needed to ensure the proper execution of all the high-energy demand processes characteristic of the death programme.  相似文献   

4.
Primary rat cardiomyocyte cultures were utilized as a model for the study of purine nucleotide metabolism in the heart muscle, especially in connection with the mechanisms operating for the conservation of adenine nucleotides. The cultures exhibited capacity to produce purine nucleotides from nonpurine molecules (de novo synthesis), as well as from preformed purines (salvage synthesis). The conversion of adenosine to AMP, catalyzed by adenosine kinase, appears to be the most important physiological salvage pathway of adenine nucleotide synthesis in the cardiomyocytes. The study of the metabolic fate of IMP formed from [14C]formate or [14C]hypoxanthine and that of AMP formed from [14C]adenine or [14C]adenosine revealed that in the cardiomyocyte the main flow in the nucleotide interconversion pathways is from IMP to AMP, whereas the flux from AMP to IMP appeared to be markedly slower. Following synthesis from labeled precursors by either de novo or salvage pathways, most of the radioactivity in purine nucleotides accumulated in adenine nucleotides, and only a small proportion of it resided in IMP. The results suggest that the main pathway of AMP degradation in the cardiomyocyte proceeds through adenosine rather than through IMP. About 90% of the total radioactivity in purines effluxed from the cells during de novo synthesis from [14C]formate or following prelabeling of adenine nucleotides with [14C]adenine were found to reside in hypoxanthine. The activities in cell extracts of AMP 5'-nucleotidase and IMP 5'-nucleotidase, which catalyze nucleotide degradation, and of AMP deaminase, a key enzyme in the purine nucleotide cycle, were low. The nucleotidase activity resembles, and that of the AMP deaminase contrasts the respective enzyme activities in extracts of cultured skeletal-muscle myotubes. The results indicate that in the cardiomyocyte, in contrast to the myotube, the main mechanism operating for conservation of nucleotides is prompt phosphorylation of AMP, rather than operation of the purine nucleotide cycle. The primary cardiomyocyte cultures are a plausible model for the study of purine nucleotide metabolism in the heart muscle.  相似文献   

5.
6.
To investigate the short‐term (3 h) effect of salt on the metabolism of purine, pyrimidine and pyridine nucleotides in mangrove (Bruguiera sexangula) cells, we examined the uptake and overall metabolism of radiolabelled intermediates involved in the de novo pathways and substrates of salvage pathways for nucleotide biosynthesis in the presence and absence of 100 mM NaCl. Uptake by the cells of substrates for the salvage pathways was much faster than uptake of intermediates of the de novo pathways. The activity of the de novo pyrimidine biosynthesis estimated by [2‐14C]orotate metabolism was not significantly affected by the salt. About 20–30% of [2‐14C]uridine, [2‐14C]uracil and more than 50% of [2‐14C]cytidine were salvaged for pyrimidine nucleotide biosynthesis. However, substantial quantities of these compounds were degraded to 14CO2 via β‐ureidopropionate (β‐UP), and degradation of β‐UP was increased by the salt. The activities of the de novo pathway, estimated by [2‐14C] 5‐aminoimidazole‐4‐carboxamide ribonucleoside, and the salvage pathways from [8‐14C]adenosine and [8‐14C]guanosine for the purine nucleotide biosynthesis were not influenced by the salt. Most [8‐14C]hypoxanthine was catabolised to 14CO2, and other purine compounds are also catabolised via xanthine. Purine catabolism was stimulated by the salt. [3H]Quinolinate, [carbonyl‐14C]nicotinamide and [carboxyl‐14C]nicotinic acid were utilised for the biosynthesis of pyridine nucleotides. The salvage pathways for pyridine nucleotides were significantly stimulated by the salt. Trigonelline was synthesised from all pyridine precursors that were examined; its synthesis was also stimulated by the salt. We discuss the physiological role of the salt‐stimulated reactions of nucleotide metabolism.  相似文献   

