首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ras p21 GTPase-activating protein (GAP) has been proposed to interact with the putative effector domain of ras p21s, and smg p21, a ras p21-like guanine nucleotide binding protein (G protein), has been shown to have the same amino acid sequence as ras p21s in this region. In the present studies, we examined the effects of ras p21 GAP on the GTPase activity of smg p21 purified from human platelets, of smg p21 on the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21 purified from Escherichia coli, and of c-Ha-ras p21 on the smg p21 GAP1- or -2-stimulated GTPase activity of smg p21. ras p21 GAP stimulated the GTPase activity of c-Ha-ras p21 but not that of smg p21. The GTP-bound form of smg p21, however, inhibited the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21 in a dose-dependent manner. The half-maximum inhibition by smg p21 was obtained at 0.4 microM which was more potent than previously observed for ras p21 (2-200 microM). The GDP-bound form also inhibited the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21, but the efficiency was 40-50% that of the GTP-bound form. smg p21 GAP1 and -2 stimulated the GTPase activity of smg p21 but not that of c-Ha-ras p21. c-Ha-ras p21 did not inhibit the smg p21 GAP1- or -2-stimulated GTPase activity of smg p21. These results indicate that ras p21 GAP interacts with smg p21 without the subsequent stimulation of its GTPase activity.  相似文献   

2.
Novel regulatory proteins for smg p21A and -B, ras p21-like GTP-binding proteins (G proteins) having the same putative effector domain as ras p21s, were purified to near homogeneity from bovine brain cytosol and characterized. These regulatory proteins, designated as GDP dissociation stimulator (GDS) 1 and -2, stimulated the dissociation of both [3H]GDP and [35S] guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) from smg p21s to the same extent. smg p21 GDS1 and -2 also stimulated the binding of [35S]GTP gamma S to the GDP-bound form of smg p21s but not that to the guanine nucleotide-free form. These actions of smg p21 GDS1 and -2 were specific for smg p21s and inactive for other ras p21/ras p21-like G proteins including c-Ha-ras p21, rhoB p20, and smg p25A. Neither smg p21 GDS1 nor -2 stimulated the GTPase activity of smg p21s and by itself showed [35S]GTP gamma S-binding or GTPase activity. smg p21 GDS1 and -2 showed very similar physical and kinetic properties and were indistinguishable by peptide map analysis. The Mr values of smg p21 GDS1 and -2 were estimated to be about 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and from the S values, indicating that smg p21 GDS1 and -2 are composed of a single polypeptide without a subunit structure. smg p21 GDS1 and -2 were distinguishable from GTPase activating proteins (GAPs) for the ras and rho proteins, and smg p21B, and GDP dissociation inhibitors for smg p25A and the rho proteins previously identified in bovine brain cytosol. These results indicate that bovine brain contains regulatory proteins for smg p21s that stimulate the dissociation of GDP from and thereby the subsequent binding of GTP to smg p21s in addition to smg p21 GAP. It is likely that the conversion from the GDP-bound inactive form of smg p21s to the GTP-bound active form is regulated by smg p21 GDS and that its reverse reaction is regulated by smg p21 GAP.  相似文献   

3.
The signal transduction properties of the 21-kDa GTP-binding proteins, encoded by the ras genes, are only partly known. In a recent report, we demonstrated that the signaling pathway of p21ras, like that of several growth factors, is closely associated with phosphatidylinositol 3-kinase (PtdIns 3-kinase) activity. We showed that insulin-like growth factor-1 (IGF-1) and insulin increased the phosphatidylinositol 3-kinase activity in immunoprecipitates obtained with anti-phosphotyrosine and anti-ras antibodies in Ha-ras-transformed epithelial cells. Several findings in this previous study suggested that an additional protein was likely to be associated with the PtdIns 3-kinase. The suggestion that p21ras GTPase-activating protein (GAP) acts not only as a regulator of p21ras activity but also as a direct downstream target in the signaling pathway of p21ras led us to investigate the possible association of PtdIns 3-kinase with GAP. The stimulation of Ha-ras-transformed epithelial cells with IGF-1 caused an increased association of PtdIns 3-kinase activity with GAP, as seen by immunoprecipitation with anti-p21ras and anti-GAP antibodies. The 85-kDa regulatory subunit of PtdIns 3-kinase was present in immunoprecipitates obtained with antibodies against GAP and p21ras of IGF-1 stimulated cells. These data suggest that GAP acts as a downstream target for p21ras via its association with PtdIns 3-kinase.  相似文献   

