首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Sorghum and sunflower were waterlogged for nine days during the vegetative, floral initiation/buds-visible or anthesis stage of growth under glasshouse conditions to observe the effects on root growth and development. In addition, some plants were waterlogged at all three stages to observe any adaptations induced by waterlogging. The most marked effects occurred at the initiation/buds-visible stage where a 30% reduction in root length and a 40% reduction in root dry weight of sorghum occurred with comparable figures for sunflower being 50 and 60% respectively. Generally, sorghum roots had a higher porosity than sunflower which may contribute to its greater tolerance to waterlogging. The observed changes in root growth are discussed in relation to previously documented effects of waterlogging on growth of the two species and changes which occur in the soil environment.  相似文献   

2.
Summary The effect of waterlogging on water use and nutrient uptake in sunflower and sorghum was investigated in relation to stage of development of the crops and the timing and duration of waterlogging. Waterlogging at the vegetative and floral initiation stages of plant growth induced a reduction in water use of sunflower, with corresponding declines in leaf expansion and leaf water potential; in sorghum, the transpiration rates were much lower than for sunflower and relatively unaffected by waterlogging. Waterlogging at anthesis, however, caused an immediate reduction in water use in sunflower with a similar but delayed effect in sorghum. The differences in response of these two species are discussed in relation to the relative importance of water stress and nutrient uptake. Plant analysis at maturity indicated that waterlogging at any growth stage reduced both total and seed phosphorus in sunflower; similar effects were recorded with sorghum, with the exception of anthesis waterlogging which did not reduce nutrient uptake. Waterlogging effects on plant potassium levels were variable.  相似文献   

3.
The duration of pre-anthesis developmental phases is of interest in breeding for improved adaptation and yield potential in temperate cereals. Yet despite numerous studies on the genetic control of anthesis (flowering) time and floral initiation, little is known about the genetic control of other pre-anthesis phases. Furthermore, little is known about the effect that changes in the duration of pre-anthesis phases could have on traits related to leaf appearance and tillering, or dry matter accumulation before terminal spikelet initiation (TS). The genetic control of the leaf and spikelet initiation phase (LS; from sowing to TS), the stem elongation phase (SE; from TS to anthesis), and, within the latter, from TS to flag leaf appearance and from then to anthesis, was studied in two doubled-haploid, mapping bread wheat populations, Cranbrook × Halberd and CD87 × Katepwa, in two field experiments (ACT and NSW, Australia). The lengths of phases were estimated from measurements of both TS and the onset of stem elongation. Dry weight per plant before TS, rate of leaf appearance, tillering rate, maximum number of tillers and number of leaves, and dry weight per plant at TS were also estimated in the Cranbrook × Halberd population. More genomic regions were identified for the length of the different pre-anthesis phases than for total time to anthesis. Although overall genetic correlations between LS and SE were significant and positive, independent genetic variability between LS and SE, and several quantitative trait loci (QTLs) with different effects on both phases were found in the two populations. Several of these QTLs (which did not seem to coincide with reported major genes) could be of interest for breeding purposes since they were only significant for either LS or SE. There was no relationship between LS and the rate of leaf appearance. LS was strongly and positively correlated with dry weight at TS but only slightly negatively correlated with early vigour (dry weight before TS). Despite significant genetic correlations between LS and some tillering traits, shortening LS so as to lengthen SE without modifying total time to anthesis would not necessarily reduce tillering capacity, as QTLs for tillering traits did not coincide with those QTLs significant only for LS or SE. Therefore, the study of different pre-anthesis phases is relevant for a better understanding of genetic factors regulating developmental time and may offer new tools for fine-tuning it in breeding for both adaptability and yield potential.  相似文献   