7.
Purine Nucleotide Synthesis in Adrenal Chromaffin Cells   总被引:5,自引:4,他引:1  
Abstract: The synthesis of purine nucleotides from the salvage precursors adenine and adenosine, and from the de novo precursors formate and glycine, was studied in isolated adrenal chromaffin cells. Both [8-14C]adenine and [8-14C]adenosine from extracellular medium are effectively incorporated into intracellular nucleotides. [14C]Formate and [U-14C]glycine are also incorporated, but de novo synthesis is clearly lower than synthesis from salvage precursors, although similar to de novo synthesis in liver. The enzymes responsible for adenine and adenosine salvage, adenine phosphoribosyltransferase and adenosine kinase, were purified about 1,500-fold. Both enzymes are mainly cytosolic and exhibit a similar molecular weight of around 42,000. The results suggest that chromaffin cells can replenish their intracellular nucleotides lost during the secretory event by an active synthesis from salvage and de novo precursors.  相似文献   

8.
To clarify the contributions of amidophosphoribosyltransferase (ATase) and its feedback regulation to the rates of purine de novo synthesis, DNA synthesis, protein synthesis, and cell growth, mutated human ATase (mhATase) resistant to feedback inhibition by purine ribonucleotides was engineered by site-directed mutagenesis and expressed in CHO ade (-)A cells (an ATase-deficient cell line of Chinese hamster ovary fibroblasts) and in transgenic mice (mhATase-Tg mice). In Chinese hamster ovary transfectants with mhATase, the following parameters were examined: ATase activity and its subunit structure, the metabolic rates of de novo and salvage pathways, DNA and protein synthesis rates, and the rate of cell growth. In mhATase-Tg mice, ATase activity in the liver and spleen, the metabolic rate of the de novo pathway in the liver, serum uric acid concentration, urinary excretion of purine derivatives, and T lymphocyte proliferation by phytohemagglutinin were examined. We concluded the following. 1) ATase and its feedback inhibition regulate not only the rate of purine de novo synthesis but also DNA and protein synthesis rates and the rate of cell growth in cultured fibroblasts. 2) Suppression of the de novo pathway by the salvage pathway is mainly due to the feedback inhibition of ATase by purine ribonucleotides produced via the salvage pathway, whereas the suppression of the salvage pathway by the de novo pathway is due to consumption of 5-phosphoribosyl 1-pyrophosphate by the de novo pathway. 3) The feedback inhibition of ATase is more important for the regulation of the de novo pathway than that of 5-phosphoribosyl 1-pyrophosphate synthetase. 4) ATase superactivity leads to hyperuricemia and an increased bromodeoxyuridine incorporation in T lymphocytes stimulated by phytohemagglutinin.  相似文献   

9.
Deoxyadenosine (dAdo) and deoxyguanosine (dGuo) decrease methionine synthesis from homocysteine in cultured lymphoblasts; because of the possible trapping of 5-methyltetrahydrofolate this could lead to decreased purine nucleotide synthesis. Since purine deoxynucleosides could also inhibit purine synthesis de novo at an early step not involving folate metabolism, we measured in azaserine-treated cells 5-amino-4-imidazolecarboxamide (Z-base)-dependent purine nucleotide synthesis using [14C]formate. In the T lymphoblasts, Z-base-dependent purine nucleotide synthesis was decreased 26% by 0.3 microM-dAdo, 21% by 1 microM-dGuo and 28% by 1 microM-adenosine dialdehyde, a potent S-adenosylhomocysteine hydrolase inhibitor; homocysteine fully reversed the inhibitions. The B lymphoblasts were considerably less sensitive to the deoxynucleoside-induced decrease in Z-base-dependent purine nucleotide synthesis, with 100 microM-dAdo required for significant inhibition and no inhibition by dGuo at this concentration; homocysteine partly reversed the inhibition by dAdo. The observed decrease in Z-base-dependent purine nucleotide synthesis could not be attributed either to dUMP depletion changing the folate pools or to decreased ATP availability because dUrd was without effect and during the experimental period the intracellular ATP concentration did not change significantly. Cells with 5,10-methylenetetrahydrofolate reductase deficiency were relatively resistant to inhibition of Z-base-dependent purine nucleotide synthesis by dAdo and adenosine dialdehyde. Our results suggest that deoxynucleosides decrease purine nucleotide synthesis by trapping 5-methyltetrahydrofolate.  相似文献   