4.
Previous studies of premature chain termination mutants and in frame deletion mutants of the p21 ras transforming protein encoded by the transforming gene of Harvey murine sarcoma virus (Ha-MuSV) have suggested that the C terminus is required for cellular transformation, lipid binding, and membrane localization. We have now further characterized the post-translational processing of these mutants and have also studied two C-terminal v-rasH point mutants: one encodes serine in place of cysteine-186, the other threonine for valine-187. The Thr-187 mutant was transformation-competent, and its p21 protein was processed normally, as was the p21 encoded by a transformation-competent deletion mutant from which amino acids 166-175 had been deleted. The Ser-186 mutant was defective for transformation. The p21s encoded by the Ser-186 mutant and by the previously described transformation-defective mutants did not undergo the posttranslational processing common to biologically active ras proteins: their electrophoretic migration rate did not change, they remained in the cytosol, and they failed to bind lipid. Since the cell-encoded ras proteins also contain this cysteine, we conclude that this amino acid residue is required for all ras proteins.  相似文献   

5.
Mammalian ras genes substitute for the yeast RAS gene, and their products activate adenylate cyclase in yeast cells, although the direct target protein of mammalian ras p21s remains to be identified. ras p21s undergo posttranslational processing, including prenylation, proteolysis, methylation, and palmitoylation, at their C-terminal regions. We have previously reported that the posttranslational processing of Ki-ras p21 is essential for its interaction with one of its GDP/GTP exchange proteins named smg GDS. In this investigation, we have studied whether the posttranslational processing of Ki- and Ha-ras p21s is critical for their stimulation of yeast adenylate cyclase in a cell-free system. We show that the posttranslationally fully processed Ki- and Ha-ras p21s activate yeast adenylate cyclase far more effectively than do the unprocessed proteins. The previous and present results suggest that the posttranslational processing of ras p21s is important for their interaction not only with smg GDS but also with the target protein.  相似文献   

6.
The neurofibromatosis type 1 (NF1) protein contains a region of significant sequence similarity to ras p21 GTPase-activating protein (GAP) and the yeast IRA1 gene product. A fragment of NF1 cDNA encoding the GAP-related domain (NF1 GRD) was expressed, immunoaffinity purified, and assayed for effects on N-ras p21 GTPase activity. The GTPase of wild-type ras p21 was stimulated by NF1 GRD, but oncogenic mutants of ras p21 (Asp-12 and Val-12) were unaffected, and the GTPase of an effector mutant (Ala-38) was only weakly stimulated. NF1 GRD also down-regulated RAS function in S. cerevisiae. The affinity of NF1 GRD for ras p21 was estimated to be 250 nM: this is more than 20-fold higher than the affinity of GAP for ras p21. However, its specific activity was about 30 times lower. These kinetic measurements suggest that NF1 may be a significant regulator of ras p21 activity, particularly at low ras p21 concentrations.  相似文献   

