首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An RNA moiety has been shown to be involved in the conversion of Glu to delta-aminolevulinic acid (ALA), the first committed intermediate of the chlorophyll pathway. We now have evidence suggesting that in Chlamydomonas, the first reaction for converting Glu to ALA is the aminoacylation of Glu to a Glu-specific tRNA. The Glu-tRNA thus formed could be the substrate for Glu-1-semialdehyde synthesis catalyzed by a postulated dehydrogenase. Glu-1-semialdehyde can be converted to ALA by an aminotransferase. Of the three reactions converting Glu to ALA, only the second reaction, catalyzed by a postulated dehydrogenase, is sensitive to inhibition by heme (a known inhibitor of ALA synthesis). We think the regulated enzyme of ALA synthesis is the postulated dehydrogenase. It is postulated that in the chloroplast of Chlamydomonas, the synthesis of ALA and the synthesis of proteins may share a common pool of glutamyl-tRNA.  相似文献   

2.
1. In vitro formation of 5-aminolevulinic acid (ALA) from glutamate required two enzyme fractions, separable on Blue Sepharose affinity chromatography, and a tRNA fraction, which can be replaced by Escherichia coli tRNA(Glu) in the reconstituted assay. 2. Gabaculine was shown to inhibit ALA formation in the complete assay as well as in a defined system consisting of only glutamate-1-semialdehyde and the enzyme fraction not retained on Blue Sepharose. 3. The results indicate that the enzyme system supporting ALA formation in Clostridium thermoaceticum is very similar to the tRNA(Glu)-dependent C5 pathway in plant plastids.  相似文献   

3.
Euglena gracilis cells synthesize the key tetrapyrrole precursor, δ-aminolevulinic acid (ALA), by two routes: plastid ALA is formed from glutamate via the transfer RNA-dependent five-carbon route, and ALA that serves as the precursor to mitochondrial hemes is formed by ALA synthase-catalyzed condensation of succinyl-coenzyme A and glycine. The biosynthetic source of succinyl-coenzyme A in Euglena is of interest because this species has been reported not to contain α-ketoglutarate dehydrogenase and not to use succinyl-coenzyme A as a tricarboxylic acid cycle intermediate. Instead, α-ketoglutarate is decarboxylated to form succinic semialdehyde, which is subsequently oxidized to form succinate. Desalted extract of Euglena cells catalyzed ALA formation in a reaction that required coenzyme A and GTP but did not require exogenous succinyl-coenzyme A synthetase. GTP could be replaced with ATP. Cell extract also catalyzed glycine-and α-ketoglutarate-dependent ALA formation in a reaction that required coenzyme A and GTP, was stimulated by NADP+, and was inhibited by NAD+. Succinyl-coenzyme A synthetase activity was detected in extracts of dark- and light-grown wild-type and nongreening mutant cells. In vitro succinyl-coenzyme A synthetase activity was at least 10-fold greater than ALA synthase activity. These results indicate that succinyl-coenzyme A synthetase is present in Euglena cells. Even though the enzyme may play no role in the transformation of α-ketoglutarate to succinate in the atypical tricarboxylic acid cycle, it catalyzes succinyl-coenzyme A formation from succinate for use in the biosynthesis of ALA and possibly other products.  相似文献   