10.
The effect of 5-amino-4-imidazole-carboximide (AI-CA)-riboside on different pathways of purine metabolism (biosynthesis de novo, salvage pathways, adenosine metabolism, ATP catabolism) was studied in human B lymphoblasts (WI-L2). AICA-Riboside markedly decreased intracellular levels of 5-phosphoribosyl-1-pyrophosphate and in consequence affected purine biosynthesis de novo and purine salvage pathways. AICA-riboside inhibited incorporation of glycine into purine nucleotides, but when formate was used as the precursor of purine biosynthesis de novo, a biphasic effect was observed. The incorporation of formate into purine nucleotides was increased by AICA-riboside at concentrations up to 2 mM but decreased at higher concentrations. Salvage of the purine bases adenine, hypoxanthine, and guanine was markedly inhibited and utilization of extracellular adenosine in B lymphoblasts was reduced by AICA-riboside. AICA-riboside increased ribose 1-phosphate concentrations and increased degradation of prelabeled ATP. No effect on the intracellular levels of orthophosphate was found. Proliferation of WI-L2 lymphoblasts was only slightly affected at concentrations of AICA-riboside below 500 microM but markedly inhibited by higher concentrations.  相似文献   

11.
Procedures for assaying the rate of purine de novo synthesis in cultured fibroblast cells have been compared. These were (i) the incorporation of [(14)C]-glycine or [(14)C]formate in alpha-N-formylglycinamide ribonucleotide (an intermediate in the purine synthetic pathway) and (ii) the incorporation of [(14)C]-formate into newly synthesised cellular purines and purines excreted by the cell into the medium. Fibroblast cells, derived from patients with a deficiency of hypoxanthine phosphoribosyltransferase (HPRT-) (EC 2.4.2.8) and increased rates of purine de novo synthesis, were compared with fibroblasts from healthy subjects (HPRT+). Fetal calf serum, which was used to supplement the assay and cell growth medium, was found to contain sufficient quantities of the purine base hypoxanthine to inhibit purine de novo synthesis in HPRT+ cells. This inhibition was the basis of differentiation between HPRT- and HPRT+ cells. In the absence of added purine base, both cell types had similar capacities for purine de novo synthesis. This result contrasts with the increased rates of purine de novo synthesis reported for a number of human HPRT- cells in culture but conforms recent studies made on human HPRT- lymphoblast cells. The intracellular concentration and utilisation of 5-phosphoribosyl-1-pyrophosphate (P-Rib-PP), a substrate and potential controlling factor for purine de novo synthesis, were determined in HPRT- and HPRT+ cells. The rate of utilisation of P-Rib-PP in the salvage of free purine bases was far greater than that in purine de novo synthesis. Although HPRT- cells had a 3-fold increase in P-Rib-PP content, the rate of P-Rib-PP generation was similar to HPRT+ cells. Thus, in fibroblasts, the concentration of P-Rib-PP appears to be critical in the control of de novo purine synthesis and its preferential utilisation in the HPRT reaction limits its availability for purine de novo synthesis. In vivo, HPRT+ cells, in contrast to HPRT- cells, may be operating purine de novo synthesis at a reduced rate because of their ability to reutilise hypoxanthine.  相似文献   