4.
A study on the physiological and yield effects of waterlogging and the alleviation of waterlogging damage by the application of nitrogen fertilizers and mixtalol in winter rape was conducted in experimental tanks especially designed for controlling soil moisture content. The results showed that waterlogging at the seedling and stem elongation stages causes a significant decrease in nitrogen content and rate of nitrogen accumulation. Leaf chlorophyll content, superoxide dismutase and catalase activities, and root oxidizability (capacity for root oxidation) and root exudate were also reduced by waterlogging. The experiments confirmed that the physiological function of rape plants was retarded during the time of waterlogging at the seedling stage, and its adverse effects remained. Plant height, stem width, and the number of primary branches per plant were decreased significantly by waterlogging at the seedling and stem elongation stages. Pods per plant and seeds per pod were also reduced significantly, giving a 21.3 and 12.5% decrease of seed yield from the control for treatments at the seedling and stem elongation stages, respectively. Foliar sprays of nitrogen fertilizers at the seedling stage or mixtalol at the flowering stage alleviated plant damage caused by waterlogging by retarding chlorophyll and nitrogen degradation, increasing superoxide dismutase and catalase activities and root oxidizability, and improving yield components and seed yield of waterlogged plants. Therefore, besides draining off water, alleviation of waterlogging damage may be controlled by applying nitrogen fertilizer and a suitable plant growth regulator at appropriate growth stages. Received July 3, 1996; accepted December 26, 1996  相似文献   

5.
A study on photosynthetic and yield effects of waterlogging of winter wheat at four stages of growth was conducted in specially designed experimental tanks during the 2007–2008 and 2008–2009 seasons. Compared with the control, waterlogging treatments at tillering and jointing-booting stages reduced photosynthetic rate (P N) and transpiration (E) significantly, it also decreased average leaf water-use efficiency (WUE, defined as the ratio of P N to E) by 3.3% and 3.4% in both years. All parameters returned quickly to the control level after soil was drained. Damage to the photosynthetic apparatus during waterlogging resulted in a lower Fv/Fm ratio, especially at the first two stages. A strong reduction in root length, root mass, root/shoot ratio, total dry mass, and leaf area index were observed. The responses from vegetative plants at tillering and jointing-booting stages were greater than in generative plants at onset of flowering and at milky stages. The number of panicles per hectare at tillering stage and the spikelet per panicle at the stages of jointing-booting and at onset of flowering were also significantly reduced by waterlogging, giving 8.2–11.3% decrease of the grain yield relative to the control in both years. No significant difference in yield components and a grain yield was observed between the control and treatments applied at milky stages. These responses, modulated by the environmental conditions prevailing during and after waterlogging, included negative effects on the growth, photosynthetic apparatus, and the grain yield in winter wheat, but the effect was strongly stage-dependent.  相似文献   

6.
A glasshouse study was made of the distribution of 15N among vegetative organs of sunflower and its later remobilization and redistribution to seeds, as influenced by the developmental stage at which 15N was provided, and by the N status of the plants. Plants of Hysun 30 sunflower were grown in sand culture and provided with K15NO3 for a 3-day period at: (a) 3 days before the end of floret initiation; (b) 3 days before anthesis; (c) the start of anthesis; (d) full anthesis; and (e) 8 days after full anthesis. The plants were grown on a range of N supply rates, from severely deficient to more than adequate for maximum growth. Nitrogen-15 was distributed to all parts of the plant at the end of the 15N uptake periods. With the exception of the most N-stressed plants, subsequent remobilization of 15N from roots, stems and leaves occurred irrespective of the time the 15N was taken up. However, the percentage redistribution to seeds of 15N taken up at the end of floret initiation was less than for 15N taken up at anthesis. Remobilization of 15N from leaves and roots was higher (70%) for 15N taken up during and after anthesis than for 15N taken up at the end of floret initiation (45%), except for plants grown on the lowest N supply. By contrast, remobilization of 15N from the stem was lower for 15N taken up after full anthesis (40%) than before or during anthesis (>70%). The proportion of 15N remobilized from the top third of the stem was less than that from the bottom third, and decreased with increasing plant N status. Nitrogen-15 taken up over the 3-day supply periods during anthesis contributed from 2 to 11% of the total seed N at maturity; the contribution to seeds was greatest for plants grown on the highest N supply. Nitrogen taken up just before and during anthesis contributed most of the N accumulated in mature seeds of plants grown on an adequate N supply, but N taken up between the end of floret initiation and just before anthesis, or after full anthesis seemed to make an equally important contribution to mature seeds as N taken up during anthesis for plants grown on a very low N supply. It was concluded that the development of florets and seeds of sunflower is supported by N taken up by the plant between the end of floret initiation and anthesis, and by N redistributed from vegetative organs. Unless soil N is so low as to impair early growth, split applications of N fertilizer would be best made just before the end of floret initiation (‘star stage’) and just before anthesis.  相似文献   