4.
The formation of glutaminyl-tRNA (Gln-tRNA) in Bacilli, chloroplasts, and mitochondria occurs in a two-step reaction. This involves misacylation of tRNA(Gln) with glutamate by glutamyl-tRNA synthetase and subsequent amidation of Glu-tRNA(Gln) to the correctly acylated Gln-tRNA(Gln) by a specific amidotransferase (Sch?n, A., Kannangara, C. G., Gough, S., and S?ll, D. (1988) Nature 331, 187-190). Here we demonstrate the existence of this pathway in green algae and describe the purification of the Glu-tRNA(Gln) amidotransferase from Chlamydomonas reinhardtii. The purified enzyme showed an Mr of approximately 120,000 when analyzed by glycerol gradient sedimentation and gel filtration. An apparent Mr of 63,000 of the denatured protein was demonstrated by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. This indicates that the enzyme possesses an alpha 2 structure. The substrate for the purified enzyme is Glu-tRNA(Gln) but not Glu-tRNA(Glu). The enzyme requires ATP, Mg2+, and an amide donor for the conversion. Acceptable amide donors are glutamine, asparagine, and ammonia. Blocking of the glutamine-dependent reaction by alkylation of the protein with 6-diazo-5-oxonorleucine did not inhibit the ammonia-dependent reaction, suggesting that the enzyme has separate glutamine and ammonia binding sites. As suggested by Wilcox (Wilcox, M. (1969) Eur. J. Biochem. 11, 405-412) the amidation reaction may involve glutamyl-phosphate formation, since ATP is cleaved to ADP when the enzyme is incubated with Glu-tRNA(Gln) and ATP. In common with other glutamine amidotransferases, the enzyme also possesses low glutaminase activity. The purified Glu-tRNA(Gln) amidotransferase forms a stable complex with Glu-tRNA(Gln) in the presence of ATP and Mg2+ but in the absence of the amide donor as determined by gradient centrifugation.  相似文献   

5.
Two glutamyl-tRNA reductase activities in Escherichia coli   总被引:12,自引:0,他引:12  
delta-Aminolevulinic acid (ALA) is the first committed precursor for tetrapyrrole biosynthesis. ALA formation in Escherichia coli occurs in a tRNA-dependent three-step conversion from glutamate. Glu-tRNA reductase is the key enzyme in this pathway. E. coli K12 contains two Glu-tRNA reductase activities which differ in their molecular weights. Here we describe the purification of one of these enzymes. Four different chromatographic separations yielded a nearly homogeneous protein. Its apparent molecular mass under denaturing (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and nondenaturing conditions (rate zonal sedimentation and gel filtration) is 85,000 +/- 5,000 Da. This indicates a monomeric structure for the active enzyme. Gel filtration and glycerol gradient centrifugation indicate that the other activity has a molecular mass of 45,000 +/- 5,000 Da. In the presence of NADPH both enzyme activities converted E. coli Glu-tRNA(2Glu) to glutamate 1-semialdehyde. Addition of GTP or hemin did not affect the reductase activity. Both enzymes display sequence-specific recognition of tRNA; E. coli Glu-tRNA(2Glu) is a good substrate while the Chlamydomonas reinhardtii, Bacillus subtilis, and Synechocystis Glu-tRNA(Glu) species are poorly recognized.  相似文献   

6.
Beale SI 《Plant physiology》1990,93(4):1273-1279
δ-Aminolevulinic acid (ALA), the common biosynthetic precursor of hemes, chlorophylls, and bilins, is synthesized by two distinct routes. Among phototrophic species, purple nonsulfur bacteria form ALA by condensation of glycine with succinyl-CoA, catalyzed by ALA synthase, in a reaction identical to that occurring in the mitochondria of animals, yeast, and fungi. Most or all other phototrophic species form ALA exclusively from the intact carbon skeleton of glutamic acid in a reaction sequence that begins with activation of the α-carboxyl group of glutamate by an ATP-dependent ligation to tRNAGlu, catalyzed by glutamyl-tRNA synthetase. Glutamyl-tRNA is the substrate for a pyridine nucleotide-dependent dehydrogenase reaction whose product is glutamate-1-semialdehyde or a similar reduced compound. Glutamate-1-semialdehyde is then transaminated to form ALA. Regulation of ALA formation from glutamate is exerted at the dehydrogenase step through end product feedback inhibition and induction/repression. In some species, end product inhibition of the glutamyl-tRNA synthetase step and developmental regulation of tRNAGlu level may also occur.  相似文献   