7.
We have clarified that rhoA p21 purified from bovine aortic smooth muscle is geranylgeranylated at the cysteine residue in the C-terminal CAAX motif (A is an aliphatic amino acid and X is any amino acid). In this paper, a geranylgeranyltransferase for rhoA p21 (rhoA p21 GGT) was partially purified from bovine brain cytosol. This enzyme transferred a geranylgeranyl moiety from geranylgeranyl pyrophosphate to rhoA p21 having the CAAX motif (rhoA p21-CAAX) but not to rhoA p21 lacking the AAX portion. rhoA p21 GGT was separated from the previously reported farnesyltransferase for ras p21s (ras p21 FT) by column chromatographies and did not geranylgeranylate or farnesylate c-Ha-ras p21-CAAX. ras p21 FT did not geranylgeranylate or farnesylate rhoA p21-CAAX. These results indicate that rhoA p21 GGT distinct from ras p21 FT is present in bovine brain cytosol.  相似文献   

8.
The biochemical properties of Artemia ras proteins (p21) have been studied after immunoprecipitation with the monoclonal antibody Y13-259. The ras products bind GTP and GDP, and have GTPase activity. Artemia p21 was unable to hydrolyze GP4G, although this dinucleotide exhibits high affinity for the protein. Our results demonstrate that the protein(s) recognized by the Y13-259 antibody in this crustacean behave as typical mammalian ras p21s.  相似文献   

9.
p21ras GTPase is the protein product of the most commonly mutated human oncogene and has been identified as a target for reactive oxygen and nitrogen species. Posttranslational modification of reactive thiols, by reversible S-glutathiolation and S-nitrosation, and potentially also by irreversible oxidation, may have significant effects on p21ras activity. Here we used an isotope-coded affinity tag (ICAT) and mass spectrometry to quantitate the reversible and irreversible oxidative posttranslational thiol modifications of p21ras caused by peroxynitrite (ONOO(-)) or glutathione disulfide (GSSG). The activity of p21ras was significantly increased after exposure to GSSG, but not to ONOO(-). The results of LC-MS/MS analysis of tryptic peptides of p21ras treated with ONOO(-) showed that ICAT labeling of Cys(118) was decreased by 47%, whereas Cys(80) was not significantly affected and was thereby shown to be less reactive. The extent of S-glutathiolation of Cys(118) by GSSG was 53%, and that of the terminal cysteines was 85%, as estimated by the decrease in ICAT labeling. The changes in ICAT labeling caused by GSSG were reversible by chemical reduction, but those caused by peroxynitrite were irreversible. The quantitative changes in thiol modification caused by GSSG associated with increased activity demonstrate the potential importance of redox modulation of p21ras.  相似文献   

10.
Hydrolysis of GTP by the alpha-chain of Gs and other GTP binding proteins   总被引:4,自引:0,他引:4  
The functions of G proteins--like those of bacterial elongation factor (EF) Tu and the 21 kDa ras proteins (p21ras)--depend upon their abilities to bind and hydrolyze GTP and to assume different conformations in GTP- and GDP-bound states. Similarities in function and amino acid sequence indicate that EF-Tu, p21ras, and G protein alpha-chains evolved from a primordial GTP-binding protein. Proteins in all three families appear to share common mechanisms for GTP-dependent conformational change and hydrolysis of bound GTP. Biochemical and molecular genetic studies of the alpha-chain of Gs (alpha s) point to key regions that are involved in GTP-dependent conformational change and in hydrolysis of GTP. Tumorigenic mutations of alpha s in human pituitary tumors inhibit the protein's GTPase activity and cause constitutive elevation of adenylyl cyclase activity. One such mutation replaces a Gln residue in alpha s that corresponds to Gln-61 of p21ras; mutational replacements of this residue in both proteins inhibit their GTPase activities. A second class of GTPase inhibiting mutations in alpha s occurs in the codon for an Arg residue whose covalent modification by cholera toxin also inhibits GTP hydrolysis by alpha s. This Arg residue is located in a domain of alpha s not represented in EF-Tu or p21ras. We propose that this domain constitutes an intrinsic activator of GTP hydrolysis, and that it performs a function analogous to that performed for EF-Tu by the programmed ribosome and for p21ras by the recently discovered GTPase-activating protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
ralGDS family members interact with the effector loop of ras p21.   总被引:24,自引:13,他引:11       下载免费PDF全文
Using a yeast two-hybrid system, we identified a novel protein which interacts with ras p21. This protein shares 69% amino acid homology with ral guanine nucleotide dissociation stimulator (ralGDS), a GDP/GTP exchange protein for ral p24. We designated this protein RGL, for ralGDS-like. Using the yeast two-hybrid system, we found that an effector loop mutant of ras p21 was defective in interacting with the ras p21-interacting domain of RGL, suggesting that this domain binds to ras p21 through the effector loop of ras p21. Since ralGDS contained a region highly homologous with the ras p21-interacting domain of RGL, we examined whether ralGDS could interact with ras p21. In the yeast two-hybrid system, ralGDS failed to interact with an effector loop mutant of ras p21. In insect cells, ralGDS made a complex with v-ras p21 but not with a dominant negative mutant of ras p21. ralGDS interacted with the GTP-bound form of ras p21 but not with the GDP-bound form in vitro. ralGDS inhibited both the GTPase-activating activity of the neurofibromatosis gene product (NF1) for ras p21 and the interaction of Raf with ras p21 in vitro. These results demonstrate that ralGDS specifically interacts with the active form of ras p21 and that ralGDS can compete with NF1 and Raf for binding to the effector loop of ras p21. Therefore, ralGDS family members may be effector proteins of ras p21 or may inhibit interactions between ras p21 and its effectors.  相似文献   