7.
The toxicity of imidacloprid to the cereal leaf beetle, Oulema melanopus (L.), was measured under laboratory and field conditions. Insect mortality and plant damage were determined from artificial and natural infestations of O. melanopus applied to various growth stages of barley. All rates of imidacloprid formulated and applied as a seed treatment caused >90% mortality to cereal leaf beetle larvae when barley was infested with eggs at the 4-leaf stage, but were ineffective when barley was infested with eggs at the early tillering or flag-leaf stages of barley. This window of susceptibility influenced results obtained in field trials where peak larval emergence did not occur until the early tillering stage of barley. The resulting mortality in plants from treated seeds never exceeded 40% in the field. Foliar imidacloprid, however, caused >90% mortality in the field, and may be another option in the management of the cereal leaf beetle.  相似文献   

8.
Patterns of floral development, dry matter distribution and seed yield were examined in winter oilseed rape plants subjected to different pre-floral growth environments. The duration of pre-floral growth and plant size at flower initiation, measured in terms of total mainstem leaf number, were manipulated by varying the temperature between seedling emergence and flower initiation. Exposure of seedlings to low temperatures from cotyledon expansion onwards markedly reduced the duration of pre-floral growth and the number of leaves on the mainstem. The subsequent development pattern of plants was largely dependent on the date of flower initiation and therefore vernalisation requirement. Indeed, the period of growth from flower initiation to maturity, considered on the basis of thermal time, was directly related to the duration of pre-floral growth and mainstem leaf number. The thermal durations of the bud development phase and flowering period in plants exposed to different pre-floral cold treatments but with a common date of flower initiation were similarly linked to these two parameters. Plants exposed to prolonged periods of low temperature treatment from cotyledon expansion onwards initiated fewer mainstem leaves during a relatively short pre-floral growth phase and their yield potential was limited by a reduction in branch and flower numbers. Plants maintained at higher temperatures produced more mainstem leaves during an extended period of pre-floral growth and supported a greater number of branches and flowers. However, this additional yield potential was not realised due to a reduction in seed numbers and mean seed weight. It appeared that seed yield of these plants was limited by increased competition between an excessive number of lower branches and flowers, a problem apparently created by excessive pre-floral growth. Minimal competition for available assimilates between the limited number of branches of plants with a shorter pre-floral growth phase and fewer mainstem leaves, resulted in lower levels of pod abortion, greater seed production and ultimately increased seed yields.  相似文献   

9.
The effect of waterlogging the vines of two yam varieties for 24, 48 and 72 hours at two stages of growth, with or without fertiliser application, was studied in the field. Waterlogging caused a progressive degeneration of the leaf starting with the development of fresh lesions on the lower leaf surface, through necrotic spots or portions, to complete leaf necrosis. The degree of leaf damage was greater with Um 680 (Dioscorea alata) than with Obiaoturugo (D. rotundata). Waterlogging also caused the breakdown of the apical buds of the vines. The degree of damage increased with the duration of waterlogging. Younger plants suffered more damage than older plants, and plants treated with fertiliser suffered more than plants without fertiliser. Waterlogging ultimately hastened the final senescence of the yam vine. Waterlogging vines for 24 h had no effect on tuber yield, while waterlogging for 48 and 72 h reduced tuber yield by 32.4% and 43.2% respectively (P< 0.01). Waterlogging vines at the early growth stage produced 47.6% (P <0.01) less yield than waterlogging at a later stage. It is suggested that short-term or long-term waterlogging of the yam vine, or parts thereof, is the main cause of reduced leaf area and low yield in unstaked compared with staked yarn crops. Waterlogging may also be a predisposing factor to disease infection of yam vines by soil-borne micro-organisms.  相似文献   