7.
Organisms lacking Gln-tRNA synthetase produce Gln-tRNA(Gln) from misacylated Glu-tRNA(Gln) through the transamidation activity of Glu-tRNA(Gln) amidotransferase (Glu-AdT). Glu-AdT hydrolyzes Gln to Glu and NH(3), using the latter product to transamidate Glu-tRNA(Gln) in concert with ATP hydrolysis. In the absence of the amido acceptor, Glu-tRNA(Gln), the enzyme has basal glutaminase activity that is unaffected by ATP. However, Glu-tRNA(Gln) activates the glutaminase activity of the enzyme about 10-fold; addition of ATP elicits a further 7-fold increase. These enhanced activities mainly result from increases in k(cat) without significant effects on the K(m) for Gln. To determine if ATP binding is sufficient to induce full activation, we tested a variety of ATP analogues for their ability to stimulate tRNA-dependent glutaminase activity. Despite their binding to Glu-AdT, none of the ATP analogues induced glutaminase activation except ATP-gammaS, which stimulates glutaminase activity to the same level as ATP, but without formation of Gln-tRNA(Gln). ATP-gammaS hydrolysis by Glu-AdT is very low in the absence or presence of Glu-tRNA(Gln) and Gln. In contrast, Glu-tRNA(Gln) stimulates basal ATP hydrolysis slightly, but full activation of ATP hydrolysis requires both Gln and Glu-tRNA(Gln). Simultaneous monitoring of ATP or ATP-gammaS hydrolysis and glutaminase and transamidase activities reveals tight coupling among these activities in the presence of ATP, with all three activities waning in concert when Glu-tRNA(Gln) levels become exhausted. ATP-gammaS stimulates the glutaminase activity to an extent similar to that with ATP, but without concomitant transamidase activity and with a very low level of ATP-gammaS hydrolysis. This uncoupling between ATP-gammaS hydrolysis and glutaminase activities suggests that the activation of glutaminase activity by ATP or ATP-gammaS, together with Glu-tRNA(Gln), results either from an allosteric effect due simply to binding of these analogues to the enzyme or from some structural changes that attend ATP or ATP-gammaS hydrolysis.  相似文献   

8.
The gene for the Glu-tRNA synthetase from an extreme thermophile, Thermus thermophilus HB8, was isolated using a synthetic oligonucleotide probe coding for the N-terminal amino acid sequence of Glu-tRNA synthetase. Nucleotide-sequence analysis revealed an open reading frame coding for a protein composed of 468 amino acid residues (Mr 53,901). Codon usage in the T. thermophilus Glu-tRNA synthetase gene was in fact similar to the characteristic usages in the genes for proteins from bacteria of genus Thermus: the G + C content in the third position of the codons was as high as 94%. In contrast, the amino acid sequence of T. thermophilus Glu-tRNA synthetase showed high similarity with bacterial Glu-tRNA synthetases (35-45% identity); the sequences of the binding sites for ATP and for the 3' terminus of tRNA(Glu) are highly conserved. The Glu-tRNA synthetase gene was efficiently expressed in Escherichia coli under the control of the tac promoter. The recombinant T. thermophilus Glu-tRNA synthetase was extremely thermostable and was purified to homogeneity by heat treatment and three-step column chromatography. Single crystals of T. thermophilus Glu-tRNA synthetase were obtained from poly(ethylene glycol) 6000 solution by a vapor-diffusion technique. The crystals diffract X-rays beyond 0.35 nm. The crystal belongs to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters of a = 8.64 nm, b = 8.86 nm and c = 8.49 nm.  相似文献   

9.
Núñez H  Lefimil C  Min B  Söll D  Orellana O 《FEBS letters》2004,557(1-3):133-135
Two types of glutamyl-tRNA synthetase exist: the discriminating enzyme (D-GluRS) forms only Glu-tRNA(Glu), while the non-discriminating one (ND-GluRS) also synthesizes Glu-tRNA(Gln), a required intermediate in protein synthesis in many organisms (but not in Escherichia coli). Testing the capacity to complement a thermosensitive E. coli gltX mutant and to suppress an E. coli trpA49 missense mutant we examined the properties of heterologous gltX genes. We demonstrate that while Acidithiobacillus ferrooxidans GluRS1 and Bacillus subtilis Q373R GluRS form Glu-tRNA(Glu), A. ferrooxidans and Helicobacter pylori GluRS2 form Glu-tRNA(Gln) in E. coli in vivo.  相似文献   