12.
A GTP-binding protein with an apparent molecular weight of 25 kDa was detected in hepatocyte extracts using SDS-PAGE and [alpha-32P]GTP. p21ras proteins could only be detected by immunological analysis. The amounts of p21ras proteins present in isolated hepatocytes and in a highly purified preparation of liver plasma membrane vesicles were 0.3 and 4 ng p21ras protein/micrograms membrane protein, respectively. In comparison with the total cell extract, the degree of enrichment of plasma membrane vesicles with p21ras was similar to that of 5'-nucleotidase. The p21ras proteins were tightly associated with the membrane. Treatment of [3H]choline-labelled plasma membranes with an excess concentration of the anti-p21ras antibody Y13-259 failed to inhibit either basal or guanosine 5'-[gamma-thio]triphosphate (GTP[S])-stimulated [3H]choline release. It is concluded that in hepatocytes (a) the majority of p21ras is bound to the plasma membrane and (b) p21ras is not directly involved in the activation by GTP[S] of phospholipase D.  相似文献   

13.
Amino acid sequence homology between the GTPase Activating Protein (GAP) and the GTP-binding regulatory protein, Gs alpha, suggests that a specific region of GAP primary structure (residues 891-898) may be involved in its stimulation of p21ras GTP hydrolytic activity (McCormick, F. [1989] Nature 340, 678-679). A peptide, designated p891, corresponding to GAP residues 891-906 (M891RTRVVSGFVFLRLIC906) was synthesized and tested for its ability to inhibit GAP-stimulated p21ras GTPase activity. At a concentration of 25 microM, p891 inhibited GAP activity approximately 50%. Unexpectedly, p891 also stimulated GTP binding to p21N-ras independent of GAP. This stimulation correlated with an enhancement of p21N-ras.GDP dissociation; an approximate 15-fold increase in the presence of 10 microM p891. In contrast, dissociation of the p21N-ras.GTP gamma S complex was unaffected by 10 microM p891. The p21N-ras.GDP complex was unresponsive to 100 microM mastoparan, a peptide toxin shown previously to accelerate GDP dissociation from the guanine nucleotide regulatory proteins, Gi and Go. p21H-ras, as well as the two p21H-ras effector mutants, Ala-38, and Ala-35, Leu-36, also exhibited increased rates of GDP dissociation in the presence of p891. Also tested were three ras-related GTP-binding proteins; rap, G25K and rac. The rap.-GDP complex was unaffected by 10 microM p891. Dissociation of the G25K- and rac.GDP complexes were enhanced slightly; approximately 1.3- and 1.8-fold over control, respectively. Thus, the inhibitory effect of p891 on GAP stimulation of p21ras suggests that amino acids within the region 891-906 of GAP may be essential for interaction with p21ras. In addition, p891 independently affects the nucleotide exchange properties of p21ras.  相似文献   