10.
Root-zone temperature effects on the early development of maize   总被引:1,自引:0,他引:1  
Summary Maize plants were grown in sand culture under greenhouse conditions from emergence to the 4-leaf stage at root-zone temperature of 12.5°, 15° and 17.5°C in one experiment, and grown to the 6-leaf stage at root zone temperatures of 15°, 20°, and 25°C in a second experiment. Attention was given to plant part differentiation as determined by leaf appearance, and to growth as determined by dry tissue accumulation, at specified growth stages.For anyone growth-stage interval the number of days required for that interval increased with decreasing root-zone temperature. Dry weights of both roots and shoots at the various growth stages decreased with increasing root-zone temperature. Root zone temperature had a direct influence on the meristematic region of the shoots of young maize plants because of the close proximity of this region to the ground surface and thereby regulated plant development during the period of leaf initiation.Increased root-zone temperature enhanced plant development rate relative to plant growth rate thus reducing the ultimate yield of maize at the 4- and 6- leaf stages.It was concluded that because of the direct influence of root-zone temperature on the shoot meristem and hence on the nutrient demands of the shoot, due consideration should be given to this factor in studies concerned with soil temperature.Agronomy Department Paper No. 709.  相似文献   

11.
Summary Spaced plants of a segregating soybean hybrid population in the F6 generation were scored for fourteen quantitative traits related to yield, foliage development and growth duration. Full-sib relationships were used to estimate the genetic additive components of variation and covariation. All genetic correlations between traits, as well as phenotypic and environmental correlations, were estimated separately. A principal component analysis was further performed in all three cases. Genetic correlations identified four different groups of traits comprised of: (I) seed number per pod; (II) mean seed weight; (III) dry weight and chlorophyll content per unit leaf area; (IV) all the other characters, including seed yield and total plant weight at maturity. Among these traits, stem diameter at ground level appeared to be a good indicator of yield. This distribution remained about the same for the environmental correlations, except that growth duration traits and foliage development traits became independent of yield. The implications of these results are discussed in relation to soybean breeding for climatic adaptation.  相似文献   

12.
Photosynthetic and yield effects of paclobutrazol and mixtalol sprayed, respectively, on rape at the three-leaf stage and shoot or anthesis stages were examined. They significantly increased chlorophyll content and photosynthetic rates, prolonged leaf longevity, and increased green pod area. Paclobutrazol-treated plants were shorter, more branched, and produced more seeds. Foliar sprays of mixtalol increased podding percentage, pods per plant, and seeds per pod. A high seed yield of 1809.0 kg/ha was obtained with mixtalol sprayed at anthesis, while significant yields were also achieved with treatments of mixtalol at the shoot stage and paclobutrazol at the three-leaf stage. The photosynthetic and yield effects of mixtalol or paclobutrazol were reduced when both growth regulators were applied together, and this led to yield reductions. No adverse effects from mixtalol or paclobutrazol were observed on seed oil content, erucic acid, and glucosinolate content. The total rape oil production with mixtalol sprayed at anthesis and shoot stages and paclobutrazol at the three-leaf stage increased significantly by 20.9%, 14.4%, and 13.4%, respectively, over the controls.  相似文献   