10.
The amide aminoacyl-tRNAs, Gln-tRNA(Gln) and Asn-tRNA(Asn), are formed in many bacteria by a pretranslational tRNA-dependent amidation of the mischarged tRNA species, Glu-tRNA(Gln) or Asp-tRNA(Asn). This conversion is catalyzed by a heterotrimeric amidotransferase GatCAB in the presence of ATP and an amide donor (Gln or Asn). Helicobacter pylori has a single GatCAB enzyme required in vivo for both Gln-tRNA(Gln) and Asn-tRNA(Asn) synthesis. In vitro characterization reveals that the enzyme transamidates Asp-tRNA(Asn) and Glu-tRNA(Gln) with similar efficiency (k(cat)/K(m) of 1368.4 s(-1)/mM and 3059.3 s(-1)/mM respectively). The essential glutaminase activity of the enzyme is a property of the A-subunit, which displays the characteristic amidase signature sequence. Mutations of the GatA catalytic triad residues (Lys(52), Ser(128), Ser(152)) abolished glutaminase activity and consequently the amidotransferase activity with glutamine as the amide donor. However, the latter activity was rescued when the mutant enzymes were presented with ammonium chloride. The presence of Asp-tRNA(Asn) and ATP enhances the glutaminase activity about 22-fold. H. pylori GatCAB uses the amide donor glutamine 129-fold more efficiently than asparagine, suggesting that GatCAB is a glutamine-dependent amidotransferase much like the unrelated asparagine synthetase B. Genomic analysis suggests that most bacteria synthesize asparagine in a glutamine-dependent manner, either by a tRNA-dependent or in a tRNA-independent route. However, all known bacteria that contain asparagine synthetase A form Asn-tRNA(Asn) by direct acylation catalyzed by asparaginyl-tRNA synthetase. Therefore, bacterial amide aminoacyl-tRNA formation is intimately tied to amide amino acid metabolism.  相似文献   

11.
An enzyme system of Mycobacterium smegmatis catalyzing the elongation of medium-chain fatty acids with acetyl-CoA was obtained free from de novo fatty acid synthetase by ammonium sulfate fractionation. The system was resolved by gel filtration and DEAE-cellulose chromatography into three fractions, all of which were required for reconstitution of the elongation activity. The three fractions were highly purified enoyl-CoA hydratase, highly purified 3-hydroxyacyl-CoA dehydrogenase, and a fraction containing both enoyl-CoA reductase and thiolase. The reconstituted system was avidin-insenstive, required NADH as a sole hydrogen donor, and was sensitive to pCMB, but not to N-ethylmaleimide or monoiodoacetate. Decanoyl-CoA and octanoyl-CoA were the best primers for the elongation system. When decanoyl-CoA was used as the primer, the major product was found to be a lauroyl derivative (probably lauroyl-CoA). Evidence was obtained suggesting that acyl-CoA dehydrogenase, catalyzing the first step of beta-oxidation, was not functional in the elongation system.  相似文献   

12.
Linoleic acid isomerase in Lactobacillus plantarum was found to be a novel multi-component enzyme system widespread in membrane and soluble fractions. The isomerization reaction involved a hydration step, 10-hydroxy-12-octadecenoic acid production from linoleic acid, as part of the reaction, and the hydration reaction was catalyzed by the membrane fraction. Both membrane and soluble fractions were required for the whole isomerization reaction, i.e., conjugated linoleic acid (CLA) production from linoleic acid, and for CLA production from 10-hydroxy-12-octadecenoic acid, a reaction intermediate. The multi-component enzyme system was inhibited by o-phenanthroline, and divalent metal ions such as Ni(2+) and Co(2+) restored activity. Metal oxides such as VO(4)(3+), MoO(4)(2+), and MnO(4)(2+) enhanced activity. The multi-component enzyme systems required oxidoreduction cofactors such as NADH together with FAD or NADPH for total activity.  相似文献   