14.
Mutational replacements of specific residues in the GTP-binding pocket of the 21-kDa ras proteins (p21ras) reduce their GTPase activity. To test the possibility that the cognate regions of G protein alpha chains participate in GTP binding and hydrolysis, we compared signaling functions of normal and mutated alpha chains (termed alpha s) of Gs, the stimulatory regulator of adenylyl cyclase. alpha s chains were expressed in an alpha s-deficient S49 mouse lymphoma cell line, cyc-. alpha s in which leucine replaces glutamine 227 (corresponding to glutamine 61 of p21ras) constitutively activates adenylyl cyclase and reduces the kcat for GTP hydrolysis more than 100-fold. There is a smaller reduction in GTPase activity in another mutant in which valine replaces glycine 49 (corresponding to glycine 12 of p21ras). This mutant alpha s is a poor activator of adenylyl cyclase. Moreover, the glycine 49 protein, unlike normal alpha s, is not protected against tryptic cleavage by hydrolysis resistant GTP analogs; this finding suggests impairment of the mutant protein's ability to attain the active (GTP-bound) conformation. We conclude that alpha s residues near glutamine 227 and glycine 49 participate in binding and hydrolysis of GTP, although the GTP binding regions of alpha s and p21ras are not identical.  相似文献   

15.
Recent data has indicated that exogenous nitric oxide (NO) has the ability to decrease endogenous NO production by inhibiting the enzyme responsible for its generation, NO synthase (NOS). Our previous studies have indicated that increased generation of reactive oxygen species (ROS) play an important role in the inhibitory event. However, the mechanisms for these effects remain unclear. Previous studies have suggested that NO can activate p21ras. Thus, the objective of this study was to determine whether NO-mediated activation of p21ras is involved in the inhibitory process, and to further elucidate the involvement of ROS. Using primary cultures of ovine pulmonary arterial endothelial cells we demonstrated that the NO donor SpermineNONOate, increased p21ras activity by 2.3-fold compared to untreated cells, and that the farnesyl-transferase inhibitor, alpha-hydroxyfarnesylphosphonic acid, reduced p21ras activity and significantly reduced inhibition of eNOS. The overexpression of p21ras increased, while the overexpression of an NO unresponsive mutant of p21ras (p21ras C118S) reduced, the inhibition of eNOS by NO. Further, we identified an increase in the level of superoxide and peroxynitrite in endothelial cells exposed to NO that was reduced by p21ras C118S transient transfection. Conversely, levels of superoxide and peroxynitrite could be increased by the over expression of wild type p21ras. Similarly, eNOS nitration induced by NO exposure was reduced by p21ras C118S transient transfection, and increased by the overexpression of wild-type p21ras. Finally, results also demonstrated that eNOS itself was a significant producer of superoxide, and that this appeared to be related to a p21ras-dependent increase in phosphorylation of Ser1177. Our results implicate a signaling pathway involving p21ras activation, superoxide generation, and peroxynitrite formation as being important in the NO-mediated inhibition of eNOS.  相似文献   

16.
Two proteins stimulating the GTPase activity of the smg-21 GTP-binding protein (smg p21) having the same effector domain as the ras proteins (ras p21s) are partially purified from the cytosol fraction of human platelets. These proteins, designated as smg p21 GTPase activating protein (GAP) 1 and 2, do not stimulate the GTPase activity of c-Ha-ras p21. The GAP activity for c-Ha-ras p21 is also detected in the cytosol fraction of human platelets. smg p21 GAP1 and 2 are separated from c-Ha-ras p21 GAP by column chromatographies. The activity of smg p21 GAP1 and 2 is killed by tryptic digestion or heat boiling. The Mr values of smg p21 GAP1 and 2 are similar and are estimated to be 2.5-3.5 x 10(5) by gel filtration analysis. These results indicate that there are two GAPs for smg p21 in addition to a GAP for c-Ha-ras p21 in human platelets.  相似文献   