12.
Purine biosynthesis de novo could not be detected in suspensions of Mycobacterium leprae isolated from armadillo tissue. In contrast, non-growing suspensions of other pathogenic mycobacteria, also isolated from infected host tissue did synthesize purines. Rates of synthesis, judged by incorporation of [2-14C]glycine or [3-14C]serine into nucleic acid purines were 600 times higher in M. microti and 110 times higher in M. avium--both isolated from infected mouse tissue--than the lowest possible rate detectable and therefore the highest possible rate in M. leprae. The rate of purine synthesis relative to purine scavenging (judged by comparing incorporation of [3-14C]serine and [8-14C]hypoxanthine into nucleic acid purines in suspensions of mycobacteria) varied only slightly--4-fold in M. microti and 6-fold in M. avium--whether organisms were harvested from media with or without purines, from media with a low nitrogen content but containing a purine, from mice or even with starved organisms. Thus, the failure of M. leprae to synthesize purines could not be explained as either a result of using non-growing mycobacteria in the incubations with 14C-labelled precursors or as repression or inhibition of synthesis de novo. It appears that M. leprae requires a supply of the purine ring from its environment. Nucleotides, which may be the major source of the purine ring in the intracellular environment, were not taken up directly by M. leprae but could be hydrolysed first to nucleosides and then taken up.  相似文献   

13.
The actomyosin protein complex of Physarum polycephalum was prepared from vegetative and starved plasmodia. The yield of actomyosin per unit wet wt. was the same from both types of plasmodia. Myosin was resolved from the complex by gel filtration and purified by ion-exchange chromatography. The Ca(2+)-stimulated adenosine triphosphatase activities of myosin preparations from vegetative and starved plasmodia were not appreciably different. Synthesis of myosin de novo was shown to occur during the starvation phase of the life-cycle by the isolation of labelled myosin preparations from plasmodia starved in the presence of [2-(14)C]glycine. Fractionation of polyacrylamide gels after gel filtration of labelled myosin confirmed the presence of label in the adenosine triphosphatase-active myosin band. It is concluded that during starvation myosin synthesis continues although there is a net loss of approx. 50% of the total protein. Sodium dodecyl sulphate-polyacrylamide-gel electrophoresis of Physarum myosin showed the presence of low-molecular-weight components of the molecule, similar to those of muscle myosins. The content and composition of the free amino acid pool of Physarum was measured at various time-intervals during the vegetative and starvation phases of the life-cycle.  相似文献   

14.
Indole-3-acetic acid production by bacteroids from soybean root nodules   总被引:4,自引:0,他引:4  
Purine nucleotide and RNA synthesis have been investigated at the different growth stages of carrot ( Daucus carota L.) cells grown in suspension cultures. At the early growth stages an increase in the content of RNA was observed, although at later stages RNA was degraded. The highest rates of incorporation of [14C]-labelled adenosine into ATP and GTP were observed at the late growth sttages. This indicated that purine slavage was more importnt at the late growth stages, while de novo synthesis was dominant during the initial growth stages. This pattern was also reflected by increased levels, in the cell dividison phase, of theenzymes glycinamide ribonucleotide synthetase (EC 6.3.1.3.) and phosphoribosylpyrophosphate amido-transferase (EC 2.4.2.14) involved in de novo purine synthesis. The activities of the purine salvage enzymes varied little during growth. Cells in the stationary phase, that were starved for sucrose and phosphate, showed a dramatic increase in cellular metabolism, as judged from a rapid uptake and incorporation of [32P]-labelled phosphate into nucleotides and RNA, when incubated in fresh medium.  相似文献   