13.
D Jahn 《FEBS letters》1992,314(1):77-80
The formation of a stable complex between glutamyl-tRNA synthetase and the first enzyme of chlorophyll biosynthesis glutamyl-tRNA reductase was investigated in the green alga Chlamydomonas reinhardtii. Apparently homogenous enzymes, purified after previously established purification protocols were incubated in various combinations with ATP, glutamate, tRNA(Glu) and NADPH and formed complexes were isolated via glycerol gradient centrifugation. Stable complexes were detected only after the preincubation of glutamyl-tRNA synthetase, glutamyl-tRNA reductase with either glutamyl-tRNA or free tRNA(Glu), ATP and glutamate, indicating the obligatory requirement of aminoacylated tRNA(Glu) for complex formation. The further addition of NADPH resulting in the reduction of the tRNA-bound glutamate to glutamate 1-semialdehyde led to the dissociation of the complex. Once complexed to the two enzymes tRNA(Glu) was found to be partially protected from ribonuclease digestion. Escherichia coli, Bacillus subtilis and Synechocystis 6803 tRNA(Glu) were efficiently incorporated into the protein-RNA complex. The detected complexes provide the chloroplast with a potential channeling mechanism for Glu-tRNA(Glu) into chlorophyll synthesis in order to compete with the chloroplastic protein synthesis machinery.  相似文献   

14.
5-Aminolevulinic acid is the first committed precursor for the synthesis of porphyrins such as hemes and chlorophylls. In many organisms aminolevulinate is synthesized from glutamate in a three-step pathway (C5 pathway). The key step in this conversion is a tRNA-mediated reduction of glutamate to glutamate-1-semialdehyde. tRNA is a specific cofactor for an NADPH-dependent enzyme, Glu-tRNA reductase, which is capable of sequence-specific recognition of Glu-tRNA(Glu). tRNA(Glu) is a dual-function molecule; it participates both in protein and in aminolevulinate biosynthesis. This reduction reaction represents a novel role for tRNA where it participates in a metabolic conversion of its amino acid into a low molecular weight metabolite which is subsequently not used in peptide bond synthesis.  相似文献   

15.
The porphobilinogen (PBG) synthase catalyzed reaction requires both Zn(II) and reducing equivalents for the production of PBG from two molecules of 5-aminolevulinic acid (ALA). An early step in the reaction is the production of a Schiff's base between PBG synthase and one ALA molecule. Because both substrate molecules are chemically identical, there had been no evidence of enzyme-catalyzed partial reactions of ALA under conditions where PBG is not formed. In this study, NaBH4 was used to trap the Schiff's base formed between substrate ALA and active holo-PBG synthase, inactive apo-PBG synthase, and inactive methylmethanethiosulfonate-modified apo-PBG synthase. ALA-dependent NaBH4 inactivation of these enzyme forms was quantified at 50-62, 94-97, and 93-96% inactivation, respectively. [4-14C]ALA was used to determine the stoichiometry of Schiff's base trapping which was 2.3, 3.5-4.0, and 3.4 per octamer for holoenzyme, apoenzyme, and methylmethanethiosulfonate-modified apoenzyme, respectively. These results are consistent with four active sites per octamer or half-of-the-sites reactivity. We conclude that the production of the Schiff's base formed between one ALA molecule and the enzyme requires neither Zn(II) nor reduced enzyme sulfhydryl groups. Furthermore, the possible number of kinetic schemes for formation of the quaternary complex of enzyme, Zn(II), and two ALA moieties, one as the Schiff's base, has been reduced from 12 to 3. This is the first demonstration of a partial reaction catalyzed by PBG synthase with the natural substrate ALA under conditions which do not support PBG formation. Thus, we have opened the way toward investigating the partial reactions which may precede Zn(II) participation in the PBG synthase reaction.  相似文献   