13.
渍水对四川小麦生理性状及产量的影响   总被引:2,自引:0,他引:2  
采用二因素裂区设计,连续2年(2011-2012和2012-2013年)以川麦104和内麦836为对象,在小麦苗期、拔节期、孕穗期、开花期分别进行35 d的渍水处理,研究渍水对四川小麦生长和产量形成的影响.结果表明: 苗期渍水减产最大,减产10%~15%,随渍水时期的后移,对产量的影响减小.苗期渍水降低了第3~6叶SPAD值、单株分蘖力和单株成穗数,降低了有效穗数、花后干物质积累量和成熟期干物质量.拔节期渍水降低了第4~7叶SPAD值,孕穗期渍水降低了倒4、倒3、倒2叶SPAD值,拔节期和孕穗期渍水导致花后旗叶SPAD值下降,渐增期灌浆速率(R1)和平均灌浆速率(Rmean)下降,千粒重下降.开花期渍水对产量影响较小.表明苗期渍水是四川稻茬小麦渍害临界期.  相似文献   

14.
Foliar application of imazamethabenz at sublethal doses of 100 and 200 g a.i./ha to wild oat plants at the two-leaf stage without tillers greatly inhibited the growth of the main shoot but increased tillering. The near cessation of sheath and the main stem elongation indicated that the major effect of imazamethabenz on the main shoot was inhibition of intercalary growth. Low doses of imazameth-abenz treatment resulted in more leaves (including leaf primordia) in the main stem but did not affect mature first and second leaves. Sublethal doses of imazamethabenz only briefly inhibited tiller growth. A later increase in tillering in treated plants resulted from the stimulated resumed growth of tillers and the increased initiation of tiller buds. Such enhanced tillering mainly resulted from the release of apical dominance due to the inhibition or cessation of the main stem growth with imazamethabenz treatment. Both doses of imazamethabenz (100 and 200 g a.i./ha) significantly reduced the biomass of shoots and roots, but increased the ratio of roots/ shoots dry weight.  相似文献   

15.
借助田间、水槽试验的结果结合Penning de Vries的MACROS模型建立玉米生长发育与水分动态耦合的模拟模型,通过验证后用于模拟不同渍水时期及持续时间对春玉米生长及产量影响的动态,模拟结果表明在田间全程控制水分为田间持水量90%以下,春玉米孕穗期为渍水危害的敏感期,其次为4-6叶期,在自然降水及土壤状况影响下,春玉米幼苗期4-6叶时为渍水的敏感期,8叶及孕穗期相对较耐渍,在玉米4、6叶期时,渍害造成产量下降的临界期为5天;而在8叶、孕穗期为10-15天,但持续20天的渍水对任何时期的春玉米生长都造成严重的影响,因此在生产中应注意在苗期及孕穗期及时排除田间多余的水分及降低地下水位。  相似文献   

16.
不同渍水时间对苗期和花期大豆生长及碳氮代谢的影响   总被引:1,自引:0,他引:1  
以大豆品种南农99.6为材料,通过盆栽试验研究了苗期和花期渍水对大豆生长及碳氮代谢的影响.结果表明: 渍水显著抑制了大豆的生长,植株生物量、叶面积、叶片色素含量和光合速率均显著下降,而丙二醛(MDA)含量显著升高;随着渍水时间的延长,各生理指标的变化幅度增大;渍水胁迫解除后有一定的恢复,渍水10 d处理后恢复能力较渍水20 d处理强.可溶性碳、氮物质及关键酶对渍水反应不同,可溶性糖含量以及叶片谷氨酰胺合成酶和蔗糖合成酶的活性上升,而可溶性蛋白含量下降.渍水对苗期大豆植株生物量、叶面积和MDA含量的影响比花期小.苗期和花期渍水时间越短,大豆受到的伤害越小,其恢复能力也越强.渍水时间在10 d内,大豆植株能够通过自身的调节逐渐恢复.  相似文献   