17.
18.
A decapeptide corresponding to residues 35-44(-Thr-Ile-Glu-Asp-Ser-Tyr-Arg-Lys-Gln-Val-) of p21ras was synthesized. It was found that peptide causes precipitation of some proteins from the Triton X-100 lysate of NIH 3T3 EJ cells. SDS-PAGE demonstrated the presence of many proteins in this precipitate. The peptide labeled with [125I]Bolton-Hunter reagent specifically recognized four proteins of M. W. 27, 35, 50 and 85 kDa. The order of charged amino acid residues in the fragment 35-44 of p21ras is "complementary" to that of the substrate sequence of tyrosine-specific protein kinases (-Arg-X-X-Glu-Asp-X-X-Tyr-). It is suggested that p21ras proteins directly regulate phosphorylation of the target proteins of these kinases. A model for functioning of p21ras proteins predicts the presence in their structure of certain sites homologous to sequences recognizable by tyrosine-specific kinases. Indeed two such sites are present in the sequences of all p21ras proteins, namely the residues 88-92 and 104-108.  相似文献   

19.
The direct binding protein(s) of ras p21 was (were) investigated in inside-out vesicles of human erythrocyte ghosts using the pure v-Kirsten (Ki)-ras p21 synthesized in E. coli. The bound ras p21 was detected immunochemically using an anti-v-Ki-ras p21 monoclonal antibody, ras p21 bound to vesicles. Prior digestion of the vesicles with trypsin reduced this binding significantly. When ras p21 was laid over vesicle proteins immobilized on a nitrocellulose sheet by transfer from the gel of SDS-polyacrylamide gel electrophoresis, ras p21 bound to bands 4.2 and 6. ras p21 binding to these proteins was reduced by prior incubation of ras p21 with the purified band 4.2 or 6 protein. These results indicate that v-Ki-ras p21 can bind directly to bands 4.2 and 6 of human erythrocyte membranes as far as tested in an in vitro cell-free system.  相似文献   

20.
M Foschi  S Chari  M J Dunn    A Sorokin 《The EMBO journal》1997,16(21):6439-6451
Endothelin-1 (ET-1) induces cell proliferation and differentiation through multiple G-protein-linked signaling systems, including p21ras activation. Whereas p21ras activation and desensitization by receptor tyrosine kinases have been extensively investigated, the kinetics of p21ras activation induced by engagement of G-protein-coupled receptors remains to be fully elucidated. In the present study we show that ET-1 induces a biphasic activation of p21ras in rat glomerular mesangial cells. The first peak of activation of p21ras, at 2-5 min, is mediated by immediate association of phosphorylated Shc with the guanosine exchange factor Sos1 via the adaptor protein Grb2. This initial activation of p21ras results in activation of the extracellular signal-regulated kinase (ERK) cascade. We demonstrate that ET-1 signaling elicits a negative feedback mechanism, modulating p21ras activity through ERK-dependent Sos1 phosphorylation, findings which were confirmed using an adenovirus MEK construct. Subsequent to p21ras and ERK deactivation, Sos1 reverts to the non-phosphorylated condition, enabling it to bind again to the Grb2/Shc complex, which is stabilized by persistent Shc phosphorylation. However, the resulting secondary activation of p21ras at 30 min does not lead to ERK activation, correlating with intensive, ET-1-induced expression of MAP kinase phosphatase-1, but does result in increased p21ras-associated phosphatidylinositol 3-kinase activity. Our data provide evidence that ET-1-induced biphasic p21ras activation causes sequential stimulation of divergent downstream signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号