16.
Gln-tRNA(Gln) is synthesized from Glu-tRNA(Gln) in most microorganisms by a tRNA-dependent amidotransferase in a reaction requiring ATP and an amide donor such as glutamine. GatDE is a heterodimeric amidotransferase that is ubiquitous in Archaea. GatD resembles bacterial asparaginases and is expected to function in amide donor hydrolysis. We show here that Methanothermobacter thermautotrophicus GatD acts as a glutaminase but only in the presence of both Glu-tRNA(Gln) and the other subunit, GatE. The fact that only Glu-tRNA(Gln) but not tRNA(Gln) could activate the glutaminase activity of GatD suggests that glutamine hydrolysis is coupled tightly to transamidation. M. thermautotrophicus GatDE enzymes that were mutated in GatD at each of the four critical asparaginase-active site residues lost the ability to hydrolyze glutamine and were unable to convert Glu-tRNA(Gln) to Gln-tRNA(Gln) when glutamine was the amide donor. However, ammonium chloride rescued the activities of these mutants, suggesting that the integrity of the ATPase and the transferase activities in the mutant GatDE enzymes was maintained. In addition, pyroglutamyl-tRNA(Gln) accumulated during the reaction catalyzed by the glutaminase-deficient mutants or by GatE alone. The pyroglutamyl-tRNA is most likely a cyclized by-product derived from gamma-phosphoryl-Glu-tRNA(Gln), the proposed high energy intermediate in Glu-tRNA(Gln) transamidation. That GatE alone could form the intermediate indicates that GatE is a Glu-tRNA(Gln) kinase. The activation of Glu-tRNA(Gln) via gamma-phosphorylation bears a similarity to the mechanism used by glutamine synthetase, which may point to an ancient link between glutamine synthesized for metabolism and translation.  相似文献   

17.
Error-free protein biosynthesis is dependent on the reliable charging of each tRNA with its cognate amino acid. Many bacteria, however, lack a glutaminyl-tRNA synthetase. In these organisms, tRNA(Gln) is initially mischarged with glutamate by a non-discriminating glutamyl-tRNA synthetase (ND-GluRS). This enzyme thus charges both tRNA(Glu) and tRNA(Gln) with glutamate. Discriminating GluRS (D-GluRS), found in some bacteria and all eukaryotes, exclusively generates Glu-tRNA(Glu). Here we present the first crystal structure of a non-discriminating GluRS from Thermosynechococcus elongatus (ND-GluRS(Tel)) in complex with glutamate at a resolution of 2.45 A. Structurally, the enzyme shares the overall architecture of the discriminating GluRS from Thermus thermophilus (D-GluRS(Tth)). We confirm experimentally that GluRS(Tel) is non-discriminating and present kinetic parameters for synthesis of Glu-tRNA(Glu) and of Glu-tRNA(Gln). Anticodons of tRNA(Glu) (34C/UUC36) and tRNA(Gln) (34C/UUG36) differ only in base 36. The pyrimidine base of C36 is specifically recognized in D-GluRS(Tth) by the residue Arg358. In ND-GluRS(Tel) this arginine residue is replaced by glycine (Gly366) presumably allowing both cytosine and the bulkier purine base G36 of tRNA(Gln) to be tolerated. Most other ND-GluRS share this structural feature, leading to relaxed substrate specificity.  相似文献   

18.
Aminoacyl-tRNA is generally formed by aminoacyl-tRNA synthetases, a family of 20 enzymes essential for accurate protein synthesis. However, most bacteria generate one of the two amide aminoacyl-tRNAs, Asn-tRNA or Gln-tRNA, by transamidation of mischarged Asp-tRNA(Asn) or Glu-tRNA(Gln) catalyzed by a heterotrimeric amidotransferase (encoded by the gatA, gatB, and gatC genes). The Chlamydia trachomatis genome sequence reveals genes for 18 synthetases, whereas those for asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase are absent. Yet the genome harbors three gat genes in an operon-like arrangement (gatCAB). We reasoned that Chlamydia uses the gatCAB-encoded amidotransferase to generate both Asn-tRNA and Gln-tRNA. C. trachomatis aspartyl-tRNA synthetase and glutamyl-tRNA synthetase were shown to be non-discriminating synthetases that form the misacylated tRNA(Asn) and tRNA(Gln) species. A preparation of pure heterotrimeric recombinant C. trachomatis amidotransferase converted Asp-tRNA(Asn) and Glu-tRNA(Gln) into Asn-tRNA and Gln-tRNA, respectively. The enzyme used glutamine, asparagine, or ammonia as amide donors in the presence of either ATP or GTP. These results suggest that C. trachomatis employs the dual specificity gatCAB-encoded amidotransferase and 18 aminoacyl-tRNA synthetases to create the complete set of 20 aminoacyl-tRNAs.  相似文献   