17.
采用子母桶栽土培法模拟冬小麦抽穗后不同的水分胁迫状态,研究了氮肥后移对冬小麦光合特性及产量的影响.设置3个氮肥处理,分别为N1(基肥∶拔节肥∶开花肥=10∶0∶0)、N2(6∶4∶0)和N3(4∶3∶3),模拟冬小麦抽穗后2种水分胁迫(渍水胁迫、干旱胁迫),设正常供水为对照.结果表明:相同供水条件下,N2和N3处理较N1处理显著提高冬小麦灌浆期旗叶的SPAD和光合速率,确保了收获时较高的穗数、穗粒数和地上部分生物量;氮肥后移处理显著提高了冬小麦的耗水量,但其籽粒产量和水分利用效率也显著提高.相同氮肥条件下,干旱胁迫和渍水胁迫处理较正常供水显著降低了冬小麦开花期和灌浆期旗叶的光合速率、千粒重、穗粒数和产量.与正常供水相比,各氮肥条件下干旱胁迫和渍水胁迫处理花后旗叶光合速率及籽粒产量的减小幅度均表现为N1>N2>N3.表明氮肥后移通过提高旗叶SPAD、减缓花后旗叶光合速率的下降幅度、增加地上部分干物质积累量,调控产量及其构成要素,以减轻逆境灾害(干旱和渍水胁迫)对产量的影响.  相似文献   

18.
李诚永  蔡剑  姜东  戴廷波  曹卫星 《生态学报》2011,31(7):1904-1910
以扬麦9号为材料,研究花前渍水预处理对花后渍水逆境下小麦籽粒产量和品质的影响。结果表明,与未进行渍水预处理相比,花前渍水预处理提高了小麦植株对花后渍害的抗性,生物产量、收获指数和千粒重显著提高,进而显著提高了籽粒产量;花前渍水预处理显著提高花后氮素积累量及其对籽粒氮素的贡献率,降低了花前贮藏氮素运转量及其对籽粒氮素的贡献率,进而引起籽粒球蛋白含量提高,但显著降低了清蛋白、醇溶蛋白、谷蛋白和全蛋白质含量、以及干湿面筋含量和沉降值;花前渍水预处理还提高了籽粒直链淀粉和总淀粉含量和降落值,降低了支/直链淀粉比,显著提高了面粉峰值粘度、低谷粘度、崩解值、最终粘度、回冷值和峰值时间,但对糊化温度无显著影响。  相似文献   

19.
Summary Winter oats were grown outdoors in lysimeters containing monoliths of a sandy loam soil. The soil was either freely-drained throughout the experiment or waterlogged to the soil surface from mid-January until mid-April. After the start of waterlogging the oxygen flux density decreased most rapidly nearer the soil surface and in the upper 50 cm declined to zero. At 80 cm depth the oxygen flux density at the end of the waterlogging still had not diminished to zero. While the soil was waterlogged root growth was negligible in the 20–50 cm zone of the soil profile, whereas below that depth root growth continued, reaching 95 cm by the end of the treatment. During the latter part of the waterlogging period root growth resumed in the upper 10 cm, and in the upper 2.5 cm was greater than in the freelydrained treatment.At the end of the waterlogging period, the total root length and shoot dry weights were 77 and 60% of those in the freely-drained treatment, tillering was restricted and leaf area index diminished. However, by anthesis, root length and shoot weights of the plants that had been waterlogged were only 10 and 12% less respectively than for the freely-drained plants. At harvest, total dry matter and grain yields were only 9% less, the latter largely through fewer grains per panicle.  相似文献   

20.
Root systems determine the capacity of a plant to access soil water and their architecture can influence adaptation to water-limited conditions. It may be possible to associate that architecture with root attributes of young plants as a basis for rapid phenotypic screening. This requires improved understanding of root system development. This study aimed to characterise the morphological and architectural development of sorghum and maize root systems by (i) clarifying the initiation and origin of roots at germination, and (ii) monitoring and quantifying the development of root systems in young plants. Three experiments were conducted with two maize and four sorghum hybrids. Sorghum produced a sole seminal (primary) root and coleoptile nodal roots emerged at the 4th–5th leaf stage, whereas maize produced 3–7 seminal (primary and scutellum) roots and coleoptile nodal roots emerged at the 2nd leaf stage. Genotypic variation in the flush angle and mean diameter of nodal roots was observed and could be considered a suitable target for large scale screening for root architecture in breeding populations. Because of the relatively late appearance of nodal roots in sorghum, such screening would require a small chamber system to grow plants until at least 6 leaves had fully expanded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号