15.
Deficiency of the enzyme purine nucleoside phosphorylase is associated with a specific depletion of T cells which is presumably mediated by its substrate, 2'-deoxyguanosine. Inhibitors of this enzyme are therefore being developed as potential immunosuppressive agents. We have compared the effects of 8-aminoguanosine, a competitive inhibitor of purine nucleoside phosphorylase, on the metabolism of 2'-deoxyguanosine by human T lymphoblasts, B lymphoblasts, and mature T-cell lines. 8-Aminoguanosine markedly potentiates the accumulation of dGTP in T lymphoblasts, but results in increased GTP levels in B lymphoblasts and mature T cells. GTP accumulation is associated with ATP depletion of a magnitude similar to that seen with an inhibitor of de novo purine biosynthesis, but does not result in inhibition of either DNA or RNA synthesis. In contrast, direct inhibition of de novo purine biosynthesis sharply decreased the incorporation of [3H]uridine into both DNA and RNA. We conclude that the mechanism of cell damage resulting from prolonged accumulation of GTP appears to involve more than inhibition of de novo purine biosynthesis and consequent ATP depletion. Perturbations in guanine nucleotide pools resulting from partial inhibition of purine nucleoside phosphorylase activity in vivo could result in cellular toxicity not limited to the target T cell population.  相似文献   

16.
When islets from mice were incubated with 16.7 mM-glucose, previous starvation for 48 h decreased the rate of insulin release by approx. 50% and glucose utilization was decreased by approx. 35%. The maximally extractable activity of glucose 6-phosphate dehydrogenase was diminished by 28% after starvation. The formation of 14CO2 from both [1-14C]glucose was, however, higher than the rate of oxidation of [6-14C]-glucose in islets from both fed and starved mice. The fraction of glucose utilized that was oxidized (specific 14CO2 yield) ranged from one-fifth to one-third and was higher in islets from starved mice with both [1-14C]glucose and [6-14C]glucose as substrate. The contribution of pentose-cycle oxidation to total glucose metabolism was small (3% in the fed state and 4% in the starved state). The absolute rates of glucose carbon metabolism via the pentose-cycle oxidation to total glucose metabolism was small (3% in the fed state and 4% in the starved state). The absolute rates of glucose carbon metabolism via the pentose cycle and the turnover of NADPH in this pathway were identical in islets from fed and starved animals. After incubation at 16.7 mM-glucose for 30 min the contents of glucose (6-phosphate and 6-phosphogluconate were both unchanged by starvation. It is concluded that there is no correlation between the decreased sensitivity of the insulin secretory mechanism during starvation and the metabolism of glucose via the pentose cycle, the islet content of glucose 6-phosphate or 6-phosphogluconate.  相似文献   

17.
Rates of purine salvage of adenine and hypoxanthine into the adenine nucleotide (AdN) pool of the different skeletal muscle phenotype sections of the rat were measured using an isolated perfused hindlimb preparation. Tissue adenine and hypoxanthine concentrations and specific activities were controlled over a broad range of purine concentrations, ranging from 3 to 100 times normal, by employing an isolated rat hindlimb preparation perfused at a high flow rate. Incorporation of [(3)H]adenine or [(3)H]hypoxanthine into the AdN pool was not meaningfully influenced by tissue purine concentration over the range evaluated (approximately 0.10-1.6 micromol/g). Purine salvage rates were greater (P < 0.05) for adenine than for hypoxanthine (35-55 and 20-30 nmol x h(-1) x g(-1), respectively) and moderately different (P < 0.05) among fiber types. The low-oxidative fast-twitch white muscle section exhibited relatively low rates of purine salvage that were approximately 65% of rates in the high-oxidative fast-twitch red section of the gastrocnemius. The soleus muscle, characterized by slow-twitch red fibers, exhibited a high rate of adenine salvage but a low rate of hypoxanthine salvage. Addition of ribose to the perfusion medium increased salvage of adenine (up to 3- to 6-fold, P < 0.001) and hypoxanthine (up to 6- to 8-fold, P < 0.001), depending on fiber type, over a range of concentrations up to 10 mM. This is consistent with tissue 5-phosphoribosyl-1-pyrophosphate being rate limiting for purine salvage. Purine salvage is favored over de novo synthesis, inasmuch as delivery of adenine to the muscle decreased (P < 0.005) de novo synthesis of AdN. Providing ribose did not alter this preference of purine salvage pathway over de novo synthesis of AdN. In the absence of ribose supplementation, purine salvage rates are relatively low, especially compared with the AdN pool size in skeletal muscle.  相似文献   