19.
Hepatic delta-aminolevulinate (ALA) synthetase was induced in mice by the administration of allylisopropylacetamide (AIA) and 3,5-dicarbethoxy-1,4-dihydrocollidine (DDC). In both cases, a significant amount of ALA synthetase accumulated in the liver cytosol fraction as well as in the mitochondria. The apparent molecular weight of the cytosol ALA synthetase was estimated to be 320,000 by gel filtration, but when the cytosol ALA synthetase was subjected to sucrose density gradient centrifugation, it showed a molecular weight of 110,000. In the mitochondria, there were two different sizes of ALA synthetase with molecular weights of 150,000 and 110,000, respectively; the larger enzyme was predominant in DDC-treated mice, whereas in AIA-treated mice and normal mice the enzyme existed mostly in the smaller form. When hemin was injected into mice pretreated with DDC, the molecular size of the mitochondrial ALA synthetase changed from 150,000 to 110,000. The half-life of ALA synthetase in the liver cytosol fraction was about 30 min in both the AIA-treated and DDC-treated mice. The half-life of the mitochondrial ALA synthetase in AIA-treated mice and normal mice was about 60 min, but in DDC-treated mice the half-life was as long as 150 min. The data suggest that the cytosol ALA synthetase of mouse liver is a protein complex with properties very similar to those of the cytosol ALA synthetase of rat liver, which has been shown to be composed of the enzyme active protein and two catalytically inactive binding proteins, and that ALA synthetase may be transferred from the liver cytosol fraction to the mitochondria with a size of about 150,000 daltons, followed by its conversion to enzyme with a molecular weight of 110,000 within the mitochondria. The process of intramitochondrial enzyme degradation seems to be affected in DDC-treated animals.  相似文献   

20.
delta-Aminolevulinic acid (ALA), the universal biosynthetic precursor of tetrapyrrole pigments, is synthesized from glutamate in plants, algae, and many bacteria via a three-step process that begins with activation by ligation of glutamate to tRNA(Glu), followed by reduction to glutamate-1-semialdehyde (GSA) and conversion of GSA to ALA. The GSA aminotransferase step requires no substrate other than GSA. A previous study examined whether the aminotransferase reaction proceeds via intramolecular or intermolecular N transfer and concluded that the reaction catalyzed by Chlamydomonas extracts occurs via intermolecular N transfer (Y.-H.L. Mau and W.-Y. Wang [1988] Plant Physiol 86: 793-797). However, in that study the possibility was not excluded that the result was a consequence of N exchange among product ALA molecules during the incubation, rather than intermolecular N transfer during the conversion of GSA to ALA. Therefore, this question was reexamined in another species and with additional controls. A gel-filtered extract of Chlorella vulgaris cells was incubated with ATP, Mg2+, NADPH, tRNA, and a mixture of L-glutamate molecules, one-half of which were labeled with 15N and the other half with 13C at C-1. The ALA product was purified, derivatized, and analyzed by gas chromatography-mass spectrometry. A significant fraction of the ALA molecules was heavy by two mass units, indicating incorporation of both 15N and 13C. These results show that the N and C atoms of each ALA molecule were derived from different glutamate molecules. Control experiments indicated that the results could not be attributed to exchange of N atoms between glutamate or ALA molecules during the incubation. These results confirm the earlier conclusion that GSA is converted to ALA via intermolecular N transfer and extend the results to another species. The labeling results, combined with the results of kinetic and inhibitor studies, support a model for the GSA aminotransferase reaction in which a single molecule of GSA is converted to ALA via an enzyme-bound 4,5-diaminovaleric acid intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号