18.
The comprehensive studies of purine nucleotide metabolism were done in nonstimulated and phytohemagglutinin (PHA)-stimulated human peripheral blood T lymphocytes. Nonstimulated lymphocytes synthesize nucleotides in two alternative pathways: via biosynthesis de novo and salvage pathways. Although synthesis of triphosphonucleosides in unstimulated lymphocytes was the predominant pathway, interconversion of monophosphonucleosides was also active. Exposure of cells to PHA affects differently various pathways of nucleotide metabolism. The most marked changes observed were rapid activation of purine salvage within minutes after exposure to PHA, and significant increase of 5-phosphoribosyl-1-pyrophosphate levels. In addition, significant increases were found in de novo purine biosynthesis, nucleotide interconversions, and RNA and DNA synthesis, whereas catabolism of nucleotides remained unchanged. These results indicate that PHA activation of T lymphocytes causes a rapid synthesis of nucleotides which may be required immediately for increases in energy metabolism and later as the precursors of nucleic acid synthesis.  相似文献   

19.
With radioactive precursors, the labelling kinetics of the soluble pyrimidine nucleotides and of RNA were measured in rat liver to determine the contribution of the metabolic flows through synthesis de novo and the salvage pathway. To separate and quantify all pyrimidine nucleotides, an h.p.l.c. technique was developed using anion-exchange chromatography and reversed-phase chromatography. The concentrations of cytidine nucleotides were in the range of 30-45 nmol/g wet weight, and the concentrations of the uridine phosphates and of the UDP-sugars were approx. 6 and 20 times higher respectively. After a single injection of [14C]orotic acid and of [3H]cytidine, the specific radioactivities were determined as a function of time. The 14C/3H ratio was calculated and gave a good indication of the involvement of the different flows. It could be concluded that UTP derived from synthesis de novo and from the salvage pathway is not completely mixed before being utilized. The flow of the salvage pathway is relatively more directed to RNA synthesis in the nucleus and that of synthesis de novo to cytoplasmic processes. For CTP it could also be concluded that the flow of the salvage pathway was relatively more directed to RNA synthesis in the nucleus. Because of the nuclear localization of the enzyme CMP-NeuAc (N-acetylneuraminate) synthase, special attention was paid to CMP-NeuAc. However, a conclusion about a location about the synthesis of CMP-NeuAc could not unequivocally be drawn, because of the small differences in 14C/3H ratio and the different values for the CDP-lipids.  相似文献   

20.
The synthesis and metabolic fate of purine nucleotides were studied, employing labeled precursors, in primary rat muscle cultures. The cultures were found to produce purine nucleotides, by de novo and salvage pathways, both exhibiting dependence on cellular availability of substrate 5-phosphoribosyl-1-pyrophosphate (PPRibP). Depletion of cellular PPRibP decelerated the rate of purine synthesis, whereas increasing PPRibP generation by high Pi concentration in the incubation medium, accelerated purine synthesis. Ribose accelerated purine synthesis, indicating that ribose 5-phosphate availability in the cultured muscle is limiting for PPRibP synthesis. The study in the muscle cultures of the metabolic fate if IMP formed from [14C]formate and that of nucleotides formed from labeled purine bases, revealed that the main flow in the nucleotide interconversions pathways is from AMP to IMP. The flow from IMP to GMP and to AMP appeared to be of a lesser magnitude and virtually no flow could be detected from GMP to IMP. The greatest proportion of radioactivity of purine nucleotides following synthesis by either de novo or salvage pathways, accumulated in IMP, reflecting the relative rates of flows between the various nucleotides and probably also a relatively low, or inhibited activity of the IMP nucleotidase. The results suggest that primary muscle cultures are a plausible model for the study of the role of purine metabolism in muscle work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号